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DETECTION OF SEVERE LOCAL STORM PHENOMENA
BY INTERPRETATION OF RADAR AND STORM ENVIRONMENT
INFORMATION

David H. Kitzmiller and Jay P. Breidenbach

Techniques Development Laboratory
Office of Systems Development
National Weather Service
Silver Spring, Maryland

ABSTRACT

Many operational features of the WSR-88D were incorporated specifically to
aid forecasters in the detection of severe local storms (damaging winds, large
hail, and tornadoes). One interpretive product, the Severe Weather Potential
(SWP) algorithm, yields an index proportional to the probability that an
individual thunderstorm cell will soon produce any severe weather phenomena.
The SWP is based solely on radar information, namely vertically-integrated
liquid (VIL) and storm horizontal extent.

Forecasters have long known that critical values of many radar indices for
severe weather change with the storm environment. In particular, shallow
storms with moderately high VIL values are much more likely to produce severe
weather in the spring than in the summer. This work describes an automated
solution to the problem of adapting severe/nonsevere VIL thresholds to
environment conditions. New algorithms have been developed that incorporate
radar data and estimates of upper-air temperature and wind vectors. These
techniques produce the probabilities of general severe weather and of large
hail within the area near a thunderstorm. The probabilities are valid within
a square region 44 km on a side for 30 minutes after the radar observation.

Estimates of the algorithms’ skill in terms of categorical (severe/nonse-
vere) forecast scores will be presénted. Comparative verification tests
indicate that the new radar/environmental severe weather algorithms can
produce 10-15% fewer false alarms than does the operational SWP algorithm.

1. INTRODUCTION

An important element of the National Weather Service (NWS) mission is
providing to the public warnings of severe local storms (thunderstorms
featuring damaging winds, large hail, or tornadoes). Because thunderstorms
develop, decay, and often move rapidly, forecasters rely on radar and satel-
lite observations, as well as reports from dedicated spotters and the general
public, in monitoring these weather systems.

Many operational features of the Weather Surveillance Radar 1988 (Doppler)
(WSR-88D) were included specifically to aid in severe storm detection. The
WSR-88D data processing system includes a number of automated interpretive
aids to alert forecasters to storms that are likely to bear hail, or rotating
storms which may produce tornadoes (Klazura and Imy 1993). One such interpre-
tive product, the Severe Weather Potential (SWP) algorithm, (Kitzmiller
et al. 1995) designed to assess the probability that individual storms are
producing, or will shortly produce, damaging winds, large hail, or tornadoes.



The SWP is based on the storm cell's maximum vertically-integrated liquid
(VIL) and its horizontal extent, both of which are strongly correlated to the
probability of both large hail and damaging winds.

The SWP algorithm, like most of the other WSR-88D detection algorithms, was
introduced primarily as a "first cut" discriminator of severe and nonsevere
storms, not as a categorical assessment of storm severity. It indicates the
majority of storms as very unlikely to produce severe weather, and a few
storms as so dangerous that they probably warrant official warnings even if
there is no time to examine other radar information or obtain independent
confirmation from human observers. The remaining storms might be considered
sufficiently threatening to warrant closer examination by radar and/or
dedicated spotters. Our goal in the present work is to improve the SWP
algorithm’s ability to discriminate between innocuous and dangerous storms.

Forecasters and researchers have long recognized that, while VIL and severe
weather probability are highly correlated over most of the continental U. S.,
the exact nature of the VIL/severe weather relationship is highly dependent on
the season and on geographical location. In general, for a sample of storms
in any limited range of VIL values, the probability of severe storm phenomena
is positively correlated to the mid-tropospheric wind speed and temperature
lapse rate, and negatively correlated to the mean temperature or humidity of
the lower troposphere (Beasley 1986; Jendrowski 1988; Breidenbach et al. 1993;
Kitzmiller et al. 1995). For example, over the Central Plains, relatively
shallow storms with low VIL are much more likely to be severe in early spring
than in summer; severe storms over the northeastern U. S. usually feature
lower VIL values than severe storms over the Plains,

The currently-operational SWP algorithm incorporates only a limited amount
of radar information and no environmental information. Recent efforts have
focused on incorporating both additional radar predictors and upper-air data
such as temperature, wind velocity, and stability. Breidenbach et al. (1992;
1995) have documented efforts at refining the SWP algorithm by incorporating
radar data other than VIL; this work resulted in experimental "second-genera-
tion" algorithms. Efforts at refining the SWP by incorporating environmental
information yielded promising results (Breidenbach et al. 1993). We have now
developed two "third-generation" algorithms (SWP3 and HAIL3) that incorporate
both radar and environmental predictors, and yield the probability that
either any severe weather phenomenon, or large hail specifically, will occur
within a 44-km square region centered on the thunderstorm for the next
30 minutes. They can be implemented on any platform in which radar reflectiv-
ity data and mandatory-level upper-air data are available.

