1. Familiarize with the environment using NSHARP, favorable parameters:

- Above average PWs (>75th percentile)
- Deep warm cloud layer (> 10 kft)
- Moist vertical profile (Low/Mid RH > 70%)
- Slow "LCL-EL (Cloud Layer)" wind (< 10-15 kt)
- Long, skinny CAPE (500-2000 J/kg)
- Slow Corfidi Up/Down shear vectors (< 10-15 kt)

2. Familiarize with the antecedent soil conditions and topography

- a. Look at FLASH soil moisture to see recently saturated areas (> 50%)
- b. Become familiar with 1- and 3-hr FFG values across your CWA
- c. Consider topography and urban areas

3. Choose your optimal precip source: <u>Dual-Pol</u> or <u>MRMS</u>

a. Assess QPEs at all durations, comparing with observations when possible

	Purpose	Compare QPEs with	Notes
Storm-total	Get a feel for totals	Mesonets	Know when Mesonets reset; zoom in
		(note the units)	before sampling
1-hr	Get a feel for recent	METARs	Time-match at top of hour; zoom in
	accumulations	(PXXXX = XX.XX in)	before sampling
Rates	See how rates affect	n/a	Instantaneous rates change quickly \rightarrow
	precip classifications		be careful when interpreting

b. Assess QPE quality

- Is melting hail causing a high-bias in your estimates?
 - In areas of KDP > 4-5 deg/km, what are your rain rates?
- Is your threat area **below the melting layer** for your chosen radar?
 - Being below the melting layer adds confidence that the radar is sampling liquid precip
- c. FFMP precip source options

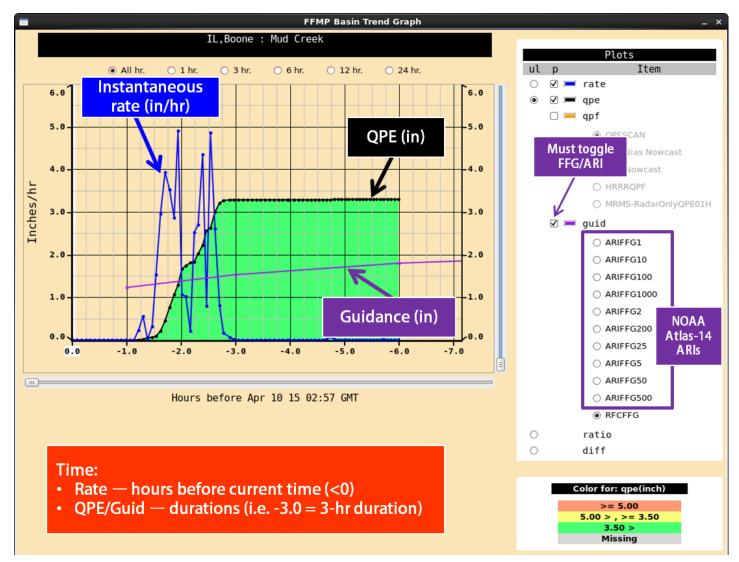
DPR	DP, single radar use for Dual-Pol estimates that may have beam blockage	
HPE	DP, mosaic	use for DP + mosaic (<i>preferred DP source</i>)
MRMS	mosaic	uses DP below melting layer, unique precip type and Z-R logic, high temp res

4. Analyze streamflow signatures in FFMP and FLASH

- a. Use FFMP to diagnose flash flood threat using optimal precip source above
 - Ideal set-up: "All & Only Small Basins" (Layer menu) and "Ratio" (D2D menu)
 - Ratio > 100% : to identify areas of flash flooding
 - Diff > 0 in. : to assess severity of flash flooding
 - Look at 1-, 3-, and 6-hour durations (for both short-term and training potential)
 - o Advanced: use all-hour basin trend graph to identify timing and durations for analysis
- b. Use FLASH to diagnose flash flood threat
 - CREST Unit Streamflow (recommended values below)
 - \circ All FLASH products use MRMS as QPE input \rightarrow remember this while interpreting them!

5. Issue Flash Flood Warnings and reassess regularly for Flash Flood Statements

Duration	No less than 3 hours		
Polygon	Small buffer around current threat (FFMP & FLASH); broaden for evolving threat (next		
size	couple hours); consider downstream direction		
Text	how much rain has fallen; how much more is expected over the warning duration; cities		
	impacted; reports included; 1-2 Call-to-Action statements		
IBW tag	Consider extent of impacts; consider CREST Unit Streamflow values (below)		


Recommended CREST Unit Streamflow values to analyze flash flood threat:

CREST Unit Streamflow	IBW Tag	Action
< 200 cfs/mi ²		Monitor area for increasing FF potential
200-400 cfs/mi ²	BASE	Monitor closely; initial threshold for FFW
400-600 cfs/mi ²	CONSIDERABLE	Higher confidence in warning issuance and elevated impacts
600+ cfs/mi ² (w/ verif)	CATASTROPHIC	Significant FF event; significant impacts expected

*Look for values that are continuous in space and time

Loading the FFMP Basin Trend Graph:

- 1. Right-click on basin name in FFMP Basin Table
- 2. FFMP text legend "editable", Click menu in FFMP table set to "Basin Trend", right-click on basin in D2D

