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SOME PHYSICAL AND NUMERICAL ASPECTS OF
BOUNDARY LAYER MODELINGL

Paul E. Long, Jr.2 and Wilson A. Shaffer3
Techniques Development Laboratory
National Weather Service, NOAA
Silver Spring, Md. 20910

ABSTRACT. The Techniques Development Laboratory is developing
a large scale three-dimensional planetary boundary layer
model to predict the temperature, humidity, and wind within
the lowest several kilometers of the atmosphere for a

period of 24 hr. The output from the model will be used

to compute indices for severe storm prediction.

A one-dimensional model which has many of the essential
features of the planned three-dimensional model has been
run for some time now and is being used to test various
formulations of finite-difference schemes, radiation
 formulations, and suitability of turbulent transfer proce-
dures. The model consists of two basic layers in which

are imbedded twelve computational levels. The surface
layer uses the Obukhov profile relations with the recent
empirical results of Businger et al. (1971) and Webb (1969).
The transition layer equations are time dependent and

draw their lower boundary conditions from the surface

layer relations. The surface temperature is computed

by using an energy flux balance. Local radiative heating
is included in the temperature calculation above the
surface. Many of the features of the one-dimensional model
and some comparisons with experimental data are described.
A more complete account of the radiation calculations

is contained in Shaffer and Long (1973).

This report also describes our recent experiments with
two numerical techniques: chapeau functions and cubic
splines. These techniques will be used in the solution
of the horizontal advective portions of the transiton
layer equatioms.

lpresented at the Second Conference on Numerical Prediction, 1-4 Oct. 1973,
Monterey, California.

Research performed principally while a National Research Council Postdoctoral
Associate.

National Research Council Postdoctoral Associate.



I. INTRODUCTION

At the Techniques Development Laboratory of the National Weather Service,
we are developing a three-dimensional planetary boundary layer model which
will be used to calculate severe storm prediction indices. Our model will
make 24-hour predictions of temperature, humidity, and wind from the surface
to about two kilometers and will encompass at least the area shown in the
small square denoted by "BLM" in figure 1. The horizontal mesh spacing
(about 80 km) will be one-half that of the current NMC Limited Area Fine
Mesh model (LFM). The current NMC planetary boundary layer model, which-
computes steady-state winds, has a mesh spacing equal to that of the LFM.

This report will be devoted to two subjects: (1)a general description
of the Techniques Development Laboratory's current and future boundary layer
models, and (2) a review of some simple numerical experiments using techniques
which are evidently fairly new to the field of meteorology and which we plan
to use in our boundary layer modeling work. Further details on the one-
dimensional model may be found in Shaffer and Long (1973).

Figure 2 shows the spacing of the twelve levels above the contact layer
of our current one-dimensional test model. The turbulent diffusion equations
are solved by using a transformed system with equal level spacing in the
transformed system, although the spacing between the physical levels in-
creases upward. The contact (or surface) layer equations allow us to compute
the lower boundary conditions for the time dependent transition layer equa-
tions and to compute the surface heat flux required for the prediction of
the surface temperature. The LFM or PE models will supply the upper boundary
conditions. We have not yet settled the question of whether the model will
be limited to the area shown in figure 1 with boundary conditions taken pas-—
sively from a larger model, or whether we will construct a model of larger

total area with a telescoping grid. The utility of telescoping grids will
be discussed in section IX. :

Although we require an initial soil temperature profile, we are interested
only in predicting the temperature at the soil surface and not within the
soil. This calculation may be easily handled analytically without soil com-
putational levels.

II. GOVERNING RELATIONS

The prognostic relations for the transition layer are similar to those
for "free air" models save for the important terms involving turbulent dif-
fusion and local radiative heating (see Table 1 for symbol definitions).

