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A REVIEW OF ARTIFICIAL INTELLIGENCE AND MACHINE 
LEARNING ACTIVITY ACROSS THE UNITED STATES 

NATIONAL WEATHER SERVICE 
 
 

Paul J. Roebber 
 

ABSTRACT 
 

    This report was commissioned to summarize current artificial 
intelligence and machine learning activity within the U.S. National 
Weather Service (NWS) with a view towards identifying existing 
obstacles and recommending future directions. Artificial 
intelligence and machine learning activity is growing rapidly 
within the NWS, but is fragmented and lacks the needed 
infrastructure for improved coordination of effort. Current 
obstacles to future progress include: lack of workforce training in 
artificial intelligence and machine learning, lack of curated 
datasets and software that can be used for development and 
evaluation of artificial intelligence/machine learning approaches, 
absence of a centralized clearing house available to weather 
service personnel for technical expertise/consultation, limited 
operational compute resources, and lack of a clear end-to-end 
project pathway that encompasses exploration, development, 
testbed/proving ground and operational implementation. 
 

Each of these limitations is addressable. Partnering with the 
NOAA Center for Artificial Intelligence to develop National 
Weather Service specific training materials, using “learning 
journey” style materials, is of interest to that group and would help 
address the current knowledge gap within the weather service. The 
development of reference software and datasets and the 
establishment of a consulting team to work on specific projects 
with operational units will reduce siloed efforts and enhance 
productivity. By establishing funding vehicles for theme-based 
projects, and for which there is a sustainable pathway from initial 
exploration all the way through operational implementation, will 
help bridge the “valley of death” between research and operations. 
Agent-based modeling capability with the weather service is 
currently limited. Given NWS emphasis on Impact-based Decision 
Support Services (IDSS), agent-based modeling capability should 
be developed, since this approach can directly link natural and 
human systems, and can reveal non-intuitive, emergent properties 
of complex systems like decision support. Collaboration with 
academic experts in this area, through the above-mentioned 
sustainable funding pathways, can help to build this expertise. 
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1.   INTRODUCTION 

 
The charge for this report is to review activity in the areas of artificial intelligence (AI), 

machine learning (ML), and most broadly, post-processing, within the groups reporting to the 
National Oceanographic and Atmospheric Administration (NOAA) Office of Science and 
Technology Integration (OSTI). This syncs with one of the recommendations of the Priorities for 
Weather Research report (NOAA Science Advisory Board 2021, hereafter PWR-2021), which 
states a need to “target the understanding and prediction of high-impact weather to match the 
urgent need imposed by climate trends, population and infrastructure increases, and 
disproportionate impacts on vulnerable communities; including exploring new innovations with 
AI and machine learning applications.” Likewise, this effort is consistent with the 2020 NOAA 
Artificial Intelligence Strategy (NAIS), which states a vision that the “expansion of Artificial 
Intelligence (be) accelerated across the entire agency to make transformative improvements in 
NOAA mission performance and cost effectiveness.” 

 
In order to perform such a review, and to point towards viable future directions, it is worth 

taking a step back and considering some recent history in the AI/ML space. A first step in this 
regard is to define ML and its distinction from AI. A number of definitions and understandings 
exist, for example, from the NAIS: “Artificial Intelligence refers to computational systems able 
to perform tasks that normally require human intelligence, but with increased efficiency, 
precision, and objectivity. A subset of AI called machine learning refers to mathematical models 
able to perform a specific task without using explicit instructions, instead relying on patterns and 
inference.” A similar, common definition of these two terms posits that AI is “any technique that 
enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and 
ML” while ML is “a subset of AI that includes abstruse statistical techniques that enable 
machines to improve at tasks with experience.”  

 
To some degree, each of these terms and their accompanying definitions are overstatements 

of what is actually being accomplished with present technologies. Indeed, in the early days of AI, 
one precise name that was proposed for the field (and which obviously did not win out) was 
“complex information processing.” To be sure, evolutionary history has ingrained the importance 
of pattern recognition as an element of human intelligence, including the tendency towards 
overforecast bias – it has famously been observed that when the grass is waving at the edge of 
the savannah, it is evolutionarily more adaptive to assume that pattern is the result of a stalking 
lion rather than a gust of wind (e.g. Foster and Kokko 2008; Shermer 2009) - but true 
intelligence cannot be divorced from context. The waving of sea grasses in a shallow lagoon is 
not likely to spark a similar alarm in our brains, or at least not alarms associated with a large, 
land-based predator. It is the context that allows us to make this distinction. Presently, AI/ML is 
not capable of this form of generalization. Ecologically speaking, the mind is gauging value, 
which is context dependent (Barrett 2021). For example, whether or not it is worth expending 
energy to obtain food depends on the current and, critically, future state (hunger) and how much 
energy expenditure is needed. Our brains are essentially prediction engines, trying to anticipate 
what sensory inputs it will receive next. 

 
In contrast, AI/ML approaches today are based upon “learning” patterns in a narrow and 
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rigorously defined framework, such as skill games like chess or Go. Strictly speaking, an ML 
algorithm does not truly learn these games, but instead performs some kind of optimization 
based on a defined measure of success while following the specified rules of that game. Change 
a rule slightly and the algorithm will no longer function or if it does function, likely will not 
perform as well.  

