
ForecastBuilderConfig Thursday, March 20, 2025, 6:32 PM

1 # --
2 # This software is in the public domain, furnished "as is", without technical
3 # support, and with no warranty, express or implied, as to its usefulness for
4 # any purpose.
5 #
6 # ForecastBuilderConfig - Version 10.7
7 #
8 # Author: ForecastBuilder Tech Working Group - nws.forecastbuilder@noaa.gov
9 #
10 # Please reference documentation within this file, as well as the ForecastBuilder
11 # documentation and configuration spreadsheet
12 #
13 # --
14
15 import SmartScript
16
17
18 class ForecastBuilderConfig(SmartScript.SmartScript):
19 def __init__(self, dbss):
20 SmartScript.SmartScript.__init__(self, dbss)
21 self._dbss = dbss
22
23 def Local_Configuration(self, varDict, gridDef, var="varDict"):
24 ##
25 # This is the local configuration section for ForecastBuilder. It has two
26 # sections, varDict and gridDef. Using this style of configuration allows for less
27 # frequent config file updates and hence less need for you to merge this file with
28 # updates in future builds. Also, it reduces code clutter in the main
29 # ForecastBuilder procedure & utility.
30 #
31 # There are two sections: varDict and gridDef.
32 #
33 # Think of varDict as general FB settings such as on/off switches (True/False)
34 # and lists you can add to. Meanwhile, gridDef is for defining grid-specific
35 # settings, such as changing the default grid length for an element.
36 #
37 # The configuration of ForecastBuilder is run in the following way:
38 # 1) FB-wide default values of varDict are defined in the main
39 # ForecastBuilderNationalConfig file.
40 # 2) Each region has an area where the defaults can be overridden called
41 # ForecastBuilderRegionalConfig
42 # 3) This present file, ForecastBuilderConfig is called. This is done first for
43 # varDict and then for gridDef
44 #
45 # There should be minimal configurations in this file, as the procedure and
46 # regional configurations should handle most of the configuration. Consider
47 # interoffice consistency implications with any additions made here.
48 ##
49 #
50 if var == "varDict":
51 #
52 # Put varDict local configuration in here. These options can be found in the
53 # ForecastBuilderNationalConfig and RegionalConfig files.
54 #
55
56 ## Common examples of locally-configured items.
57 varDict["Default PType Method"] = "NBM SnowLevel"
58 # varDict["Other Possible PType Methods"] = [
59 # "SnowLevel & ProbIcePresent",
60 # "NBM",
61 #]
62 # varDict["Hide Ice or Sleet in Step 4"] = False

Page 1

ForecastBuilderConfig Thursday, March 20, 2025, 6:32 PM

63 # varDict["Interpolate After Populating"] = True
64 # varDict["Use Local Time Scale Periods"] = True
65 # varDict["Stratiform or Showery Precipitation?"] = "Shower"
66 # varDict["Include ESTF"] = True
67 # # Set to True if your office populates these elements in the day 4-7 period.
68 # varDict["Have QPF and Accum grids in Extended"] = True
69 # # If your office would like to populate Aviation grids as part of the Foundation
70 # # Grids Step in ForecastBuilder
71 # varDict["Include Aviation"] = True
72 # # If your office would like to create FireWx grids as part of ForecastBuilder
73 varDict["Include Fire"] = True
74 # varDict["Include GHWO"] = True
75 # varDict["EditRetention_automaticColor"] = "DarkGreen"
76 # varDict["EditRetention_editedColor"] = "Yellow"
77 # varDict["EditRetention_manualColor"] = "Red"
78 # varDict["CRON_thru_WX"] = True
79 ## Fire weather entries

###
####################

80 # varDict["Possible-Fire Wx: Calculate from GFE/D2D
grids?"].extend(["CWR","TransWind","Wind20ft","MixHgt"])

81 varDict["Possible-Fire Wx: Calculate from GFE/D2D
grids?"].extend(["CWR","Wind20ft","MixHgt","TransWind"])

82
83 varDict["Fire Button List"].append(["CWR",["self._FBUtility","callSmartToolFB",

["CWR","CWRfromQPFandPoP","var|gridDict","var|varDict"]]])
84 varDict["Fire Button List"].append(["TransWind",["self._FBUtility","callSmartToolFB",

["TransWind","copyFromNBM_PoP6","var|gridDict","var|varDict"]]])
85 varDict["Fire Button List"].append(["Wind20ft",["self._FBUtility","callSmartToolFB",