To implicitly account for regional differences in severe weather climatolo-
gy over the United States east of the Rocky Mountains, two sets of severe
weather and hail algorithms were developed, one for the Central Plains and one
for the Northeast. Results indicate that the new severe weather algorithms
can significantly improve on the performance of the operational SWP product.
We will document the expected performance of the algorithms in terms of
categorical severe/nonsevere nowcasts based on the probability values.
Algorithm output for two examples is included.



2. OBSERVATIONAL AND MODEL DATA USED IN ALGORITHM DEVELOPMENT

The methods used to develop SWP3 and HAIL3 are similar to those employed in
the development of the currently-operational SWP algorithm, as documented in
Kitzmiller et al. (1995), hereafter referred to as KMS95. A sample of radar
and storm environment observations was collected and then collated with nearby
severe local storm reports. Equations relating severe storm occurrence (the
predictand) to radar and environment data (the predictors) were then devel-
oped.

Radar data

The radar data for the Central Plains development sample was taken from
Radar Data Processor Version II (RADAP II) archives collected at Amarillo,
Texas (AMA), Wichita, Kansas (ICT), and Oklahoma City, Oklahoma (OKC), between
1985 and 1991. Typically, new volumetric scans were available every 10 or
12 minutes. The RADAP I1 archive has been described in detail by McDonald and
Saffle (1994) and by KMS95. The Plains sample contains data on over 6000 in-
dividual thunderstorms.

Radar data for the Northeast development sample was from the RADAP II unit
at Binghamton, New York, (BGM) between 1988 and 1992, and from the WSR-88D
unit at Sterling, Virginia, (KLWX) during 1992 and 1993. We obtained only VIL
graphic images from WSR-88D; these were manually interpreted for cell loca-
tions, peak VIL values, and VIL horizontal coverage. This data sample
contains data on nearly 700 storms.

Environmental data

Upper-air conditions were derived from analyses and 6-h and 12-h forecasts
of the Nested Grid Model (NGM) (Hoke et al. 1989) archived by the Techniques
Development Laboratory. These data were chosen in preference to radiosonde
observations because they are readily available in gridded form and represent
a robust estimate of atmospheric conditions at asynoptic times.

To objectively assign environmental conditions to individual storm cells,
the environment was assumed to be constant over each 230-km radius radar
umbrella, with values corresponding to those at the center. The NGM data were
available from Techniques Development Laboratory archives at 6-h intervals:
initial-time analyses at 0000 and 1200 UTC, and 6-h forecasts at 0600 and
1800 UTC. For radar data within one hour of an analysis or forecast valid
time, the values were taken at that time. For data outside these 2-h windows,
the conditions most favorable for strong convection (higher instability,
humidity, wind speeds) at the bracketing valid times were used. Temperature,
humidity, stability, and wind data were derived from 0000 or 1200 UTC analyses
or 6-h forecasts; vertical velocity and divergence predictors were derived
from 6- and 12-h forecasts (the initial fields are quasi-nondivergent).

Severe local storm reports

Reports of high convective wind gusts (those causing damage or measured in
excess of 50 kt), large hail (2 cm or greater in diameter), and tornadoes are
logged by the National Severe Storms Forecast Center (NSSFC). We collated
these reports with storm cell data by mapping the reports to the VIL analysis
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grid. For each cell, the number of all severe reports, the number of large
hail reports, and the largest reported hail diameter were noted.

3. CREATION OF A STATISTICAL DEVELOPMENT SAMPLE FOR SWP3 AND HAIL3

The statistical data sample was derived by objectively interpolating radar
reflectivity and VIL data to a 4-km cartesian grid centered on the radar (the
4-km analysis VIL is available as a graphic product in the WSR-88D suite).
Thunderstorm centroids appear as local maxima in the VIL field. A storm
"cell" is considered to be a region 28 km square (7 grid boxes).

The collection of radar images described above contained numerous individu-
al storms, and many that were close to each other in both space and time. In
order to limit the statistical sample to fairly active storms and to maintain
a degree of statistical independence, a number of restrictions were placed on
storm size and proximity. Only storm cells with at least two grid boxes with
a VIL of 10 kg m™? or more were considered for inclusion. Any two cells in
the final dataset were separated from each other by at least 28 km, or by
45 minutes in time. Where spatial or temporal overlaps were found, only the
larger cell (in terms of maximum VIL) was included.

The final development dataset contains storm cell chacteristics including
maximum VIL, the number of map grid boxes with VIL in excess of 10 and
20 kg m™2?, and the operational SWP value. For cases derived from RADAP II
data, additional radar predictors including the partial VIL above the freezing
level and above 15 kft MSL, and the heights of the 40- and 50-dBZ echo tops,
were also noted. It was not possible to derive these additional predictors
from the WSR-88D VIL graphic images from the LWX site.

The severe storm report log was then examined to locate any severe weather
or hail events reported near the storms, and the number of associated severe
storm and hail reports were recorded. A storm was considered to be severe (or
a large hail producer) if at least one report (or one large hail report)
occurred from 10 minutes before to 30 minutes after the nominal radar observa-
tion time. This convention should account for both events in progress and
those about to develop.

