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A PRELIMINARY VIEW OF STORM SURGES
BEFORE AND AFTER STORM MODIFICATIONS
FOR ALONGSHORE-MOVING STORMS

Chester P. Jelesnianski
Celso S. Barrientos
Techniques Development Laboratory
National Weather Service — NOAA
Silver Spring, Maryland 20911

ABSTRACT. Numerical means are used to compute

storm surges (meteorological tides) in a standard
basin of constant slope, bounded by a straightline
coast, All storm tracks in this study are constrained
to lie parallel to the coast; the storm can lie

at any distance from the coast and travel with

any speed, but once set,the distance and speed

are invariant with time. Two driving forces,

wind stress and atmospheric pressure gradient,

are used to generate surges; they are derived from

an analytic wind profile. The model storm is described
with two invariant parameters, storm size and difference
between ambient and central pressure of the storm.

To illustrate peak surges on the coast, two nomograms
are constructed; one considers a continuum of

storms (size and pressure) with a fixed track (speed
and distance from coast), the other a continuum

of tracks with a fixed storm. Simple correction
factors are developed to consider a continuum of
storms and tracks in a standard basin.

The peak surge on the coast is not always monotonically
related to the parameter, maximum wind speed of

a storm, In fact, it is found that the peak surge

may increase or decrease according to the manner

in which other storm parameters are affected by

a change in maximum wind., In particular, any change

in storm size is important because the coastal

storm surge varies as the abeam distance of the

storm from the coast relative to the storm size.

1. INTRODUCTION

Previously, we discussed storm surges-—before and after storm modifications--
for storms traveling from sea to land and with tracks perpendicular to the
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coast (Jelesnianski and Taylor 1973). We now do the same for storms traveling
parallel to a coast, i.e. alongshore.

The generation of surges along coasts is most pronounced when a storm traverses
the continental shelf. The traverse length is minimum for a landfall storm
with track normal to the coast, but for an alongshore-moving storm or a track

at an acute angle to the coast, the traverse length is orders of magnitude
longer. The ocean depth patterns relative to the storm tracks are constantly
changing with time if the storm moves across the basin whereas for an alongshore
moving storm, the depth patterns are almost constant with time. All this

means an alongshore-moving storm, compared to a landfalling storm, can generate
complicated surges abounding on a long stretch of coast.

All natural storm tracks and coasts are curvilinear to some extent. Tracks

are rarely parallel to a coast. In almost all cases the track of an alongshore
moving storm has a small oblique angle to the coastline, It is the nature

of the storm surge to be sensitive to the small oblique angle, and small changes
in the angle can be just as significant for surge generation as small modif-
ications of a storm.

At this time we want to avoid discussing surge generation due to curvilinear
coasts and tracks, complicated ocean depth patterns, tracks with small oblique
angles to the coast, variable storm dynamics with time, accelerating storm
motions, explosive filling or deepening, etc. We do this by conveniently
restricting our basins, storm tracks, and storms. By this we mean the basins
will be simple, with a fixed straight-line coast and a constant one-dimensional
slope depth profile; the storm track will always be parallel to the coast

and the storm speed, intensity, size, etc., will be invariant with time. In
spite of these simple constraints, there are a host of complicated surge
phenomena to deal with,

We do not consider every possible situation, and we do not give a simple yes
or no answer to the question '"Do surges decrease with storm modification?"
However, we do point out situations that may be crucial for surge changes
due to storm modifications.

Our results point out that if the scale size of a storm changes with storm
modification, there is no monotonic relation between peak surge and maximum
wind. The abeam distance of the storm from the coast relative to storm size
is an important factor for peak surge. This means any change in storm size--
apart from changes in maximum wind--is also important for generation of storm
surges,

2. SOME CONSTRAINTS, DEFINITIONS, AND DYNAMICS PERTINENT TO THIS REPORT

To discuss some important surge phenomena, we form several strong constraints
in our oceanographic-meteorologic system. We avoid secondary-surge phenomena
that can occur with complicated basin configurations or with storm or track
variations with time., These phenomena should not be dismissed lightly, for
in special situations they can be important when dealing with surge modifi-
cations due to storm modifications,



To compute surges in this study, a storm is modified ideally,* and we are
concerned only with surge modifications in a simple basin. If the basin
were not simple, i.e., if dramatic changes in two-dimensional depth patterns
or strong coastal curvature relative to storm size were permitted, then
secondary surge modifications would swamp the ordinary surge modifications
reported in this study.