 
An excellent demonstration of both the strength and weakness of AI/ML is, ironically, 

provided by the game of chess. For two decades, chess grandmasters have employed ML to gain 
insight into particular lines of play, finding the optimal moves in the most probable situations. 
The most powerful such chess engines now use the particular form of ML known as 
reinforcement learning, which essentially instructs the computer to play hundreds of millions of 
games against itself, building its expertise through these trials. Reigning five-time World Chess 
Champion Magnus Carlsen effectively weaponizes this practice against his opponents by finding 
lines that are useful but have not necessarily been favored in computer evaluations. This is 
reminiscent of the experienced forecaster who uses computer guidance to inform but not 
supplant personal judgement. This syncs with the need to understand why an AI/ML tool is 
suggesting certain outcomes, since trustworthiness will depend on that understanding. Another 
definition, provided by the NSF AI Institute for Research on Trustworthy AI in Weather, 
Climate, and Coastal Oceanography (AI2ES), perhaps best captures the current state of ML by 
defining it as “a field of study involving computer algorithms that can improve and adapt 
automatically through continual experience with data.” 

 
In the atmospheric sciences, data analysis and post-processing have been rooted in traditional 

statistical methods. The most noteworthy and longstanding example of this is Model Output 
Statistics (MOS; Glahn and Lowry 1972), which uses the well-established method of multiple 
linear regression (MLR) to produce forecast variables in an operational context. There are two 
primary differences between MOS and AI/ML techniques. A key element of the AI2ES 
definition – automatic adaptation and improvement with continual experience with the data – is 
not satisfied by the NOAA/NWS implementation of MOS, although experiments with an 
updateable form have been trialed in Canada (Wilson and Vallée 2002 and 2003). The second, 
and perhaps most relevant difference, is that AI/ML is intrinsically nonlinear. Indeed, a standard 
feedforward neural network has MLR as one solution, which can be directly produced by 
removing the hidden layers in the network. To the extent that a forecast problem is inherently 
linear, this is not a limitation of MOS, and in fact, explains the broad success of this approach. 
One main interest in AI/ML work, however, is to go beyond the linear restriction. While it is 
possible to overcome this restriction in MLR, to do so requires the a priori transformation of 
variables to nonlinear forms, while AI/ML automatically learns the nonlinear mapping of inputs 
to outputs. 

 
More generally, AI/ML differs most importantly from traditional statistical methods in its 

focus on making predictions by finding generalizable patterns rather than by drawing inferences 
from a sample. While this focus seems particularly well-suited to a field organized around 
forecasting, the physics basis of atmospheric science argues for a need to understand as well as 
predict, and the confidence that ensues from understanding why a prediction is being made. 

 
In recent years, most particularly in social science applications, it has become recognized that 
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the so-called objective nature of AI/ML does not imply a lack of bias, since these techniques 
fundamentally depend on the choices of the developers in terms of what data to use, what metrics 
define success, and the fundamental limitations of the data itself (quantity, quality, collection 
patterns, etc.). This issue will become increasingly important as social science applications 
become more common in the decision support context of weather forecasting. For example, as 
noted in PWR-202, the risks of extreme weather fall disproportionately on historically 
underserved and socially vulnerable communities, so an understanding of how best to engage 
these communities is needed. 

 
Some degree of institutional resistance to AI/ML may be a residue of history. In the 1980s, 

AI work was largely devoted to so-called expert systems, which began with considerable 
promise and high expectations, but in the end did not deliver. However, particularly with the 
advent of the backpropagation method, in which artificial neural network (ANN) errors are used 
to define algorithm weights, those earlier failures were largely overcome, and today there are 
many real-world applications of effective pattern recognition (e.g., speech recognition, facial 
recognition, map routing, etc.). 

 
Further, there are now a variety of machine learning approaches available, with research 

continuing on new forms. As previously described, these approaches perform a mapping of 
inputs [for example, numerical weather prediction (NWP) model output] to outputs (some 
desired forecast which may or may not be explicitly included in the model data). As noted in the 
introduction. one form of this post-processing approach is quite familiar to meteorologists – 
MOS, which uses the long-established method of multiple linear regression to perform this 
mapping. It is extremely risky, and ill-advised, however, to suggest that there is a direct step 
between performing that mapping and making decisions with little-to-no human intervention. 
Rather, ML algorithms should be considered another useful tool for informing the decision-
making process, but in making those decisions, a deep understanding of both the strengths and 
weaknesses (such as inherent biases) of these algorithms is necessary.  

 
This speaks to the need for a trained workforce – not necessarily algorithm developers, but 

coordinated efforts between those developers and domain experts who are tasked with using 
these tools in the decision support process. This perspective will inform the contents of this 
report, which was assembled with contributions from a large cohort of National Weather Service 
(NWS) practitioners and external (academic) collaborators, whose collective work involves 
research, implementation, and application of these and other forecast tools. In that regard, we 
will refer to any such mapping with the generic nomenclature of AI/ML and not make any 
attempt to parse fine distinctions. 

 
This report is organized as follows. Sections 2 and 3 present the findings of this review, 

organized into a brief overview of current activities (section 2) and existing obstacles to these 
efforts (section 3). Section 4 provides suggestions for transforming these experiences into a 
framework that will accelerate future advances. Also included are references, a list of acronyms, 
and a list of participants who contributed their understanding to this report. 
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2.   CURRENT ACTIVITIES 
 

A demonstration of the growth of AI/ML in the atmospheric sciences is provided by a 23 
February 2022 search of all American Meteorological Society (AMS) publications with the 
words “machine learning” in the title – this search produced 55 abstracts – of which nearly two-
thirds were published since 2020 (see also Fig. 1 from Chase et al. 2022 for longer term trends in 
AI/ML publications). Attendees of recent annual meetings of the AMS have qualitatively 
experienced a rapid growth in the number of papers presented involving some aspect of data 
science, and integrated throughout multiple sessions (Fig. 1).  
 