These collection procedures yielded a Plains data sample of 6068 cells, of
which 8% were severe and 5.5% featured large hail. The Northeast sample
consisted of 668 cells, of which 20% were severe and 6% featured large hail.
Thus most severe events in the Plains involved large hail, while over the
Northeast, damaging wind events were predominant. These features of severe
weather climatology might be due partly to physics and partly to land develop-
ment patterns. Many reported wind events in the mid-Atlantic region are
associated with falling trees and damage to structures. The scarcity of wind
events over the Plains could be due in part to a relatively low density of
construction even near population centers and to sparse forestation.

4. INDIVIDUAL RADAR AND ENVIRONMENTAL INDICES AS PREDICTORS OF SEVERE WEATHER
Table 1 contains a complete list of the candidate predictors included in

statistical tests and regression procedures used to develop SWP3 and HAIL3.
Most are commonly known; explanations for the others follow here.



Partial VIL indices differ from "total" VIL in that the integration of the
radar-estimated volumetric rainwater mixing ratio is carried out only above
some reference level above the nominal terrain height. As shown by Breiden-
bach et al. (1995), the partial VIL above 15 kft MSL (PVIL1l5) is less affected
by range from the radar than is VIL, and PVIL15 has almost as much information
with respect to severe weather. The partial VIL above the freezing level
(PVILFR) should logically be correlated with large hail, since supercooled
water is crucial to the hail formation process. "VIL size" predictors (SVG1O,
SVG20) represent storm areal extent, in terms of the number of analysis grid
boxes covered by VIL in excess of 10 and 20 kg m™2.

Most of the environmental predictors tested here have already been used in
assessing the severe weather threat on the meso- and synoptic scales. That
is, the predictors are correlated to the chance that at least one severe storm
will develop within a region as large as several thousand square miles. We
found that some of these indices are also correlated to the probability that
an individual storm will produce severe weather, independent of any radar
information. The Vertical Totals and Total Totals indices (Miller 1972) are
calculated from mandatory-level radiosonde data and have long been used in
assessing the environmental potential for severe weather outbreaks. The
"surface" variations of these indices and of the K index (George 1954) are
calculated by replacing the 850-mb temperature and/or dew point by the surface
values; we approximated the surface values by data from the model’s nominal
1000-mb level. While this level is sometimes below the true terrain surface,
the derived indices still realistically reflect the model forecast of low-lev-
el stability conditions. The 1000-mb height is an important predictor of
severe storm potential in operational Model Output Statistics guidance (Reap
and Foster 1979).

A number of indices based on wind velocity and vertical wind profiles are
known to be useful predictors of storm intensity. Wind speeds at and above
500 mb are correlated with both severe storm and large hail potential (Reap
and Foster 1979; Doswell 1980; Dessens 1986). Veering of the wind with height
is also a characteristic of severe storm conditions; the thermal advection
index (Kitzmiller and McGovern 1989) is proportional to clockwise vertical
wind shear and overall wind speeds in the 850-700 mb layer.

Certain indices (freezing level height, 500-mb temperature, and 1000-500 mb
thickness) were included primarily as large hail indicators; experience and
statistical analyses have shown that thunderstorms developing in particularly
cold environments are especially likely to produce large hail (Wagenmaker
1992; Kitzmiller and Breidenbach 1993).

Fig. 1 shows the correlation ratio (Panofsky and Brier 1968) between some
of the candidate radar and environmental predictors and severe weather
occurrence. This correlation statistic is essentially the fraction of the
predictand variance explained by the predictor without any a priori assump-
tions about the nature of the predictor/predictand relationship. If this
relationship happens to be nearly linear, then the correlation ratio approach-
es the square of the linear correlation coefficient between the variables.
Here, the predictand is binary (0 for nonsevere cells, 1 for cells with one or
more severe reports).

As might be expected, the radar-based predictors possess more information
than do the environmental predictors. The radar observes the morphology of
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individual storms, and thus yields highly specific information about a small
region near those storms. The environmental data indicates primarily the
likelihood that any one of a number of storms may produce severe phenomena.
However, this information may be substantially independent of the radar data,
and thus provides some knowledge about the situation that the radar does not.

For the Plains data sample (Fig. la), the best individual predictors all
involved VIL, including partial VIL and the operational SWP algorithm. Each
of these predictors explained more than 20% of the predictand variance. Other
commonly-used radar indices, including the 40- and 50-dBZ echo top height,
explained between 15 and 20% of the predictand variance. The best environment
indices, such as surface Total Totals and the 500-mb u-wind component,
explained about 6% of the variance. This is still physically significant,
considering that no data on individual storms is incorporated in these
indices.

Results similar to those for the Plains were obtained by testing the
Northeast sample (Fig. 1b). Only VIL-based radar predictors were used here,
since other volumetric radar indices could not be derived from the LWX VIL
graphic products. Among the environmental predictors, the 700- and 500-mb
wind velocity were more informative than stability. This might be due to the
fact that most severe events in the East involve damaging winds, and that
convective transfer of momentum from the mid-troposphere to the surface might
be an important mechanism in driving these events.