The turbulent diffusion coefficients for heat and humidity are assumed equal,
but are not in general equal to the diffusion coefficient for momentum. The

four prognostic relations may be reduced to two by using complex variables
(2.1-2.4):
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Table 1l.--List of major symbols

A  stretching parameter for vertical coordinate transformation; a linear
combination of chapeau function coefficients

B linear combination of chapeau function coefficients
e. chapeau basis function
f Coriolis parameter

G complex geostrophic wind: u, + ivy; g gravitational acceleration;
g(x,t) forcing function in non-linear advection-like equation

H assumed top of boundary layer model; h assumed top of region where
surface relations apply

i V-1
j finite-difference spatial index
Kys Kps Kgq turbulent diffusion coefficients for momentum, temperature

and humidity
k Von Karman constant
L Obukhov length
n as in nth iterate; n time step index
P, derivative computed using cubic splines

Qu ‘arbitrary scalar variable at time level n and grid point j; q specific
humidity; q, friction humidity

S bulk stability parameter
T complex variable: © + iq ; t time

U horizontal wind speed; u east-west wind component; ug east-west
geostrophic wind component; u, friction speed

v wind vector; v north-south wind component; vg north-south geostrophic
wind component

W  complex horizontal wind vector: u + iv

Z vertical coordinate; z g roughness length; z
transformed vertical coordinate

4 shelter height; 27



Table 1. Continued.

05 time-dependent chapeau function coefficient for scalar variable Q;
recursion relation coeffic .ent

j time-dependent chapeau function coefficient for variable advective
velocity; recursion relation coefficient

v gradient operator; AU, A® difference between values of U and 0O at
surface and level z = h; At, Ax finite-difference time and space
increments

] potential temperature; Oy friction temperature

¢m, ¢ Monin-Obukhov universal functions for temperature and wind profiles




—-%%- + Vtve N %E'(KT %9- + Radiative heating, phase changes
Z
%%- + Vevg = %;-(Kq %g?
%% +Vevu = %;—(xm-gga + £ (v-vy)
% +'\7’-Vv=%;(Km%§)+f(ug-U)_
—2_3 +V-v'f=§_z(KTg—E (2.1)
T¥e+iq;ﬁ=u+iv;5=ug+ivg (2.3)
Ky = Kq % Kp (2.4)

The surface layer relations are those suggested by Obukhov (1946),

20 _ Ox (5> 1= O
2z " kz T \L)- kgo,

39 _ 9¢ ¢ (_Z_)
°Z kZ q L

U _ Uy _Z_>
9z ~ kZ bm (L

The universal functions ¢¢ and ¢, have been determined with good precision
recently by Businger et al, (1971) and Webb (1970).




For the unstable case:

.
¢T=¢q=.74 (l—y i-l/z
=1/4
¢ = (1 Zy
m L
For the mildly stable case:

7z
= = /; St
O ¥q T4+ 4.7 T
6= 1.+ 4.7 Z

Yr= 9 ; Yo = 13

k= .35

To obtain Uy, O, d%, and L, the Businger relationships must.first be

integrated.

h
- S dz 89 - O |
z4 3z k
h-
AU= dz U - Da [
2 97 k
(o]
[ ] = .74 1n
c}
[ I, = In

1/4
1+ (1 EQ) l
L
Zo 14
l—me~> -1




It will be noted that where L>0, Businger's reldtionships are more easily
integrated than those of Dyer (1967). For instance, Krishna's (1968) bound-
ary layer model which used Dyer's ¢'s required a numerical integration each
time the surface relations were invoked.

Let us suppose that the wind velocity, temperature, and specific humidity
are known at the bottom of the transition layer (Z=h) and all but the wind
are known at the instrument level, Zi. This information is sufficient to
determine Ux, Ox, and L, and also

30 g au
3Z h, 9Z h, and SZ h,

the derivatives of temperature, humidity, and wind speed at the top of the
surface layer. Since the surface layer eddy diffusion coefficients are
given by ‘

Ky (2) = KUxZ/¢(Z/L)

and
Ky (2) = KULZ/¢p (Z/1)

both Kr(h), K,(h) and (3KT/3Z)y,, (BKm/BZ)h are readily calculated. The
derivatives of temperature, humidity, and wind velocity supply the lower
boundary conditions for the parabolic transition layer equations. We use
the O'Brien (1970) cubic diffusion coefficient profile in the transition
layer as a temporary computational expedient; although the profile has a K
maximum within the transition layer above which K decreases as one may
reasonably expect, local values of K are uninfluenced by local stability.
On the other hand, our experience shows that diffusion coefficients which
depend upon stability (Richardson numbers) often create subtle numerical
instabilities which can grow beyond control. A sure curative is the reduc-
tion of the time step used in the numerical marching process, but we feel
that we must use a time step of about thirty minutes to keep the three-—
dimensional model economically feasible.