NOAA’s Center for Artificial Intelligence (NCAI) provides a count of data science projects 
across the agency, and this count reveals considerable activity by NWS and across NOAA’s Line 
Offices and mission areas. This count revealed ~188 self-reported projects in 2020, and ~263 in 
2022 (Rob Redmon, personal communication, 2022). In response to this growing interest, the 
AMS recently launched a new journal devoted to AI/ML for earth systems 
(https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-
earth-systems/). Although the idea of a “landing place” for AI/ML is a positive, one potentially 
unfortunate consequence of this effort may be a siloing of AI/ML. Previously, AI/ML research 
has been published in the context of a particular weather analysis or forecasting application, and 
in that way the scientific context was preserved. Whether such siloing materializes, of course, 
will be dependent on the kinds of papers that are directed to the new journal, and it may be that 
the journal will facilitate the ability of researchers to find a wide variety of papers touching upon 
AI/ML. 

 
In discussing current projects with contributors to this report, a number were identified and 

are listed in Table 1. Please note that this list is not exhaustive and is provided merely to indicate 
a measure of the scope and breadth of this activity within the NWS. This mirrors the findings of 
the NAIS, which listed a number of existing AI/ML efforts within NOAA that pertain to the 
NWS, including (1) quality control of weather observations; (2) improving physical 
parameterization for weather, ocean, ice modeling, and improving the computational 
performance of numerical models; (3) aiding weather warning generation; (4) supporting 
partners in wildfire detection and movement; and (5) using machine learning for reliable and 
efficient processing, interpretation, and utilization of earth observations. We note that AI/ML 
tools, if implemented properly, can assist operations with the well-known problem of data 
overload, since trained users can deploy them to get the sense of large volumes of data and 
extract explicit information relatively quickly. Table 2 provides a sampling of future projects 
suggested by contributors to this report. Despite the extensive work that this list represents, it is 
only a subset of what is possible as AI/ML efforts continue to grow. 

 
 Several obstacles to successful operational implementation were noted by multiple 

contributors to this report and will be discussed in detail in section 3. At this stage, one can view 
NWS AI/ML activity as broad-based and growing, but uncoordinated. Again, from the NAIS: 
“Despite this notable progress, the true potential for AI to advance NOAA’s mission has not 
been realized because all NOAA AI activity heretofore has originated within individual offices 
with no institutional support. Additionally, some development has been redundant because of a 
lack of awareness across the agency due to the absence of a coordinating directive or authority.” 
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Our survey suggests the roots of this redundancy are a result of the lack of agency coordination 
as noted above, but also the need to perform any such coordination with a thoughtful inclusion of 
the expertise and operational requirements of specific entities [e.g., the needs of the Storm 
Prediction Center (SPC) are not identical to those of the National Hurricane Center (NHC) nor 
that of an individual Weather Forecast Office]. Accordingly, any proffered solutions must take 
this needed domain expertise and site-specific applications into account. 

 
 

3.   LIMITATIONS 
 

Successful ML development depends on three pillars: (1) ample, quality controlled datasets; 
(2) technical skills for development; and (3) domain expertise – familiarity both with the forecast 
problems and the operational logistics of the setting where that problem is being considered. As 
mentioned in section 2, a number of roadblocks in the path from research to operational 
implementation exist in the AI/ML space, relevant to each of these pillars. These roadblocks 
include: extensive data requirements and efforts for data management, availability and 
coordination of fundamental datasets such as reforecasts and observations/analyses, lack of 
community benchmark datasets and software codes, limited operational computational resources, 
limited workforce training, the siloing of technical and domain experts, and the lack of reliable 
and coordinated funding for ML to bring in academic expertise. These are discussed in turn 
below. 

 
First and foremost, the data requirements of AI/ML techniques are extensive. In order to train 

such algorithms, the best practice is to split these data (which consists of all the inputs and the 
desired outputs) into three segments: a training segment, a validation segment, and an 
independent test segment. The training segment is used for the model development, the 
validation segment is for hyperparameter tuning (e.g., weights, biases and activation functions in 
a neural network), and the test segment to evaluate the generalization of the results once training 
and tuning are completed. Datasets are necessarily large, since this process requires 
“exploration” of the n-dimensional variable space – if these data do not sufficiently fill this 
space, then the AI/ML scheme will not be able to produce a good mapping of inputs to outputs in 
that area, leading to potential performance errors. Secondly, since this mapping is nonlinear, 
multiple representations within this space will reduce the deleterious impacts of noisy data. 