To avoid surge phenomena generated with ocean depth patterns that vary in
two-dimensions, a standard basin is used in our computations (fig. 1). The
coast is a straight line and the ocean bottom has a constant slope. We set
the coastal boundary of the basin as a vertical wall with finite depth.

The natural slope of the continental shelf is orders of magnitude smaller
than the slopes over distances_Q,o and_lll. These distances are orders of mag-
nitude smaller than any horizontal scale length of the surge and storm size.,
The storm surge--a long gravity wave--does not 'see" the rapidly changing
depths within the small distances zoand Lqe If these distances are small
compared to storm size, then it is permissible to use a vertical wall at
the coast. Note, we cannot use small-sized storms such as a tornado.

We assume a constant coriolis parameter for latitude 30° North. The parameter
does not change significantly across scale lengths of the storm surge wave.

We also want to avoid surge phenomena due to complicated and tortuous storm
tracks. All vector storm motions will be linear, exactly parallel to a
straightline coast, and invariant with time. This is shown in figure 1,
where +r is the abeam distance (seaward or landward) of the storm from the
coast, and + U_ is the storm speed (up or down) along the coast. The ratio
+r/R is an important measure in surge generation, where R is the radius of
maximum wind for a stationary storm (i.e., R is storm size). As a further
constraint, all storm parameters in our storm model (Jelesnianski and Taylor
1973), will be invariant with time. A storm and its motion are fixed for
the entire storm duratiomn.

In spite of our simplified oceanographic-meteorologic system, the surge dyn-
amics generate a large assortment of surface waves on the sea. Some of
these waves are:

Directly Generated Surge: This is a forced wave, directly under and follow-
ing the storm as it proceeds up or down the coast. The wave moves with
storm speed.

Resurgences: These are external or free waves generated by the storm, of
at least two general types:

*We mean computing surges first with one storm, and then re-computing with a
second but slightly different storm. Each storm is invariant with time,
and the storm tracks are identical.
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Figure 1.--For surge computations in this study, an idealized, standard basin

is used; the bottom has a constant slope of 3 feet per mile and the coast
is a straight-line. The immediate coastal slope is represented by a
nearly vertical wall. An idealized storm track for an alongshore-moving
storm is represented by the distance r and storm speed Ug. The

character of the idealized storm is described by storm size R and pressure
drop AP. A snapshot picture of a coastal surge profile is shown along
the coast.



1. resonance from an orderly transfer of energy into the sea by
the storm with time. A train of waves forms behind the storm
and the wave speed is equal to storm speed.

2. transients of a temporary nature due to initialization procedures,
quasi-orderly transfer of energy, etc. The wave speeds can be
greater, equal to, or smaller than storm speed.

The assemblage of surges on the coast for any given time is called a coastal
storm surge profile. The assemblage of highest water at each point on the
coast for the duration of the storm is called a coastal storm surge envelope.
The highest surge on the envelope is called the peak surge; it usually comes
from the directly generated surge. The directly generated surge is generally
larger than external (resonant or transient) waves because of bottom stress.
After sufficient time elapses, the directly generated surge is an equilibrium
surge and thereafter the envelope of surges on the coast is a straight line.
(Note, this envelope is completely different from the envelope generated

by a landfalling storm.) The statement "sufficient time" is very loose;
although the forced wave can develop quickly, it takes a lot of time to dis-
sipate transients and the surges then go through an adjustment period. While
these adjustments are taking place, especially if the storm is slow moving,
the transients can overtake and pass through the directly generated surge.
This composite of waves gives a complicated surge envelope until transients
are dissipated. For the special case of resonance, the external waves along
the coast travel with storm speed and cannot overtake the directly generated
surge; the surge envelope is then a straight line.