["Wind20ft","FB_Wind20ft","var|gridDict","var|varDict"]]])
86 varDict["Fire Button List"].append(["MixHgt",["self._FBUtility","callSmartToolFB",

["MixHgt","copyFromNBM_PoP6","var|gridDict","var|varDict"]]])
87 varDict["Additional Fire Weather Parms to Possibly Populate in Step 2"] =

["MixHgt","TransWind"]
88 # varDict["Fire Wx: Update from NAM or GFS\n(overrides GFE choice)?"] = "TransWind"
89 # varDict["Additional Grids to Load for Fire Weather"]=["FCST","MixHgt","SFC"]
90 varDict["Additional Grids to Load for Fire Weather"]=["MixHgt","TransWind"]
91
92
93 ### Freezing Level entries

###
############

94 varDict["Parms to Load in Analyze/Adjust"].extend(["FzLevel"])
95 varDict["Grids to initialize"].extend(["FzLevel"])
96 varDict["Additional Buttons in Analyze/Adjust Step"].append(["Populate FzLevel",

["self._FBUtility","callSmartToolFB",["FzLevel","FzLevelCopy","var|gridDict","var|
varDict"],]])

97 ###
###

98 #)
99 # Set to True to utilize NBM PPI06 grids for 6 hourly PoP
100 varDict["6 Hourly PoP from NBM PPI06"] = True
101 varDict["Include Marine"] = False
102
103
104 # pass
105
106 elif var == "gridDef":
107 #
108 # Put gridDefs local configuration in here. Documentation for gridDef settings
109 # can be found in the ForecastBuilderNatioanlConfig file.
110 #

Page 2

ForecastBuilderConfig Thursday, March 20, 2025, 6:32 PM

111
112 # Example of smoothing over an edit area representing a lake
113 # for grids in ["T", "Td", "MaxT", "MinT"]:
114 # gridDef[grids, "smoothFactor", "EditArea"] = "NBMLakes"
115 # gridDef[grids, "smoothFactor", "Factor"] = "10"
116
117 # Example of setting the snow preview feature in Step 2 to use the local
118 # SnowAmt grid:
119 # gridDef["SnowAmtPre", "gridName"] = "SnowAmt"
120
121 # Example of changing the grid lengths for several elements, and changing the
122 # sample method for Wind.
123 # for grids in [
124 # "T",
125 # "Td",
126 # "RH",
127 # "PotRain",
128 # "PotSnow",
129 # "PotSleet",
130 # "PotFreezingRain",
131 # "SnowRatio",
132 # "SnowLevel",
133 #]:
134 # gridDef[grids, "gridDefinition"] = [
135 # ["Extended", "Extended", 0, 3 * 3600, 3 * 3600]
136 #]
137 # gridDef[grids, "mode"] = "Max"
138 # if grids == "Wind":
139 # gridDef[grids, "mode"] = "AverageWindSpeed"
140
141 ## Fire weather entries
142
143 gridDef["CWR","gridDefinition"] = [[0,12*3600,12*3600]]
144 gridDef["CWR","maxTime"]="Day 3"
145
146 gridDef["TransWind","gridDefinition"] = [[0,3*3600,3*3600]]
147 gridDef["TransWind","maxTime"]="Day 3"
148
149 gridDef["Wind20ft", "gridDefinition"] = [[0, 3600, 3600]]
150 gridDef["Wind20ft","maxTime"]="Day 3"
151
152
153 gridDef["MixHgt","gridDefinition"] = [[0,6*3600,6*3600]]
154 gridDef["MixHgt","maxTime"]="Day 3"
155
156 #Sky grids using NBM 4.2 experimental as primary, with operational NBM as backup.

This should limit the 57% sky cover issues.
157 # gridDef["Sky", "primaryGuidance"] = "NBMEXP"
158 # gridDef["Sky", "secondaryGuidance"] = "NBM"
159 gridDef["FzLevel", "gridName"] = "FzLevel"
160 gridDef["FzLevel","gridDefinition"] = [[0,6*3600,6*3600]]
161 gridDef["FzLevel", "primaryGuidance"] = "CONSAll"
162 gridDef["FzLevel", "maxTime"] = 192
163 gridDef["FzLevel", "minTime"] = 0
164
165
166 gridDef["SnowRatio","primaryGuidance"] = "WPCGuide"
167 gridDef["SnowRatio","secondaryGuidance"] = "NBM"
168 # pass
169 else:
170 print(f"Need a definition for var: {var}")
171

Page 3