The relative value of the radar predictors with respect to hail occurrence
(Fig. 2) is similar to their value with regard to general severe weather,
though the correlation ratios are smaller. The best environmental predictors,
in terms of the correlation ratio, now involve stability or temperature. This
might reflect the increased tendency of storms in especially cold, unstable
environments to create large hail, and for hailstones to experience less
melting after leaving the storm updraft.

These and earlier results (KMS95) show that VIL indices have information
with respect to both hail and wind events. It is probable that VIL is
correlated to hail because hailstorms have especially large volumes of
supercooled liquid water, and because wet hailstones themselves are highly
effective radar backscatterers. At the same time, intense convective down-
drafts are often initiated by fallout of suspended liquid water, thus storms
with relatively high VIL are those most likely to cause damaging surface winds
(Srivastava 1985; Wolfson 1990).

As noted in KMS95, VIL is not an effective indicator for most tornadic
storms. Even storms in larger tornado outbreaks often feature rather low VIL
values; it appears that the organization of the rotating updraft in tornadic
storms does not necessarily cause a deep core of high reflectivity. Thus we
believe that forecasters should rely primarily on indications of environmental
vertical wind shear and mesocyclones in attempting to detect tornadoes.

The amount of information contained in the better radar-based predictors is
well represented by severe weather and hail relative frequency charts, as
shown in Fig. 3. 1In both data samples, storms with VIL values less than
20 kg m'? feature less than half the climatic relative frequency of either
large hail or general severe weather; for storms with VIL in excess of



50 kg m2, severe weather is likely, and a substantial number of the storms
feature hail.

Further examination of the VIL/severe weather relationship for the Plains
showed that it is nonlinear (Fig. 4); the severe weather relative frequency
can be more closely approximated by the square of the VIL than by VIL itself.
Accordingly, we submitted the square of VIL as a candidate predictor in the
screening regression procedures later used to derive SWP3 and HAIL3 in their
final forms.

Similar plots of severe storm and hail relative frequency as functions of
environmental parameters over the Plains appear in Fig. 5. Note that the only
radar information explicitly incorporated in these nowcasting relationships is
the minimum VIL and size criteria. Yet, the environmental information alone
does contain significant information on the likelihood that individual storms
will produce severe weather. The 500-mb temperature (Fig. 5a) can be corre-
lated with hail probabilities as low as 1% and as high as 25%, even in the
absence of detailed radar information. In a similar manner, hail potential is
inversely correlated to freezing level height (Fig. 5b). Finally, the
"surface" total totals index is fairly highly correlated to both severe
weather and hail probability over the Plains (Fig. 5c).

The single greatest environmental influence on individual storm severity in
the Northest appeared to be mid-tropospheric wind speed, in particular that at
the 700-mb level (Fig. 6). In conditions with light winds (< 9 m s, just
under 10% of the storms produced severe phenomena, while for speeds in excess
of 20 m 7!, over 30% did. This could be an indication of convective transfer
of horizontal momentum from the middle troposphere to the ground. Reap and
Foster (1979) noted the correlation between high upper-air winds and condi-
tional severe local storm probability. We again note that the optimum choice
of predictors for the Northeast might change as more cases are added to the
sample, but the present findings are consistent with Reap and Foster's earlier
results.

Two-predictor histograms clearly illustrate that independent information is
available from both radar and environmental data, as noted earlier by
Breidenbach et al. (1993). We determined correlation ratios for all possible
combinations of radar and environmental predictors. The histograms shown in
Fig. 7 were those that explained the greatest percentage of predictand
variance. General severe storm probability is shown as a function of VIL and
freezing level height and as a function of SVG20 and 700-mb wind speed
(Figs. 7a, 7b respectively). The influence of environmental factors is most
apparent for moderately strong storms (VIL between 40 and 50, and SVG20 of 4
or more). Likewise, hail probability over the Plains is clearly dependent on
both VIL and freezing level height (Fig. 7c); a similar relationship was
evident in the Northeast data sample.

5. DERIVATION OF THE SWP3 AND HAIL3 ALGORITHMS

The correlation results documented in Section 4 guided us in our final
derivation of the new algorithms, by indicating the predictors and predictor
combinations that explained the most predictand variance. The final versions
of the probability equations themselves were derived by statistical linear
regression on the data.



While we had found that the partial VIL predictor PVILFR had more informa-
tion than VIL itself, was also found that an interactive combination of VIL
and freezing level height had as much information as did PVILFR. We decided
to use VIL in preference to PVILFR because VIL is already available operation-
ally. We also found that certain combinations of VIL and environmental
predictors, specified a priori, explained more predictand variance than did a
combination chosen by standard forward selection screening, in which the first
predictor chosen is that with the highest linear correlation.