The model storm (Jelesnianski and Taylor 1973) and its vector storm motion
is chosen conveniently simple. However, if the storms change while moving
along their tracks, or travel on curvilinear tracks or accelerate, then these
digressions can give secondary surge modifications and transients which swamp
primary surge modifications. By primary surge modifications we mean those
generated by idealized* storm modifications in a standard basin.

3. DRIVING FORCES OF A MODEL STORM
For input driving forces in our surge computations, we use a model wind pro-

file with resulting pressure and inflow angle profiles (Jelesnianski and
Taylor 1973). In the following, we concentrate on coastal peak surges

*See previous footnote. We assume modifications have taken place before
the storm enters the continental shelf.



generated by our model storms; for particular illustrations of surge profiles
and envelopes on the coast, with resonance and transient phenomena, we refer
to SPLASH, part II (Jelesnianski 1974).

To compute surges in our standard basin with idealized meteorology, we need
to fix two parameters for the storm track and two parameters for the storm.
These are (see figure 1):

Track

1. distance of storm abeam of coast, +r,
2. speed of storm, * US

l. pressure drop of storm, AP = P, - Py , where P, and PO are res-—
pectively the outside ambient and central pressures of the storm,
2, distance of maximum wind from storm center (storm size),’ Ry

In our storm mcdel, the maximum wind is given implicitly by AP and R. It
would be nice to have a nomogram of peak surges for a continuum of the above
parameters, however, some of the above parameters must be fixed in any nom-
ogram of peak surges,

For a bird's eye view of peak surges in a standard basin generated with
idealized meteorology, we begin with a special case., Suppose we have a fix-
ed track--say, storms are 30 miles abeam of the coast and traveling at 30
mph--and we now ask the question, "What are the peak surges for a continuum
of storms?" To answer, we use the surge model SPLASH, Part II, (Jelesnianski
1974) . The results are shown in figure 2, Some features of the nomogram
are:

l. 1IfR remains constant, then a decrease in wind always gives
smaller surges (also, smaller pressure drops).

2. TFor a constant pressure drop, an upper or critical peak surge
appears at about R = 35 miles. There is nothing special about
this size, it occurs because of the specialized basin and
particular track chosen to produce the nomogram,

3. If initially R < 35 mi and AP remains constant, then a decrease
in wind gives larger surges; also, the surge varies almost linearly
and directly with R,

4. If initially R > 35 mi and AP remains constant, then a decrease
in wind gives smaller surges; also, the surge varies almost
linearly and inversely with R,

Figure 2 is for a particular storm track, But the peak surge is also a
function of the track. To show dependence of peak surge on track, let us
consider another special case. Suppose we have a fixed storm, the pressure
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drop, AP, is 50 mb and the storm size, R, is 30 miles, and we ask the
question, "What are the peak surges for a continuum of tracks?" To answer,
we again use the surge model SPLASH, Part II. The results* are shown in
figure 3. Some features of the nomogram are:

1. for any storm speed, there is one distance of the track from the
coast that gives an upper peak surge.
near the coast, there are at least one positive and one negative
storm speeds that give upper peak surges.
3. if Ug is positive, there is a critical track that gives

a maximum peak surge; similarly if Ug is negative.

4. ESTIMATES OF SURGE MODIFICATIONS FROM MODIFIED STORMS

The nature of a track is important when we deal with modified storms. When
a storm is modified it is assumed that the future track will be unmodified.
We do not contest this assumption, but we do point out that after a storm
is modified, then the particular track has much to say about surge modification.

We want to consider the peak storm surge, SS (AP, R, +r, j;Ué), for a continuum
of storms and a continuum of tracks, or else an "atlas" of figure 3 for
various storms. Composing such compendiums would be a formidable task. As

an alternative, we plan to use correction factors on figure 3 to correct

for a continuum of storms., It is then possible to compose nomograms such

as figure 2 for any storm track without numerical computations; the price

paid is a loss of some accuracy,.