The integrated profile relations along with the defining relation for L, the
Obukhov length, contain O,, U*)and L as unknowns. We have an efficient solu-
tion for this system: we eliminate the variables U, and O, by defining a
new parameter, S, given by

i
gho

which allows us to combine the integrated ,rofile relations as follows,

[ lo

[ 12

The bracketed terms depend upon the Obukhov length only. 1In the unstable

case, this relation creates a rapidly converging sequence,

9



Iﬁn+l) - L 1.(n) Io

[ 1n) ez
“u

If the initial value for L is taken to be the nearly-neutral value, then the
rate of convergence increases with increasing - lSl. For practical purposes
we have found three or four iterations to be sufficient.

When the surface layer is mildly stable, no iteration is required; one
simply solves the quadratic,

al? +bL + ¢=0, yhere

b

a = 1n? h~1 b 9.4 (h - Z,) 1In h  _ 748 1n B
Zo Zo Z4

i

()
It

[4.7(h-2,)1% = 4.7 (h-Z4)8

L

il

3 "/-B'W'm/m__I
—> * Vb“ - Aac » in which only the (+) solation has physical
22

nzanine.

Because of their similar structure, S and L must have the same algebraic
sign, a property which cannot be guaranteed during strong stability (small
+8). In addition, Webb (1970) has suggested a change in the log + linear
integrated profile relation whenever Z>L. ForfE'> 1, he suggested that b
and ¢1 become equal to their values at Z=L. For the Businger stable profile
this means

T4+ 4.7 = 5.44

o
zZ > L

om = 1. + 4.7 = 5.7

To calculate the bracketed terms for very stable conditions, we must
integrate the unmodified Businger relations up to Z=L and then to h using
Webb's profile. The result is

[ lo

L 4,7 h
74 1n =— + S/ = Za . o
4 1n 7 + (L Z;) + 5.44 1n

T, 4.7 h
= _— —_
[ ]y = 1n 7 3 (L -2Z5) + 5.7 1n 3

As with the unstable case, L must be found by iterationm.

After L is computed, Oy, Uy, qx,and all of the required derivatives
follow easily. Table 2 contains a summary of the contact layer relatioms.

10



Tahle 2: Summarv of Surface Layer Equations

1. From AO, AU form

s= AUZ0 . © is average boundary layer temperature.
gAo

2. 1If A0G<0 or if highly stable (h>L), iterate:

L) o [ (@] .
[ L(@)]2
u
3. If mildly stable, duadratic relation for L

4. After L(0) converges, compute

0x= ka3 U= kAU_

L 1, * T
O C R
NN AT

=

G2, " "G 7T

Kp (Z<h) = KUxZ 5 K (Z<h) = KUxZ
") ()

K (h<Z<H) = Ky + (Z_'B_>2{ K, - Ky + (Z-h) [(g)h

H-h 9Z
+ 2 (Kh - Kg)
H-nh

o = current wind vector angle

11



ITT. NUMERICAL SOLUTION OF THE TRANSITION LAYER EQUATIONS

We investigated a number of finite-difference schemes which have been used
in various boundary layer models and found most of them to be unsuited for
our purposes (Long 1973). However, the implicit Crank-Nicolson scheme
generally allowed time steps tt .t are only limited by the amount of time the
boundary conditions may be held fixed without degrading the solution.

The Crank-Nicolson scheme may be applied to the expanding system of levels
by using a transformed Z' coordinate system,

Z' = A 1n [l+2'h:|+h.