 
Secondly, it is a truism of this work that considerable time is spent simply managing datasets 

(often referred to as data wrangling). For example, in a survey conducted by the Earth Science 
Information Partners (ESIP) Data Readiness cluster, an open cross-sector collaboration that the 
NCAI contributes to, responses to the question “In your typical AI/ML application development, 
roughly what percentage of your time do you spend on finding, accessing, and preprocessing 
data?” showed that only 20% of the survey group spent a quarter or less of their time on that 
activity, and nearly half indicated that they spent the majority of their time on this task (Rob 
Redmon, personal communication, 2022). This is the case since the variety of needed inputs 
come in many different formats, from multiple sources, and may further need to be synced in 
space and time before being presented to an AI/ML scheme for training. These data must also be 
quality controlled to limit the amount of noise that is presented. This argues for some kind of 
data clearinghouse, perhaps including specialized test datasets, as well as modular software for 
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different kinds of AI/ML applications (e.g. Hamill 2015; Fig. 2). 
 
A critical inclusion in such a data library should be reforecast datasets. These datasets, 

although computationally costly to produce (see section 4), are extraordinarily valuable for 
validating particular weather events, addressing calibration issues, and general predictability 
studies. Larger member ensembles are valuable for providing proper baselines for probabilistic 
forecasting. However, owing to the cost of producing such ensembles, the number of members 
and the archived output has been restricted, making the most recent datasets less useful. This 
expense should be supported, and available variables should be increased for the purpose of post-
processing in general and AI/ML work in particular. Concomitant with that effort should be the 
collation of relevant observations/analyses [an example of the latter is the need for long time 
series of quality high-resolution analyses in Alaska and Hawaii to improve the National Blend of 
Models (NBM)]. Further, convenient formatting of such datasets drastically improves efficiency 
of AI/ML/post-processing efforts (for example, chunked netCDF datasets for easy access and 
reduced data-wrangling time). The production of such benchmark datasets, organized according 
to agreed-upon standards and frameworks, would be a major step forward in facilitating AI/ML 
development efforts. 

 
Computational resources are also a limitation. Space and compute needed for development of 

AI/ML tools can be substantial, owing to the size of the datasets and the data cycling needed for 
training those algorithms. Further, such training can be more effective when GPUs rather than 
CPUs are available. Currently, such a development system is lacking. Operational computational 
resources are also a limitation, since finding compute slots on the NWS operational system is not 
always possible. Without increased availability of these computational resources, development of 
AI/ML tools will be constrained and when developed, the transition of those technologies to 
operations will not occur. 

 
The PWR-2021 report noted an important workforce challenge related to AI/ML, specifically 

“staying nimble requires a workforce with a broader and evolving range of technical skills and 
spectrum of talents. Future workforces will include meteorologists working with other experts in 
Earth sciences, HPC, artificial intelligence (AI) and machine learning (ML), observing, data 
assimilation, modeling technologies, social sciences, etc. Strategies to increase the workforce 
capacity will be essential given the increasing demands for these skills.” 

 
Currently, NWS employees tend to come from two main areas of academic training: 

meteorologists (GS-1340) and physical scientists (GS-1301).  The former classification is quite 
strict in terms of the requirements, whereas the latter is more generic, but neither explicitly 
requires training in AI/ML. The GS-1340 requirements, in particular, leave little room for 
expansion to include this discipline and are now 30 years old. It is not necessarily the case that 
every NWS employee be an AI/ML expert with the ability to develop such models themselves, 
but at a minimum, they should be sufficiently aware of this domain to speak intelligibly with 
AI/ML developers and in particular to recognize both opportunities and pitfalls associated with 
application of these technologies to areas within their purview. Accordingly, the NOAA/NWS 
standards should be revised to promote greater flexibility and expansion of skills that are needed 
now and those that will be needed in the future. There are some in NOAA working to promote 
broadening of the future workforce to include more Data Science and Social Science federal 



                                                                                                                                                      

 8 

service classifications (Rob Redmon, personal communication, 2022), and these efforts should 
be supported and continue.  

 
This connects to the requirement for domain expertise. Since the technical expertise for 

AI/ML is substantial, often such experts come from computer science, and such individuals are 
typically not well-versed in the details of either the meteorology or operational logistics. While it 
is possible to come from such a background and gain additional knowledge through further 
academic training (e.g. coursework), deep understanding of operational needs and logistical 
challenges in addition to meteorological knowledge are required to build AI/ML tools that can be 
incorporated into routine use. This suggests that a balance between centralization and local 
expertise needs to be established for successful coordination of AI/ML activity across the NWS. 

 
The solution is to focus on team-based approaches, where the individual members of those 

teams (or at least one such member) has the training sufficient to bridge the gap between the 
meteorological/operational domain and the AI/ML domain. Beyond the development stage, there 
is a need for users to be sufficiently aware of the strengths and weaknesses of AI/ML tools in 
order to be able to use them judiciously rather than simply as a black box. Equally as important, 
a lack of sophisticated understanding of these strengths and weaknesses likely reinforces 
resistance to change rather than an attitude of exploring possibilities. This connects to the active 
areas of interpretable ML and trustworthiness – in order for such tools to be employed, their 
credibility will be critical. 

 
Thus, the proposed software and data library should be expanded to include AI/ML 

“librarians” (i.e., consultants) who can partner with domain experts across the NWS to facilitate 
projects housed within particular centers or forecast offices, where the domain expertise resides. 
This collaborative approach will help avoid the stove-piping of such activity that presently 
occurs, and by providing realistic guidance concerning what is and is not possible, will help to 
reduce psychological barriers to seeking new solutions to old problems. Another example of how 
team-based approaches add value is the issue of feature/predictor selection. Time and attention 
employing meteorological intuition is necessary to determine potentially useful features, and to 
limit the constraints imposed by the “curse of dimensionality” (the size of needed training data 
increases exponentially as the dimensions of the AI/ML problem expand, so efforts to select and 
reduce relevant features are important).  