The relationships shown in Fig. 7 were utilized in constructing regression
formulas relating the predictor variables to event probabilities. For
example, in the Plains data sample, both severe storm and hail relative
frequency are well-approximated by a biquadratic function of MAXVIL and
freezing level (Kitzmiller and Breidenbach 1993). This function is a linear
combination of terms in MAXVIL?, MAXVIL, and the product of MAXVIL and
freezing level. )

The regression procedures yielded the following equations for SWP3 (general
severe weather probability):

SWP3(%) = -16.37 + 2.33 SVG20 + 1.02 WSPDjpy + .646 MAXVIL (1)
for the Northeastern U. S., and:

SWP3(%) = -16.49 + .025 MAXVIL? - .00206 (MAXVIL x FRZLVL)
+ .365 U-WINDsg, + .341 (SFC TOTAL TOTALS) (2)

for the Plains. Here, SVG20 is the number of 4-km grid boxes with VIL > 20
kg m2, WSPD700 is the 700-mb wind speed in m s™!, FRZLVL is the freezing
level height in m MSL, and U-WINDsy; is the west-east 500-mb wind component
in m s, The Total Totals index predictor is in °C. The expression in (1)
explains 18.6% of the predictand variance, and that in (2) explains 25.7%. 1In
(2), most of the predictand variance is explained by the MAXVIL? and MAXVIL x
FRZLVL terms. The forward-selection procedure itself selected the 700-mb
windspeed predictor in (1), indicating the importance of strong mid-tropo-
spheric winds in causing strong convective wind events over the eastern United
States.

The following equations were derived for HAIL3 (probability of 2 em hail):
HAIL3(%) = 14.22 + .03 MAXVIL? - .0031 (MAXVIL x FRZLVL) (3)
for the Northeast, and:

HAIL3(%) = -375.43 + .019 MAXVIL? - .00619 (MAXVIL x FRZLVL)
+ 2.057 MAXVIL + .066 THICKj000-s500 (4)

for the Plains. Here, THICKjggg-500 is the 1000-500 mb thickness in m. The
expression in (3) explains 22.4% of the predictand variance, and that in (4)
explains 24.9%.

The similar selection of predictors in (3) and (4) indicate that hail-bear-
ing storms over both the Plains and the Northeast have similar VIL signatures
and that environmental temperature has an important influence in the hail



process. The similarity between (2) and (4) reflects the dominance of hail
events within the Plains sample of severe weather reports.

6. GRAPHICAL PRESENTATION OF THE ALGORITHM OUTPUT

Figs. 8 and 9 illustrate a potential real-time display product featuring
VIL and the probabilities obtained from Eqns. 1-4. The VIL analysis appears
in the background; the event probabilities are plotted immediately above and
below the peak VIL values within the larger storm cells. Severe storm reports
from 10 minutes before to 30 minutes after the radar valid time are also
plotted (W for wind, H for large hail)

Fig. 8 shows the analysis for storm cells within an instability line
extending from southeastern Pennsylvania through Maryland to central Virginia.
Radar data were from the Sterling, Virginia, WSR-88D. The NGM 700-mb wind
speed forecast over the umbrella at this time was approximately 17 m g1
(~34 kt), and the freezing level approximately 360 dm MSL (11,800 ft). The
most intense storms were in the northern half of the line; peak VIL values in
these storms ranged from 35 to 50 kg m?. Two wind events and one hail event
were associated with the Pennsylvania storms between 2030 and 2100 UTC. Wind
and hail events were also reported in association with the storms over the
District of Columbia and northern Virginia.

A summertime situation with much warmer conditions and lighter wind speeds
is illustrated in Fig. 9. These late-evening storms were observed by the
Operational Support Facility WSR-88D at Norman, Oklahoma. The NGM forecast
indicated a freezing level height of 479 dm (15,700 ft), a 500-mb u-wind of
10.7 m s (21 kt), and a surface Total Totals index of 68°C. However, VIL
values in the more intense cells shown here were above 50 kg m™%; the cell
with a severe probability of 99 featured a VIL of 85. Five hail events were
produced by the larger storms between 0415 and 0430 UTC; more large hail was
reported to the southwest of these storms between 0420 and 0430, as the storms
propagated in that direction. These storms continued to produce large hail
for the next two hours.

7. RELIABILITY OF THE SWP3 AND HAIL3 ALGORITHMS

The probability equations (1) - (4) generally represent a good fit to the
dependent data samples. To test their reliability within these samples, the
equations were evaluated for each case (storm cell), and the verifying
observations were averaged over each 10% probability range to see how closely
the average forecasted probability approximated the actual event relative
frequency. 1In Figs. 10 and 11, the observed relative frequency is plotted
versus the mean forecasted probability in each 10% range. The dashed line
represents perfect reliability, or zero probability bias. The number of cases
in each probability category is also shown.