A

Although AZ increases with height, AZ' 1is constant and set equal to
50 m. The temperature diffusion equation in the transformed system is

do - g (2) 3_ ,; (z) g%wJ, g (Z) = dz!

dt 3z az
which becomes in finite-difference form,
n+1 n
0; - o. 1
e S n n+ n n n+1
= g .. K_ G‘ -_— o K e * K_
At J 1-1/2 -2 j-1 °j_1/2 j‘l/Z gj+1/2 jti/o Oj
n 1
T8Ny Oy TR g_ K 4 KD n
2 H s . B . : R
o 5 I71/2 3-1/2 371 17172 3-1/2 gj+1/2 i*+i/2 %
n ?
-8 K. o, 2
jti/2 J*tl/2 it /Z(AZ )%

IV. SEQUFNCE OF OPERATIONS

Figure 3 shows the sequence in which the operations are carried out in the
one-dimensional model. (1) Profiles of temperature, humidity, and geostrophic
wind must given initially. (2) If not measuredy initial horizontal winds are
computed using similarity relations in the surface layer and a numerical solu-
tion to the generalized Elman equation

L(Km (z)i“i)-if @W-6 =0

dz dz
in the transition layer. (3) The calculation of U,, O,, and L permit (4) the
computation of

90 9
’ 8-— 1) g% ) KT, K'T: Km, and K'm:

5

12



SOLUTION OF THE PROGNOSTIC EQUATIONS

Initialization - T, q, ug,and Vg profiles

|

Generalized Ekman solution for wind profile, if wind data are
1 missing

Ux> ©4» and L from surface layer equations

Fluxes, K, and dK calculated at top of surface layer
az

r
K's calculated throughout transition layer using
an 0'Brien cubic profile

3

Finite-difference scheme advances T, q, and winds

Radiation calculations performed for atmospheric
heating and surface flux

Y
Tnergy flux balance carried out to get the new
surface temperature and surface humidity

y

Repeat ‘3 to 8 until end of forecast

Flgure 3.--Summary of steps required for the solution of the
boundary layer model.
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at the top of the surface layer. (5) From O'Brien's cubic profile relation
and (4), Kp and Ky can be calculated throughout the transition layer. (6)
The Crank-Nicolson finite-difference scheme advances the solution of the
temperature, wind, and humidity equations one time step, At. The lower
boundary condition requires the slopes of 0, q and u, v at the bottom of the
transition layer be set equal to the values in (4). This means all the o,
q4, u, v (including the level at Z=h) will be marched. (7) A radiative flux
divergence adds to the local heating and cooling rates. A surface radiation
flux is required for the surface energy balance. (8) The contact layer
relations and the surface radiation flux are used in a surface energy flux
balance to compute a new surface temperature. (9) Steps (3)-(8) are repeated
until the forecast is completed.

V. RESULTS OF THE CALCULATIONS

Some comparisons between the model's predictions and the data from
Wangara, Australia (Clarke, et al. 1971) and O'Neill, Nebraska (Lettau and
Davidson, 1957) will be shown in the following figures. The top portion of
figure 4, for Wangara experiment day number 39, shows the 2-m temperatures.
The ohserved and predicted values are in almost perfect agreement during the
night and deviate by at most 1°C during the day.

Figure 4 also shows the calculated and observed surface wind. The simul-
taneous wind measurements were taken from observation points separated by
about 10 km. There is a great deal of scatter during the early morning hours
with a wind maximum occuring at about 9:00 AM and a secondary maximum at
1:00 PM. Although the secondarymaximum is not captured by the model at all,
the primary maximum is fairly well handled.

Figure 5 shows the temperature wave for heights of 200, 400, and 1000
meters. The predicted values improve as one approaches the surface where
the advective effects (obviously not handled by a one-dimensional model)
are presumably diminished. '

There is good agreement between predicted and measured values for the
surface net radiation and soil heat flux as shown in figure 6. The measure-
ments were taken during observed changing cloud conditions for which we have
made provision in the model.

The published values of the geostrophic winds include large errors and
make accurate predicted values of wind high in thetransition layer almost
impossible. This is shown in figure 7. Fairly strong deviations occur
above 400 meters.

Figure 8 shows the effect of neglecting local radiative heating at four

levels within the model. The effect is profound at 105 meters and is not
insignificant even at 256 meters. We were surprised by these results.