 
Finally, if resources allow, this partnering should extend across NOAA (for example, 

excellent training development materials are being developed by the NCAI) and also include 
collaboration with external, academic experts. In the latter case, the current structure of such 
collaborations presents several obstacles to effective academic partnering, a situation that was 
highlighted by numerous contributors to this report. 

 
One such impediment is the need for fundamental exploratory AI/ML work, which contrasts 

with the readiness level (RL) criteria used in collaborative opportunities such as the Joint 
Technology Transfer Initiative (JTTI) program [“Readiness Level (RL) 4 or above, which means 
the concept has been already developed and validated in their own or another laboratory 
environment and is ready to be tested in a NOAA pseudo-operational environment.”] In the 
AI/ML domain, owing to the rapid development in this field and the need to do considerable 
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exploration of possible benefits of particular new approaches in an operational context, the 
limited opportunities for funding research at lower RL levels blocks innovation. This approach 
promotes incremental rather than the high risk – high reward work that is needed. 

 
One academic contributor commented that there are insufficient dedicated resources to 

increase RLs on projects, for example, the difficulty of showing that the technique works well 
enough to gain review in an operational testbed. While OAR labs are intended to be the places 
where mid-RL level research is done within NOAA, from the academic perspective, there is a 
lack of coordination between efforts across NOAA. Another substantial obstacle is the 
inconsistent timeline between academic work and operations. Whether or not such tools are 
developed and have potential to be operationally useful, transitioning them to the operational 
computing system (such as NOAA’s Weather and Climate Operational Supercomputing System 
[WCOSS] or a cloud system) is a further challenge, owing to availability of that resource (such 
as limited compute slots or funding for time on a cloud system) and the time of NOAA 
collaborators to effect implementation and support. At present, there is in this sense no 
centralized home or dedicated support for AI/ML development within the NWS. 

 
More generally, there are relatively few funding opportunities for academic collaborators, 

and as such, even those academics inclined to pursue the difficult and time-consuming work of 
bridging the gap from research to operations (R2O) are often better able to succeed 
professionally by directing their efforts in more traditional ways, such as fundamental research 
through the National Science Foundation (NSF). It is important to recognize that this R2O 
“valley of death” is artificial and imposed entirely by our structures and incentives – this means 
that the valley can be crossed if efforts are undertaken to do so.  In the next section, we suggest 
possible solutions to these problems. 

 
 

4.   SOLUTIONS AND FUTURE DIRECTIONS 
 

In section 3, a number of obstacles to rapid progress in the use of AI/ML within the NWS 
were highlighted. Here, we provide some possible solutions, subject to the particulars regarding 
funding and staffing for which we do not have information at the time of this writing. We 
summarize these recommendations in Table 3, and discuss each below. 

 
Given the need for workforce training and development in AI/ML, it would seem reasonable 

to identify the NOAA Center for Artificial Intelligence (NCAI) as an AI/ML training resource. 
This group has already begun efforts to develop example Jupyter notebooks and R materials 
organized in a “learning journey” style to ultimately encourage the broad AI community of 
practice to contribute materials to an NCAI curated library. Additional materials specific to NWS 
interests could be developed with collaboration from National Centers and other NWS entities 
[e.g., post-processing with the Meteorological Development Laboratory (MDL)], and NCAI staff 
have indicated an interest in undertaking that effort. In that regard, NCAI has requested approval 
for a public repository landing page (NOAA github), where they would stage NCAI created and 
contributed examples (e.g., rip current detection and others are in development) and expand from 
there with contributions across NOAA. Additionally, it is likely that a focus on hiring in the 



                                                                                                                                                      

 10 

NWS with scientific background in both meteorology and AI/ML will be needed in addition to 
enhancing the training of existing staff. 

 
As noted in section 3, the current uncoordinated nature of such training should be augmented 

with a software, data, and consulting clearinghouse. These datasets should include a variety of 
standardized datasets that could be used to develop different types of AI/ML applications, 
depending on the need, and most importantly, as a reference against which to compare AI/ML 
applications. This library should include modular software to facilitate AI/ML application 
development and should extend, at the minimum, to include the variety of standard techniques 
currently in wide use, such as Random Forests (RF), multilayer perceptron neural networks 
(MLP-ANN), and convolutional neural networks (CNN). Since platforms such as Google 
Tensorflow are already in wide use, it would be sensible to leverage those capabilities in 
developing this library. 

 
A key element of this clearinghouse is the need for AI/ML consultants who can facilitate the 

development and use of these tools by domain experts across the NWS. These consultants would 
be able to partner with NWS experts on specific projects of interest to those organizations 
without dispersing that expertise into the many existing silos. At the same time, this would allow 
for developing institutional knowledge concerning ongoing projects and reduce duplication of 
effort. This partnering will likely lead to the added, crucial development of in-house AI/ML 
expertise within those specific areas through the project basis of that activity. Where this 
clearinghouse is located within NWS is immaterial to the overall concept and should be driven 
by logistical considerations – one likely location for it might be the MDL, given the extensive 
experience with post-processing within that group. Notably, with the advent of the COVID 
pandemic and the remarkable success of virtual work across the NWS, it should be possible to 
establish a kind of hybrid organization for this clearinghouse, which in the competitive 
environment for AI/ML expertise will allow for less difficulty in staffing. 