For both the Plains and Northeast SWP3 algorithms, the true severe weather
probability is slightly lower than the forecasted value when the forecasts are
less than 35% and above 60%; between these values SWP3 underforecasts the
probability (Fig. 10). The Plains HAIL3 equation has little systematic bias
overall and no serious misrepresentation of the probabilities for forecasts
below 70% (Fig. 1la). The Northeast hail algorithm yields forecasts of
greater than 30% in less than 10% of the cases, and at these higher values
there are some marked departures from zero bias (Fig. 11b). It is likely that
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the coefficients in the Northeast HAIL3 equation would change if a substantial
number of new cases were added to the development sample.

8. SKILL OF THE ALGORITHMS IN TERMS OF CATEGORICAL FORECASTS

Though SWP3 and HAIL3 provide probabilistic guidance, their performance is
most easily evaluated by examining categorical (severe/nonsevere) forecasts
based on the probabilities. Categorical forecasts are generally derived by
setting some fixed threshold probability value, and forecasting all storm
cells with probabilities at or above the threshold to be severe. All other
cells are assumed to be nonsevere. This verification exercise is most useful
when a range of possible thresholds, from low to fairly high, are examined.

The performance of these forecasts may be described by three commonly-used
measures, the probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI) (Donaldson et al. 1975; Schaefer 1990). Let x be
the number of severe events correctly forecasted to be severe, w be the number
of nonsevere events correctly forecasted, z the number of nonsevere events
incorrectly forecasted to be severe, and y the number of severe events
incorrectly forecasted to be nonsevere. We may refer to x as the number of
"hits," z as the number of "false alarms," and y as the number of "missed
events." The POD is the percentage of all severe events correctly forecasted
to be severe:

POD = x / (x + ¥y). (5)
The FAR is the percentage of severe forecasts that are false alarms:
FAR = z / (x + z). (6)

The CSI is the percentage of all severe cases and severe forecasts that are
"hits:"

CSI = x / (x+y + z). I (7)

Both the POD and FAR decrease if the severe/nonsevere probability threshold
is lowered. For rare events such as severe local storms, the CSI reaches a
peak value near thresholds that yield neither too low a POD nor too high an
FAR.

The performance of SWP3 in terms of POD, FAR, and CSI for a range of
severe/nonsevere thresholds between 1% and 50% is shown in Fig. 12. As might
be expected from the distribution of forecast probability values, SWP3 does
not have high skill in the absolute sense. That is, for thresholds yielding a
fairly high POD (> 0.7), the majority of severe forecasts are false alarms
(FAR > 0.5). The skill of the Northeast algorithm appears higher than that of
the Plains algorithm, largely because a substantially higher fraction of the
Northeast are severe. Thus for any given threshold up to about 40%, the
Northeast SWP3 algorithm (Fig. 12b) yields a higher POD, and about same FAR,
as does the Plains algorithm (Fig. 12a).

Because these forecast scores were derived from the dependent data sample,
and the predictor selection partly reflects statistical relationships peculiar
to that sample, the scores probably reflect a higher degree of skill than
would be realized in an indepdent set of cases. To improve our skill esti-
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mates, we derived another set of trial forecasts and scored them through a
cross-validation procedure (Elsner and Schmertmann 1994). 1In classic cross
validation, prototype forecast algorithms are derived from all except one case
in the data sample, and the resulting prototype is then verified against the
case withheld. This process is repeated until all cases have been verified
against a prototype algorithm derived from independent cases.

However, this classic approach implicitly assumes that all cases are
statistically independent. While our dataset features only distinct storms,
it does contain many storms observed within hours of each other, under similar
environmental conditions. We therefore divided the Northeast data into
35 subsamples, and the Plains data into 121 subsamples, with the latest
observation in one subsample separated by at least 3 days from the earliest
observation in the next. The sizes of the subsamples ranged from one storm
cell to as many as 150. We carried out the procedure by withholding entire
subsamples, one at a time.

This practice does not insure complete statistical independence of the
subsamples, since particular convective regimes may persist for over a month.
It does insure that identical envirommental conditions, and storms within the
same convective outbreak, do not appear in both the development and verifica-
tion samples. The use of fewer and larger subsamples, for example full
calendar years, did not seem justified because it would significantly reduce
the size of the development samples, leading to underestimation of skill.

As shown in Fig. 13, the skill of the algorithms when applied to nominally
independent data decreases measureably. For any given yes/no probability
threshold, the cross-validation method indicates POD values 1-5 percentage
points lower, and FAR values slightly higher, than were indicated by verifying
within the dependent data.

The FAR curves in Fig. 13 show that FAR decreases below 0.5 near an SWP3
value of 30. Thus the distribution of probability wvalues is such that the
majority of storms are severe when SWP3 is greater than 30 over the Plains,
and greater than 35 for the Northeast. 1In both cases, approximately 40% of
the severe storms have SWP3 values above these thresholds.

The skill levels of the Northeast and Plains HAIL3 algorithms are very
similar to each other, with the Plains algorithm generally giving a slightly
lower FAR than the Northeast algorithm for any one POD (Fig. 14). These
scores were derived by the cross-validation method described above. At higher
thresholds, it sometimes happens that the FAR actually increases as the
threshold probability increases (as shown for thresholds of 37% and 40% in
Fig. 14b). This occurs when the increase in the threshold value causes the
number of hits to decrease more rapidly than number of false alarms.