14



2-METER TEMPERATURE
WANGARA EXP
DAY 39 (AUGUST 22)
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Figure 4.--Two-meter temperature and three-meter winds for the Wangara experi-

ment, day 39. Solid curves denote model-computed values. Crosses

and circles are measured values spanning a period of 24 hours.

15



TEMPERATURE (C°)

1k

12

10

TEMPERATURE WANGARA DAY 39

" » x x
X X
R x J//wffﬁpf m—
1000 n. .
1 | | 1 1 | | 1 1 t r 1
12 24
A .
X

X

] 400 m,
1 1 1 | ) 1 1 1 1 1 [| 1

% X 200 m,

1 ! 1 1 1 ] | 1 | 1
2 4 6 8 10 12 14 16 18 20 22 24

Midnight TIME (hr)

-
S

Figure 5...Computed (solid curve) and measured (crosses) tempera-
tures at heights of 200, 400, and 1000 meters for
Wangara day 39.
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There is good agreement between the calculated and measured 2-meter tem-
peratures for the 0'Neill 5th period, shown in figure 9. The correspondence
is fair for the surface winds.

VI. SOME RECENT EXPERIMENTS WITH NUMERICAL TECHNIQUES

We have analyzed and experimented with a number of finite-difference dif-
fusion and advection schemes. A summary of the properties of the diffusion
schemes may be found in Long (1973).

In an effort to extend the integrating time step of the difference schemes
without inducing computational instability, we devised some new implicit
advection schemes with the idea of applying the technique of "splitting" (ex-
tensive Soviet literature now exists on the subject of splitting; a good text
is Yanenko 1971). Although the schemes usually had excellent stability
properties, their truncation errors were often as great or greater than stan-
dard second-order explicit schemes.

Dr. James Bradley of Drexel University recently suggested the use of spline
and chapeau functions for solving time-dependent problems. We shall show
some results of our investigation in section IX.

VII. CHAPEAU FUNCTIONS

Graphs of chapeau functionslook like peaked hats; hence their name. For
a one-dimensional array of N gridpoints there are N such chapeau basis func-
tions defined by

X = xj-1

es xX) =_J37- x e [x. x.]
J ’ -1
X5~ %j-1 = 4
X:iiq - X
es (x) =01 " 7 x ¢ [x35, x:4q] 5
] X4l - % J* =] (7.1)
ej (x) = 0, X € [xj_1; Xj+1]

Figure 10 shows such an array.

As a test problem we shall solve the advection equation,

¢ : 1+ R
5t +U 5% 0; U = cunstant (7.2)

by approximating Q (x, t) in terms of the chapeau basis functioms,
Q (x, t) = ? oy (t) ey (x). (7.3)

If Q (x, t) is defined at N gridpoints, then the coefficients, a;(t), are
simply equal to Q (Xj, t). When (7.3) is substituted into (7.2) and the
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result is integrated over (Galerkin's method) by e, (x), the relation becomes

d (o, UAt _ - da -
1/6 a—t_ (U-J_l + 4 OLj + C€j+1) + m— (aj+1 Oﬁj_l) = H + B 0. (7.4)
A = 1/6 (aj_l + 4 (Ij + Ctj_*_l)l
_ UAt _ ,
= m (aj+l O‘:j_l) S . (7.5)

There are a number of plausible ways of integrating the difference-differen-
tial equation (7.4), three of which are displayed below:

1) Two level:

5 +1/2 " + ) =0 '

which is stable regardless of At,

2) Three level: (7.7)

AD+lL _ An-1
g +tB =0

which is stable provided Ui;_i 1/2, and

3) Threellevelz

An+1 - An_l .
i +1/6 (8ntl + 4 B0 4+ B271) = 0 (7.8)

UAt
Ax
The superscripts refer to the time level n = t/At.

which is stable provided

< L,

When the advection velocity is variable, the analogous equation is more
complicated in detail but is fundamentally the same as (7.5):

0w, )=
X

ot

Q (x, t) = I oy (t) e (x)
h|

u (x, £) = I8y (t) e (%)
|

dA

qE T B=1

A=1/6 (aj—l + 4 oy + 0j41)
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B = 1/6Ax [(281 + Bj+1) G441
- (Bj+1 - Bj—l) aj

- (283 +Byp) @y .