Figure 3 already considers a continuum of tracks when storm size and pressure
drop are particularized at 30 miles and 50 mb ; our peak storm surges are
then given as SS(50,30,+r,+ Ug ). We will now form a continuum of R in the
figure, but still maintain a AP of 50 mb . For simplicity we could normalize
the abscissa and ordinate with storm size R ; this, however, is not a good
idea because the nomogram is not similar with respect to storm size. If

a storm changes its size but not its pressure drop, then similarity can be
maintained only if the ocean depth profile compensates with slope changes

or if the storm speed changes appropriately.

*For some of the slower moving storms, the envelopes of surges on the coast
are polluted with transients; i.e., there are bumps on the envelopes if

the transients overtake the directly generated surge. For a stationary
storm the entire surge profile on the coast oscillates with time. To
present peak surges we followed this rule: if the directly generated surge
was influenced with transients—--that is, if the peak surge oscillated with
time—--then we arbitrarily defined a representative value for the peak,
namely the height of the second oscillation. It turns out that this wvalue
is insensitive to most initialization processes used with SPLASH, Part II
(Jelesnianski 1974).
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Somehow, we need to revise the scales of figure 3 for a continuum of R. We
do so by taking advantage of a property exhibited by the nomogram. Note
the two maximum peak surges located near U_ =+35,-34 mph, and r = —4,+9
miles from the coast; we suggest these are due to resonance. Suppose-—for
our standard basin--we had a resonance relation between storm speed and storm
size; then we could use it as an appropriate scale measure for a continuum
of R. Such a relation (Jelesnianski 1970) is illustrated in figure 4a by
the M curve labelled 1.0; in this relation*, coriolis and bottom stress
are ignored. The relation is crude because we assume the resonant wave is
4,0 times the storm size, and that the storm center lies on or close to the
continental shelf,

Suppose we normalize the abscissa of figure 3 with R, and the ordinate with
the relations given in figure 4a; that is, the ordinate is scaled** so that u
= 1.0 corresponds to resonance speed. The scaled nomogram then re-positions
the maximum peak surge according to storm speed and size,

We must correct the nomogram peak surge to conform to a continuum of R.

We do this by comparing resonant peak surges at different storm sizes, for
a ratio or correction factor FR (figure 4b). For a standard basin and for
any fixed AP, figure 4b shows an upper peak surge will occur for parameters
R = 25 miles, Ug = +32 mph, and r = -3(+8) mi for an upward (downward)
moving storm., The distances r = -3(+8) correspond to the ratio of R = 25/30.

These procedures correct for R but not for AP, We would need an "atlas"

of the scaled version of figure 3 for various AP in order to compare storm
surge modifications. However, we can take advantage of a property in figure
2. Note, that if R is constant, then the peak surge is almost linearly re-
lated to AP, Figure 4c gives an approximate factor, F, , to correct the
peak surge for a continuum of AP, The correction curves were determined
with specialized runs for one storm size (R = 30 miles), different AP, and
different positive u.

To recapitulate, we have this question. Given AP, R, +r, +Ug , and a stan-
dard basin, what is the peak surge? We suggest this procedure:

1. Enter figure 4a with R, Ugk** and extract a resonant-normalized
speed yu,

2. Enter figure 3 with +r/R and + u#*%**, and extract a preliminary
storm surge number SS(50,R,+r/R,+u).

3. Enter figure 4b with R and extract a correction factor Fy for
storm size,

#Je assume resonance speed does not differ for up or down directions on the
coast. This is not true if coriolis force is present, but such difference is
small for the horizontal scale of storm surges used here.

**The speeds given on the ordinate are valid only if R = 30 miles.

***We are assuming that the resonant speed is independent of up or down
direction.

*%%*The peak surge is dependent on up or down direction of storm.
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4, Enter figure 4c with AP and u, and extract a correction
factor F_ for pressure drop.

s Determing the peak surge by multiplying the result of step 2 by FR
and Fp, [SS ( AP,R,+r,+Ug) = SS (50,R,+r/R,+ p) x Fr x FP] "

Note that given AP and R, we can determine the maximum wind from figure 2;
similarly, given the maximum wind and R, we can determine AP, etc.