 
The above clearinghouse concept should work well for individual Weather Forecast Offices 

(WFOs) as well as the NWS Centers, provided that sufficient manpower is provided within the 
clearinghouse to work as collaborative development and implementation teams. This latter is 
obviously crucial as demand for such partnering is likely to be substantial (see Tables 1 and 2). 

 
This raises the issue of partnering with academia. Currently, academic partnering occurs 

through a variety of mechanisms including JTTI, CSTAR, and Cooperative Institutes. Adjusting 
the RL funding opportunities (FO) to sync more realistically with academic research would 
allow the crucial exploratory AI/ML work that is needed but stunted by current RL FOs to 
develop. Either some funding vehicle specific to that concept needs to be developed or existing 
ones should be appropriately adjusted. The exploratory niche is clearly the most obvious place 
for academic work and fits well with NWS needs in the larger sense. For example, calibration 
works in opposition to the rare event nature of many of the forecasts of most interest – how to 
balance these considerations within a specific operational context necessitates coordinated, 
exploratory efforts along with input from operational experts. 

 
However, there should be a more seamless, end-to-end pathway through which projects could 

pass from exploration/development to testbed to proving ground to operational implementation, 
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along with the necessary personnel for ongoing support of those efforts. This process needs to be 
formalized but must entrain NWS personnel from the beginning in order to retain crucial 
operational domain expertise. Theme-based calls for such efforts (e.g., heavy rainfall, wildfires, 
etc.), connected to a process as detailed above would likely lead to more rapid progress than is 
currently possible. However, given the need for code to be open source and the potential 
intellectual property issues this entails for some academic and corporate partners, such a 
requirement must be made clear at the onset of any such collaboration. Given the public nature 
of much academic research, however, there is substantial room for such “open source” activity 
and intellectual property concerns are unlikely to substantially diminish that activity. 

 
A costly1, but valuable resource in AI/ML development work, and more broadly in 

predictability studies, is reforecast datasets. As stated by Hamill (Vannitsem et al. 2018, Chapter 
7), “The training data should span a long period of time, thereby providing multiple samples of 
the range of possible future environmental conditions.” The reforecast has the additional benefit 
of providing a stable (from a computational platform standpoint) dataset which will provide 
more robust weights in usual AI/ML tools such as ANNs, since the underlying data-generating 
mechanism (the computer model) is not changing. As noted previously, observational/analysis 
time series in convenient formats alongside the reforecasts are required. An example of the 
effective use of such datasets is the use of quantile mapping for precipitation forecasts within the 
NBM (Hamill et al. 2017; Hamill 2022, pers. comm.).  

 
There are several possible workarounds to this problem. “Smart sub-sampling” of reforecasts 

is one approach. Kravtsov et al. (2022) built a high-dimensional empirical model of temperature 
and precipitation that was capable of producing a minimal subset of dates that provide 
representative sampling of local precipitation distributions across the contiguous US, both in 
training and independent test data. In order to generate this model, however, a long time series of 
(reanalysis) data was needed.  

 
Adaptive AI/ML is another possibility. Roebber (2021) devised an adaptive, ensemble-based 

postprocessor employing neural networks which eliminates the need for retraining as data inputs 
(including model systems) change. Additionally, the dependence of this technique on training 
data size was shown to be comparable to multiple linear regression.  

 
Using AI/ML to directly produce reforecasts (Weyn et al. 2021) is another possibility, where 

here the deep-learning model is again trained using reanalysis data. Weyn et al. (2021) discuss 
their application of such a trained model for producing highly computationally efficient weather 
forecasts and large number reforecast ensembles (in their case, 85,800 reforecasts were generated 
in a few hours on a single GPU). This model currently provides only a few output variables at 
1.4° latitude-longitude grid spacing, and is not competitive with state-of-the-art forecast models 
at short-to-medium range, but is remarkably skillful nonetheless. Further, despite the lack of 
physics being directly incorporated into the model, it is able to learn physics-based phenomena 
directly from the data. It is straightforward to add additional variables to this model, as shown by 

 
1 EMC estimates that a 30-year reforecast using 20 fully coupled members at 0.25° grid spacing and 60 atmosphere 
only members at 0.50° grid spacing would cost approximately $15 million. A 30-year, 80 member at 0.25° grid 
spacing might cost $56 million (David Novak, 2022, personal communication). 
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Weyn et al. (2020; 2021), and based on these early results, it is likely that further skill 
improvements are possible. One limitation, perhaps most especially for long-run climate models 
where drift becomes important, is the lack of conservation laws. However, this can also be 
addressed in the learning process, and based on present results appears not to be a substantial 
problem for forecasts extending through sub-seasonal time scales. 

 
We note that the ability of this approach to readily generate large member, multi-model 

ensembles that include initial condition uncertainty may provide an additional operational 
benefit. It is sometimes the case that prior to a major weather event, details concerning 
controlling factors for the event are poorly known. One such example was the 3 May 1999 
tornado outbreak in Oklahoma and Kansas (Roebber et al. 2002). As noted by those authors, 
prior to this event “… although there was evidence to support severe convection, the prospects 
for convective initiation were mixed, the information supporting supercellular organization was 
ambiguous until late, and no observational, conceptual, or NWP model evidence existed to 
support an outbreak scenario.” Their analysis, using “potential vorticity (PV) surgery,” indicated 
that both the likelihood of an outbreak scenario and the location of that convection were highly 
sensitive to details concerning the arrival of a PV anomaly in the southern airflow. Other 
uncertainties related to convective initiation in the weakly forced environment, a situation that 
was also subject to details concerning the southern anomaly. 