The distribution of HAIL3 values is such that for all Plains storms with
HAIL3 above 35, over half will produce large hail. Similarly, about half of
all Northeast storms with HAIL3 above 37 will produce large hail. Approxi-
mately 30% of storms that produce large hail have HAIL3 values above these
thresholds.
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9. DIFFERENCES BETWEEN THE SWP3 ALGORITHM AND OPERATIONAL SWP

There are several important differences between the development methodolo-
gies and performance characteristics of the operational SWP and the new SWP3
algorithm. As noted above, SWP3 utilizes environmental data (specifically,
freezing level height, 1000-500 mb layer thickness, surface Total Totals
index, and the 700- and 500-mb wind vectors) as well as radar information to
determine severe weather potential. As will be shown below, the incorporation
of environmental data yields an operationally significant increase in the
skill over that available from radar data alone.

Also, the definition of the "valid area" for the output probability has
been changed. For SWP, this area was within roughly 20 km of the track of the
storm centroid during the 20-minute period after the start of the volume scan.
Much of the radar and severe storm data were collated manually. In the
development of SWP3, the verification zone is a region 44-km square, centered
on the storm cell’s current position. This alternative definition was chosen
to simplify the process of identifying threat regions relative to county
boundaries or geographic features. The storm is considered to be severe if an
event was reported in this region from 10 minutes before to 30 minutes after
the nominal time of the radar volume scan. All radar and storm observations
were matched objectively.

Because the new verification zone does not move with the storms, it is
effectively smaller than the one defined for SWP. Despite the somewhat longer
lead time accounted for, the percentage of cells featuring severe weather is
lower than that within the statistical sample used to develop SWP.

Finally, we note that SWP3 and HAIL3 provide event probabilities, while SWP
is an index proportional to severe weather probability. The new algorithms
were specifically tailored to the climatology of specific regions, and thus
should yield reliable event probabilities as long as storm reporting proce-
dures do not change significantly.

Comparative verification shows that the skill of SWP3 is indeed higher than
that of SWP. We noted earlier that our goal was to reduce the total amount of
forecaster time that must be spent in examining storms in detail, by either
radar or other means, in order to determine if severe weather warnings are
warranted. To demonstrate the improvement, we determined the number of false
alarms that would be issued by both SWP and SWP3 in the process of achieving
the same POD value. As shown in Fig. 15a, where the comparison was made
within the Plains developmental data sample, the SWP3 algorithm consistently
yielded 15-20% fewer false alarms than did a radar-only algorithm. The
improvement was less for the Northeast sample (Fig. 15b), where the SWP3
algorithm offered clearly better skill only for POD values above 0.75.

Because this comparison was made within the development sample, where the
forward-selection procedure for additional predictors insures improvement in
hindcasting, the degree of improvement offered by the additional environmental
predictors is probably overestimated. To better assess the amount of improve-
ment that would likely be realized within independent data, we applied the
cross-validation technique outlined above to prototype operational SWP
algorithms (using only radar predictors). The "operational" prototypes were
derived by using only the VIL predictors currently available. These five
predictors are: size of VIL greater than 10, 15, 20, and 25 kg m?, and VIL-
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weight, which is the product of maximum VIL and the size of VIL greater than
or equal to 10 kg m™%2. As before, the probabilities were converted to

categorical forecasts, by using a range of yes/no thresholds.

We again present the results by showing the FAR associated with fixed POD
values for both radar-only and radar/environment equations. We should
logically expect that the more skillful algorithm will still produce fewer
false alarms for values of the POD above 0.5. We found that SWP3 does
generally yield fewer false alarms, though its improvement over SWP is
considerably smaller than within the dependent data (Fig. 16).

For the Plains sample (Fig. 16a), both algorithms yield about the same
number of false alarms until the POD criterion is relaxed to about 0.65. This
implies that the incorporation of environmental data most consistently adds
information mainly where the operational SWP algorithm would indicate proba-
bilities between 25 and 35%. Improvement to lower probabilities is not
consistent, while improvement to higher probabilities becomes important only
at much higher yes/no thresholds (and lower POD values).

For the Northeast sample (Fig. 16b), the results suggest that the incorpo-
ration of environmental data most consistently improves forecasts at POD
values above 0.75, or yes/no threshold probabilities below 25%. Most of the
prototype equations derived from the Northeast data featured 500- or 700-mb
wind speed as a predictor, and the upper-air winds appear to be the most
important consideration in determining whether moderately-strong storms over
this region produce strong surface wind gusts.

Though the operational WSR-88D product suite contains a hail detection
algorithm, it was intended as an indicator of hail of any size reaching the
surface. Also, this product could not be reliably duplicated with RADAP II
data. Therefore, we did not attempt to compare it to HAIL3.