VITII. CUBIC SPLINES

The concept behind the use of cubic splines is simple indeed. The idea
is to take the standard leap-frog scheme

Qn+l _ Qn—l
e I A LU n n _
20t t Jix (Qj+1 - Qj_l) =0
and to replace the spatial derivative (of second-order accuracy) by a cubic
spline derivative of greater accuracy, PR

j°
QI.I+1 - Qr}_l
e I n
2At + Pj =0.

The spline derivative at a point is linked with its neighbors'by the relation
(proved in Ahlberg, et al. 1965) :

n n n —
5 " + B.P. + C, P =D,
Ay Py 373 g JE k|
in which
Ay = 9L T X
| % = X H Bj =2 3 Cj =1 - A,
j+1 =1L - J
n ol Tl Tl .

. (0: - Q. 3c, (qQ, =--Q%)

J T %1 RS

As with the chapeau function technique, the system of equations forms a
3-band (or tridiagonal) matrix system which is solved by using the recursion
relations

n = g.p% x

Pyel T %305 + 8y

OLj = - Aj+1/Ej

B3 = (@g41 = Bjy1 Cy41)/E;

Ey = Bjy1 * 041 Ci+1
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In the above, xj is the coordinate of grid point j. Aj, By, Cj, and Ey are
functions of the coordinates and have only to be computed once. If the
boundary conditions are fixed throughout the time of computation, oj remains
constant, also. B3 must be computed at each time step.

One of the useful properties of spline derivatives (besides their higher
order accuracy) is the freedom to specify arbitrarily the location of grid
points permitting, if one wishes, a succession of telescoping grids. A fine
resolution grid is used in the area of greater interest which is surrounded
by a coarse grid in the area of lesser interest. A telescoping grid allows
the boundaries to be pushed far enough away from the forecast area of primary
interest that their importance is presumably greatly diminished. This is not
to say that one is completely rid of the problems which occur at the inter-
face of two differing mesh densities, but the freedom of the spline relations
allows us to mitigate them somewhat. The problem of 'nesting" a fine mesh
grid passively within a coarse mesh region which is run separately is thereby
avoided.

Considerable literature has developed on the use of splines as inter-
polating tools, but there has been apparently no application of splines to
the solution of the predictive equations of meteorology until recently (Price
and MacPherson 1973). In the process of interpolation, splines tend to
produce a curve relatively free of wrinkles . If one defines a wrinkle
mathematically as the second derivative of a function, then, under fairly
generous conditions, one can prove that if S(x) is the spline interpolation
to the known function f(x), then the integral

fdxlf" (x) - 8" (x)]|2

is minimized. Of course, we are only concerned with evaluating the deriva-
tives of the splines at gridpoints; the actual interpolating formulas are
of no particular use to us.

One potential drawback to the use of the cubic spline is its non-local
nature; that is, a derivative at a particular grid point necessarily involves
all of the other grid points (to a diminished degree). This means that a
function that undergoes a sharp change or is discontinuous at a particular
point is likely to influence strongly the spline derivatives at other points.
Although we found that discontinuities in the initial function were handled
badly, continuous functions with discontinuous derivatives were much more
successfully treated by splines than by the second-order leap-frog scheme.

Another caveat is necessary: replacing spatial by spline derivatives does
not guarantee a stable difference scheme. fhe cubic spline solution to the
linear equation

9Q , UaQ _
5t T ox = 0

At
becomes unstable whenever the Courant number, U < exceeds a number some-

where between 0.55-0.60 as compared to a Courant limit of unity for the second-
order leap-frog scheme. The reduction of the allowable Courant number is
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not surprising. If the spatial derivatives of the leap-frog scheme were
replaced by exact spatial derivatives, then the upper limit would be reduced
further to 1/m.