 
Many other examples exist in the literature. Ribeiro et al. (2022) used a 40-member ensemble 

to demonstrate the low short-range predictability of a derecho event, related to convection 
initiation, the organization of a dominant bow echo mesoscale convective system (MCS) and 
MCS maintenance. Cases with recurving Western North Pacific typhoons are often associated 
with large increases in ensemble spread. Aiyyer (2015) used an ensemble prediction system to 
show spread increases peak at approximately 4-5 days after recurvature, and propagate 
downstream in a wave packet in the midlatitude storm track. 

 
Implementation of a cluster analysis tool that could quickly identify particular sets of initial 

conditions, allowing forecasters to select those ensemble members from the large pool, would 
allow forecasters to improve their situational awareness and improve operational forecast 
confidence. This connects directly to the ability to generate large ensembles so that a sufficiently 
dispersive set of scenarios could be examined and understood. 

 
Finally, we note that an, as yet, insufficiently explored area of AI/ML/post-processing is 

agent-based modeling (e.g. Morss et al. 2017; Roebber and Crockett 2019; Harris et al. 2021). 
Agent-based models (ABMs) are a form of computer simulation in which a system is governed 
by the interaction of individual “agents” which follow a set of “local” rules. For example, traffic 
engineers can model traffic using differential equations, and the traffic flow is thereby 
considered as continuous. In reality, of course, traffic is composed of individual vehicles and can 
be modeled this way by considering each vehicle as an agent – the behavior of the system (the 
traffic flow) emerges from the collective behavior of the individual agents (the vehicles). Such 
models have a natural connection to human decision-making and the social sciences (e.g. Miller 
and Page 2007), and in the decision support context of the NWS, there is a need to consider this 
technique as a means for understanding the context in which users employ forecast information. 
For example, Harris et al. (2021) have employed coupled ABMs to consider the impact of 
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tropical cyclone forecasts on evacuation effectiveness, where the collective response of 
individual agents can sometimes produce non-intuitive system responses.  

 
This bottom-up interaction of multiple systems at multiple scales, with concomitant emergent 

properties, can allow for a deeper understanding of complex systems, such as the weather 
forecast and warning system employed by the NWS. As noted by Morss et al. (2017), “ABMs 
are being employed to represent interactions and feedbacks between natural and human systems 
(Parker et al. 2003; French 2010; Boone et al. 2011; Rounsevell et al. 2012; Farmer et al. 2015; 
Barton et al. 2016).” Morss et al. (2017) and Harris et al. (2021) extend those interactions to 
include the forecast as well as the actual weather, since the forecast, to the extent that it is acted 
upon, will influence the system response. With anticipated future investment by the NWS in 
social science research, agent-based modeling will need to be another tool to be judiciously 
employed in future NOAA work, and if done effectively, will assist in the IDSS goal of reducing 
loss of life and other negative impacts of weather events.  

 
Finally, within the IDSS framework, scenarios present information to end-users in the most 

concise and actionable form. For example, many end-users are not interested or capable of 
ingesting the full probability distribution of a given forecast event, but rather prefer scenarios 
based on the most-likely outcome and the most-likely worst case outcome, specific to their risk 
factors. This requires that scenarios be core-partner specific. This is largely a generic NWS issue 
rather than specific to AI/ML, but AI/ML approaches often lend themselves well to these 
representations. 

 
The many exploratory AI/ML approaches summarized in this section represent opportunities 

for groundbreaking advances in operations, but also highlight the disconnect that currently exists 
within NOAA/NWS between research and operations. As highlighted earlier in this section, there 
is a pressing need for support of such high-risk/high-reward research within all of NOAA. 
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AI  Artificial Intelligence 
AMS  American Meteorological Society 
ANN  Artificial Neural Network 
AWC  Aviation Weather Center 
CNN  Convolutional Neural Network 
COVID Coronavirus Disease 
CPC  Climate Prediction Center 
CSTAR Collaborative Science, Technology, and Applied Research 
CWA  County Warning Area 
EMC  Environmental Modeling Center 
HPC  High Performance Computing 
IDSS  Impact-based Decision Support Services 
JTTI  Joint Technology Transfer Initiative 
MDL  Meteorological Development Laboratory 
ML  Machine Learning 
MLP  Multilayer Perceptron 
MLR  Multiple Linear Regression 
MOS  Model Output Statistics 
NAIS  NOAA Artificial Intelligence Strategy 
NBM  National Blend of Models 
NCAI  NOAA Center for Artificial Intelligence 
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NESDIS National Environmental Satellite, Data, and Information Service 
NHC  National Hurricane Center 
NOAA  National Oceanographic and Atmospheric Administration 
NSF  National Science Foundation 
NWC  National Water Center 
NWP  Numerical Weather Prediction 
NWS  National Weather Service 
OPC   Ocean Prediction Center 
OPG  Operations Proving Ground 
OSTI  Office of Science and Technology Integration 
PSL  Physical Sciences Laboratory  
RF  Random Forest 
RL  Readiness Level 
R2O  Research-to-operations 
SPC  Storm Prediction Center 
SWPC  Space Weather Prediction Center 
WCOSS Weather and Climate Operational Supercomputing System 
WFO  Weather Forecast Office 
WPC  Weather Prediction Center 
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Table 1. A non-exhaustive list of AI/ML projects currently in development or operations in the 
U.S. National Weather Service. Where known, acronyms in parentheses denote the type of 
mapping that is being used (RF=random forest; ANN= artificial neural network; 
CNN=convolutional neural network). 