To see how well the above procedure works we now re-construct figure 2,
computing peak surges for different R's and different AP's. The result is
shown in figure 5 for several AP's., The reconstruction* is fairly accurate
with greatest errors for small storms. Note that for r = 30 miles, the ratio
r/R is large for small storms and in figure 3 far removed from a resonant
point. Our procedure is most accurate in the vicinity of resonance, and
moving away from it we should expect errors to be larger.

It is tempting to use the above procedures as a tool to forecast peak surges
with alongshore-moving storms. However, as presented, it is valid for a
standard basin only. We could, of course, correct for basins other than
standard provided their depths are of constant slope; this could be done
with a resonant relation to produce suitable nomograms. For curvilinear,
non-constant sloped basins—-or for that matter basin depths varying in two
dimensions—-we no longer can be so nonchalant with approximate procedures,
Moreover, we again point out that the peak surge is sensitive to small oblique
angles of storm track relative to the coast; a storm with a small component
of motion towards shore will give significantly larger surges than one with
a small component of motion away from shore.

We do not recommend these approximate procedures for forecasting or planning.
The surge dynamics due to curving coastlines and storm tracks and to variant
storm parameters are so complicated that the above procedures no longer hold.
Instead, we suggest computer runs with models that incorporate these complex-
ities.

5. STORMS FAR REMOVED FROM THE COAST

Up to now, it has been tacitly assumed that the core of the storm--that

is, the track--lies on or close to the continental shelf. We now discuss
storm surges generated by storm tracks far from shore and off the shelf.
Suppose such a storm is modified by a change in storm size but not pressure
drop; then for increasing storm size the winds on the entire shelf are in-
creased (figure 6), This special situation, whereby the driving forces—-
wind stress and pressure gradient-—are increased on the entire shelf, occurs
only if the core of the storm remains off the shelf. 1In this special case

*Maximum winds can be read directly from figure 2.
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the coastal surge will increase* with increasing storm size, no matter what
the change in maximum wind off the continental shelf is,

For this case, coastal surges are generally small, much smaller than those
generated by a track on the shelf and close to shore., However, it is well

to remember some communities have constructed buildings so close to shore
that there is little tolerance for water rises higher than normal astronomical
tide. For these communities, a small storm surge at high astronomical tide
can be disastrous; hence, the size of the storm can easily be a decisive
factor. An example is Hurricane Agnes, 1972. The track was about 180 miles
abeam of Tampa, Florida where rises of water above five feet are intolerable,
For this storm, the SPLASH II model produced a surge range of 1-3 feet with
storm size ranging between 15-60 miles; in conjunction with astronomical
tide plus seasonal and anomolous trends in sea level, this easily approaches
or exceeds the critical level.

6. SUMMARY AND CONCLUSIONS

The peak coastal surge generated by a storm traveling parallel to a straight-
line coast is sensitive to the distance of the storm from the coast relative
to storm size, If a storm is modified so that its size changes, then storm
size is an important parameter apart from maximum wind.

For a constant pressure and a fixed track parallel to the coast, the peak

surge is not monotonic with respect to the maximum wind., If the maximum

wind decreases concurrently with increasing storm size, then the surge increases
to a critical value and thereafter decreases,

If a storm is modified at a great distance from the coast and the core of
the storm remains off the continental shelf, then decreasing the wind con-
currently with increasing storm size results in higher surges on the coast.
Surges from such storms are very small, but in conjunction with high astro-
nomical tide and sea level anomolies, the total tide can become damaging

at some coastal regions.

Merely decreasing the maximum wind of a storm is insufficient information

to determine coastal surge changes. Sometimes the surge will decrease, other
times increase, depending on other parametric changes such as storm size,
storm track, and storm speed,

Storm modifications may decrease surges in one basin, vet increase surges
in another basin; similarly, for storm modifications in a basin with alter-
nate tracks. Hence, surge versus storm modifications is a complex relation
not amenable to simple rules.

*We are assuming that transmission of energy from deep water onto the shelf
gives much smaller coastal surges than those generated by driving forces
on the continental shelf.
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