We also found that we must be careful with the non-linear equations
expressed as

u
s um— =
5t T Yx -8 x, 1)

Use of the spline derivative leads to very poor, generally distinctly un-
stable results. However, rewriting the equation in its algebraically equiv-
alent flux-form and then using spline derivatives of

Ju 1 dus _
3t T2 ox "8 (&0

restores stability for Courant numbers up to (at least) 0.4. Apparently
conservative forms are required.

IX. NUMERICAL EXPERIMENTS

All of the experiments in this section were performed with Gaussian ini-
tial states centered at x = 10Ax:

Q (x, t=0) = exp [ - (x-10)2] ; Ax = 1 (9.1)

with half-widths, w, of 2Ax. 1In (9.1), Q (x, t=0) is reduced by a factor of
1/e a distance w from its center.

The two equations to be studied are: 2Q + U 9Q _ 0
: ot 9xX
du , 1 3u?

and it T2 3x =8 (x, t).
The forcing function g (x, t) is chosen so the Gaussian propagates undistorted

with a speed of unity (one grid point per unit time) for both the linear and
non-linear equations. Thus,

= (e _ 1y Of
g (x, t) = (f - U) 3q

f (q) = exp (-q?)
q= (x-Ut +10)/w ; U=Ax = 1.
The terminal point is x = 40Ax regardless of the time step.

Figure 11 shows the result of a numerical simulation of the linear equation
using the chapeau two-level scheme (7.6) and the Crank-Nicolson implicit
advection scheme,
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+1 _ n+l n+1 n n
g Qn N U Qj+1 - Qi_l N Qj+1 - Qj-1
At 2 20x ~ 2hx =0.

Both the chapeau two-level and the Crank-Nicolson schemes permit unlimited
time steps without instability. The Crank-Nicolson . and second-order leap-
frog schemes give nearly identical results for small Courant numbers. It is
apparent that the chapeau function solution is much more accurate than the
second-order scheme, with very little peak shift and only a slight wake. By
comparison, the second-order scheme substantially diminishes the amplitude,
creates a peak shift as large as the half-width, and produces a substantial
wake. Neither scheme is dissipative; all errors result from dispersion.

As the time step is increased, the chapeau solution deteriorates, a phe-
nomenon easily predicted from the fact that the spatial truncation error in
Ax is of higher order than the temporal error in At.

Figure 11 shows that the distinction between the second- and fourth-order
solution is fairly well retained up to a Courant number of 2 at which point
the temporal truncation error swamps the spatial error. Small features are
poorly handled at such large Courant numbers.

The deterioration also occurs for the non-linear equation when the Courant
number is increased (figure 12). The results can be improved slightly by
expressing the advective velocities approximately at time level (n + 1/2) At
by using

n+l/2 n n At n n
B =8" -8 Zix By ~ Bj-1)-
Absolute instability would result if this relation were used separately
as a finite-difference scheme, but confining its use to the advective terms
improves results over the use of BT alone.

The absence of the large wake, even for large peak Courant numbers in this
and all of the other non-linear examples, evidently springs from the fact that
the local Courant number at the rear of the Gaussian is small.

Both linear versions of the three-level chapeau function scheme (7.7-7.8)
are slightly more accurate than the two-level version, but both are limited
in the time step permitted. By expressing the spatial portionm, B®, of (7.7)
as a weighted average of three time levels (7.5), the stability and accuracy
of the three-level scheme may be improved (figure 13). As with the two-level
scheme, there is the problem of supplying *ae advective velocity at t=(nt+l) At
in the non-linear version; however, we found that linearizing the advective
terms at each time step gave reasonably good results.

Turning now to the cubic spline solution of the linear equation (figure
14), we see that the spline solution does very well up to a Courant number
of 0.3-0.4 with little peak shift and wake. The Courant number of 0.3 seems
to be a transition point above which the diminution of the wake is accompanied
by the advent of a forerunner and a positive peak shift. Both become partic-
ularly evident for UAt/Ax = 0.5. We thought this behavior of initial
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in text.
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imorovement and then degradation strange; the leap-frog and the chapeau three-
level solutions improve as the Courant number approaches the schemes' stability
limit, while the Crank-Nicolson and two-step chapeau function solutions degrade.
At first we believed the creation of the forerunners marked the onset of a

mild instability, but no amplification was noted when the running time was
increased. Only when the Courant number was allowed to rise to 0.55-0.60

did observable instability occur.