 
Group Project 

Aviation Weather Center (AWC) Probability of turbulence 
Climate Prediction Center (CPC) Cool-season precipitation forecasts based on 

relationships with recent and past SSTs (Matt 
Switanek and Tom Hamill); Weeks 3-4 
precipitation (ML post-processing of 
GEFSv12 reforecasts; Rochelle Worsnop)  

Environmental Modeling Center (EMC) QC, Data thinning, AQ transport, bias 
correction, model physics, ocean/lake waves, 
grid diagnostics, SSMI data retrieval, 
optimizing model parameters, radiation 

National Hurricane Center (NHC) Rapid intensification (Mark DeMaria; ANN) 
NWS Western Region Diagnosing fog from webcams; use METAR, 

GFS, reforecast ensemble to produce 
probabilistic weather element forecasts; flash 
flood forecasting in nowcast period (MRMS 
and RF) 

National Water Center (NWC) Colorado River basin reservoir predictions 
Storm Prediction Center (SPC) Ensemble post-processing (Amy McGovern; 

RF); Wind reports and damage (Bill Gallus); 
Convective outlooks (Russ Schumacher; RF) 

Weather Prediction Center (WPC) Excessive rainfall outlook (Russ Schumacher; 
RF); Frontal analysis (Amy McGovern); 
Precipitation type (Heather Reeves); Road 
temperature (Heather Reeves); Heavy rainfall 
nowcast (Paul Roebber; CNN). 
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Table 2. A non-exhaustive “wish list” of AI/ML applications that could be developed in support 
of the U.S. National Weather Service. 

 
Group Project 

Climate Prediction Center (CPC) Weeks 3-4 precipitation forecasts (ANN, 
CNN); Reservoir management for flood 
control and water supply; Week 2 extreme 
events; precipitation regime transitions (wet-
to-dry and reverse) 

DTW Weather Forecast Office Scenario-based forecasts for IDSS 
Environmental Modeling Center (EMC) Genetic optimization of model parameters; 

Process-oriented diagnostics (e.g. dryline 
forecasts) 

Meteorological Development Laboratory 
(MDL) 

Grid and scenario-based post-processing;  
Probabilistic precipitation forecasts (quantile 
mapping and rank-weighted best-member 
dressing, Tom Hamill and Michael Scheuerer) 

NWS Western Region NBM improvements – handling extreme 
events (not black swans), reduce forecaster 
editing 

National Water Center (NWC) Data-driven ML reservoir predictions 
Ocean Prediction Center (OPC) Offshore thunderstorms; Waves in swell-

dominated regimes 
Operations Proving Ground (OPG) IDSS engine (impact-based decision services) 
Space Weather Prediction Center (SWPC) Combined physics-based/ML space weather 

forecasts (boosted RF). 
Storm Prediction Center (SPC) Extracting information from NWP in 

computationally efficient way 
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Table 3. Recommendations for future directions in NWS AI/ML. 
 
Recommendation Description 
Establish a NWS AI/ML clearinghouse. Clearinghouse to be staffed in a hybrid 

format, and contain supporting data sets, 
baseline methods/software, verification 
statistics libraries, and consultants to partner 
on NWS AI/ML projects. 

Partner with NCAI for NWS staff training. NCAI is building training capacity; can 
partner with NWS to develop “learning 
journey” materials specific to NWS needs. 

Focus on hiring NWS staff with scientific 
background in both meteorology and AI/ML 

NWS is not currently staffed adequately to 
implement AI concepts, and as such, new 
hires in this area are needed in addition to 
staff training. 

Adjust RL funding vehicles to account for 
needed exploratory AI/ML work, both within 
NWS and with academic partners. 

Current RL funding opportunities do not 
allow for exploratory AI/ML work, which is 
essential at this stage of development. 

Construct a theme-based, end-to-end project 
pathway from exploration to testbed to 
proving ground to operational 
implementation.  

Current construct has many gaps and results 
in frequent one-off projects that do not lead to 
operationally useful products.  

Develop agent-based modeling capability 
within the NWS. 

IDSS connects naturally to agent-based 
modeling since such models can directly link 
natural and human systems, and can reveal 
non-intuitive, emergent properties of complex 
systems. 

Sponsor continued production of reforecast 
datatsets, including comprehensive and 
accessible archives. 

Reforecast datasets are computationally 
expensive, but are extremely valuable to 
AI/ML research; some workarounds are 
developing. 

Format AI/ML forecast tools in a scenario-
based framework, such as most-likely and 
most-likely worst-case scenarios, where these 
scenarios are core-partner specific. 

Many forecast end-users find scenario-based 
forecasts linked to their risk factors to be the 
most actionable information. AI/ML forecast 
tools can easily be constructed in this way. 
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Figure 1. AI/ML activity at the AMS Annual Meeting (Amy McGovern, personal  
communication, 2022). 
 
 



                                                                                                                                                      

 
 

14 

 
 
Figure 2.  A proposed software and data library (from Hamill 2015). 