10. CONCLUSIONS AND IMPLICATIONS FOR OPERATIONAL USE OF SWP3 AND HAIL3

We have found that the incorporation of environmental data should result in
an operationally significant improvement to the SWP algorithm currently
available as a WSR-88D interpretive product. Since VIL itself is already
widely used as a general severe weather indicator, we hope that our findings
on VIL/storm environment/severe weather relationships may also be useful to
forecasters who do not have access to data acquisition/display systems in
which both radar and environment data are available in real time.

However, the improvement appear significantly larger in the dependent data
than in a set of independent cases. This implies that more data should be
collected and analyzed, and that other radar data, particularly Doppler
velocity, should be considered in further refining both hail and high wind
detection algorithms. Because of operational limitations on the acquisition
of Doppler data in storm regions, such as range folding and beam overshooting
of the subcloud layer, it is likely that examination of reflectivity patterns
will continue to be an important aspect of severe weather detection for some
Clme.

As noted above, these techniques do not possess high absolute accuracy in
identifying severe storms; that is, a high probability of detection is
associated with a high false alarm rate. Thus the algorithms are intended
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primarily to alert forecasters to sudden or unexpected severe storm develop-
ment. Other considerations, such as three-dimensional storm structure, storm
motion, and real-time spotter reports must be used to decide which storms
actually warrant warnings, and where the warnings should be valid. At the
same time, forecasters can be confident that storms with very high SWP3 values
(70% or more) probably warrant issuance of a warning without further examina-
tion. Meanwhile, the vast majority of storms are assigned very low probabili-
ties (< 5%), and these are very unlikely to be severe within the next 30 min-
utes.

For specification of large hail in severe weather warnings, absolute skill
is again rather low. Forecasters can be confident that storms with probabili-
ties in excess of 50% will generally produce hail shortly, and may wish to
specifically mention hail as a threat in statements to the public.

We have used NGM data as a robust source of upper-air information within
these equations. While any operational implementation of SWP3 and HAIL3
should include a facility for forecaster updates of the environmental data, it
should be noted that the algorithms include only predictors that have a fairly
broad spatial structure function, and thus do not change quickly with time.

It is necessary to correct only gross errors in the environmental values.
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Table 1. List of candidate severe local storm predictors utilized in this
study.

Radar Predictors:

Storm maximum VIL (MAXVIL)

Number grid boxes with VIL > 10 kg m™% (SVG10)
Number grid boxes with VIL > 20 kg m™? (SVG20)
Operational SWP output

Partial VIL above 15 kft MSL (PVIL15)

Partial VIL above freezing level (PVILFR)
Height of 40-dBZ level

Height of 50-dBZ level

Maximum reflectivity above 24 kft MSL

Environmental predictors:

Temperature at 1000, 850 mb

Dew point at 1000, 850 mb

K index, surface K index

Vertical Totals index

Total Totals index, surface Total Totals index
1000-500 mb lifted index

700-500 mb temperature lapse rate
Surface-500 mb mean RH

Precipitable water

Freezing level height (FRZLVL)

Freezing level pressure

1000-mb height

1000-500 mb thickness (THICK].OUD'.'IUO)

Wind speed at 850, 700, 500, 300 mb

U- and V-winds at 850, 700, 500 mb
Divergence at 850, 300 mb

Moisture divergence at 850 mb

850-500 mb thermal advection index
Vertical velocity at 950, 850, 700, 500 mb
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Figure 1.

various radar and environmental predictors.
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Figure 2. As in Fig. 1, except that the predictand is large (> 2 cm diameter)
hail reports.
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Figure 3. Percentage of storm cells with reports of general severe weather
(solid bars) and large hail (hatched bars), as a function of storm maximum
VIL. Data in (a) are from the Central Plains, data in (b) from the
Northeast. Numbers above the bars indicate the number of storm cells in
that VIL category.
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Figure 8. Values of severe weather and hail probability plotted over a VIL
analysis. Data are from the Sterling, Virginia, WSR-88D, at 2031 UTC,
25 May 1994. Severe weather events (H for large hail, W for wind) during
the period 2020-2100 UTC are also plotted.
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Figure 9. As in Fig. 8, except that data are from the Norman, Oklahoma,
WSR-B88D at 0402 UTC, 5 August 1992.
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Figure 12. Categorical forecast scores for SWP3 algorithms for (a) the Plains

and (b) the Northeast. Scores were determined from cases within the
development data sample.
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Figure 13. As in Fig. 12, except that a cross-validation approach was used;
thus the scores are more representative of those that would be achieved
within an independent data sample.
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Figure 14. As in Fig. 13, except scores for the HAIL3 algorithm.
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Figure 15. Number of false alarms associated with probability of detecticn
(POD) values for both SWP3 and radar-only (SWP) algorithms. Comparisons are
for (a) the Plains and (b) the Northeast algorithms. Verification was
performed within the development (dependent) data sample.
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Figure 16. As in Fig. 15, except that a cross-validation approach was used;
thus the comparision should be more representative of results if the
comparison where made with statistically indepdendent data.
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