This result was puzzling in light of the solution to the non-linear equa-
tion (figure 15). In the non-linear case, the solution improves as the Cour-
ant number increases to 0.4. A Courant number of 0.5 is enough to induce
instability for the non-linear equation, even though the linear case retains
its stability. Apparently examining the linear equation for clues to local
stability of the non-linear case is not very useful in this instance.

Figure 16 is a remarkable illustration of the potential of an active tele-
scoping grid. The outer region is coarser than the inner region by a factor
of four. The Gaussian rapidly deteriorates as it moves through the coarse
region until it enters the fine mesh portion where it begins to regain its
original shape. As it re-enters the coarse region, the solution is very
nearly exact (T=20). Passing again through the coarse mesh, the Gaussian
deteriorates rapidly. The regeneration of the wave packet in this figure
is an example of what can happen when the physics of a simulation is repre-
sented on a refined grid. In this case, the '"physics" is the forcing term
g (x,t). The degradation would have been arrested but not reversed in the
absence of the forcing term.

An unfortunate side effect of the telescoping grid is the reflection which
occurs at the interface of fine-to-coarse mesh. It is probable the reflection
can be mitigated by using a more gradual transition to the coarse mesh spacing.

X. SUMMARY AND CONCLUSIONS

The one-dimensional planetary boundary model described in this report
simulates the diurnal variation in the wind, temperature, and humidity within
the atmospheric boundary layer. The numerical solution is carried out by
using a very long step (up to one half-hour) with a negligible deterioration in
the solution. This feature (along with the efficient handling of the soil
heat flux by means of an analytical solution rather than a system of compu-
tational levels) makes the extension of the one-dimensional model into a
three-dimensional model economically feasible.

The Businger-Webb profile laws for the surface layer and the elementary
0'Brien cubic K for the transition layer y?:ld accurate predictions for sur-
face temperature and fairly good predictions for surface wind. Partially be-
cause of the exclusion of advective effects, agreement between predicted and
measured transition layer values is less successful than at the surface. In
addition, there appear to be at least two other reasons for error: (a) Indi-
vidual measurements show distinctly non-diurnal effects, and (b) The published
values of the geostrophic wind have large experimental errors.
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Computations show that neglecting the local radiative cooling can lead to
unreasonably large nocturnal inversions. Radiative effects apparently extend
to several hundred meters and serve to mitigate such extreme inversions.

The use of cubic splines and chapeau functions in the advection equation
can greatly reduce dispersion errors characteristic of second-order finite-
difference schemes. Cubic splines are used in a manner similar to the deriv-
ative of a Fourier series in the pseudo-spectral approximation; one merely
replaces the second-order spatial derivatives with derivatives computed by
cubic splines. The technique yields higly accurate derivatives; while the
method seems less accurate than the pseudo-spectral solution to the advection
equation, the spline technique has the advantage of being directly applicable
to grids with unequal node spacing. An example is given in which a tele-
scoping grid (a fine mesh surrounded by a coarse mesh) restores and preserves
the wave packet which passes through it. However, spline interpolation is
not free of all the problems of telecoping grids. The example clearly shows
a reflection of a portion of the waves when a feature passes from the fine
mesh region back into the coarse mesh region.

The chapeau function technique approximates the state of a feature by
means of hat-like basis functions. A differential-difference equation for
the coefficients results from the substitution of the chapeau solution into
the advection equation. The stability and accuracy of the final solution
depend upon the solution of the differential equation; a Crank-Nicolson ap-
proach leads to an abolutely stable solution with gradually deteriorating
fidelity as the time step is increased. Other suggested approaches are more
accurate but have stability criteria which must be satisfied. As with the
spline technique, chapeau functions can be easily applied to grids of un-
equally spaced nodes. The chapeau function method can be applied to more
than one spatial dimension by the technique of splitting.
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