NOAA

ž

औ

K)

THE

NATIONAL WEATHER SERVICE

The Development of Thresholding and Artificial Intelligence Techniques to Improve LAMP Visibility Guidance

JANUARY 26, 2022

Presenter: Katelyn Zigner, Meteorological Development Laboratory Co-authors: Paul Roebber*, Phil Shafer, Judy Ghirardelli, Bob Glahn

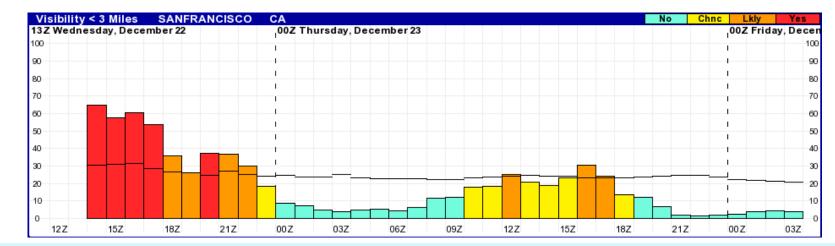
* Affiliation: University of Wisconsin, Milwaukee

What is LAMP?

- LAMP = Localized Aviation MOS (Model Output Statistics) Program
- Provides guidance for aviation forecasting using observations, MOS output, and model output through multiple linear regression techniques
 - Base LAMP and Meld LAMP
- · Produced for individual stations and on a grid
- Hourly guidance for 25 hours
 - Extended guidance to 38 hours for some elements including ceiling height and visibility

BASE LAMP =	Observations + Simple locally-run models + GFS MOS		
MELD LAMP =	BASE LAMP + HRRR MOS		

明


12

ž

औ

Thresholding Methods

- Meld LAMP thresholds are calculated such that using them maximizes the threat score of the forecast within a defined bias range
 - Same thresholds are used for all stations in the CONUS
- · Probabilities are created for each forecast and category
- Event is forecast for the rarest category that the threshold is met

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 3

512

ž

औ

K

Calculating Biases and Threat Scores

Events Observed

		Yes	No
Events Forecast	Yes	а	b
	No	С	d

$$\mathsf{Bias} = \frac{(a+b)}{(a+c)}$$

- Ranges 0 to infinity
- Perfect score = 1
- Bias < 1 is under forecasting
- Bias > 1 is over forecasting

$$\mathsf{TS} = \mathsf{CSI} = \frac{a}{(a+b+c)}$$

- Ranges 0 to 1
- Perfect score = 1

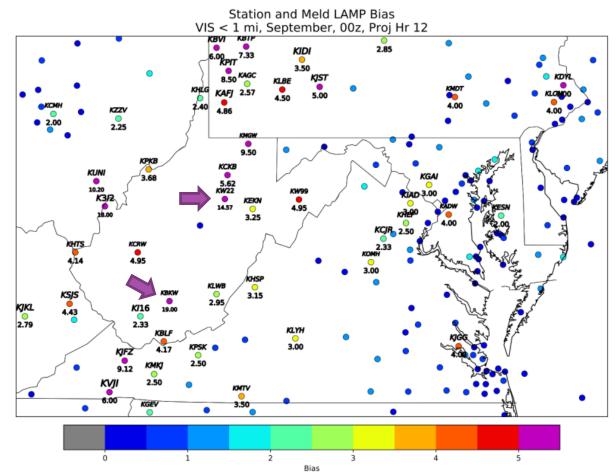
NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 4

 $\mathbf{\Lambda}$

512

明


ž

औ

 \aleph

High LAMP Visibility Biases in West Virginia

- Charleston, WV WFO noticed LAMP forecasts in fall kept fog in too long
- High LAMP visibility biases in morning around 0900 and 1200 UTC in September

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 5

212

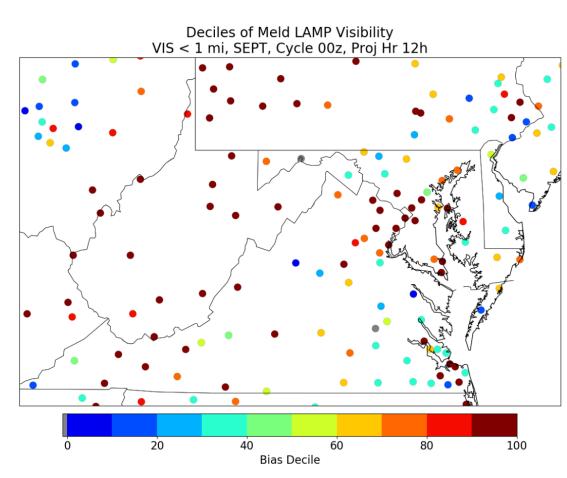
ž

जौ

K

四日

औ


ĸ

明

 \square

51.53

- New Method 1: Create thresholds in groups based on deciles of Meld LAMP biases
 - No spatial restrictions
- New Method 2: Create thresholds for individual stations
 - Must define the number of events required to make a threshold
- Completed for 0000z cycle in September, Fall (SON), and extended cool season (Sept 16 – Apr 15) from Jan 2017 to Dec 2020

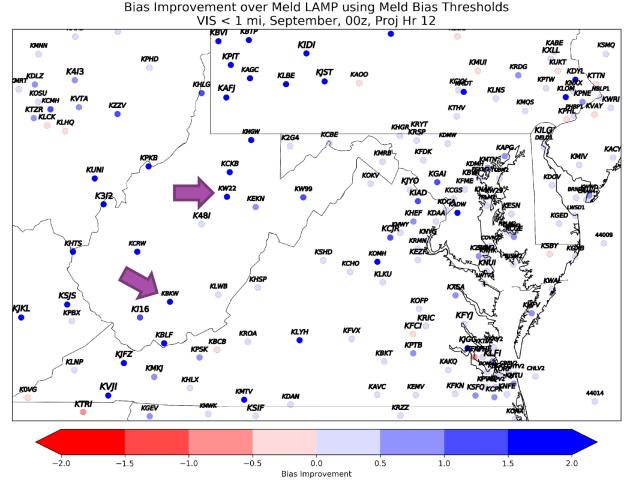
NATIONAL WEATHER SERVICE

. जौ

 \approx

哭

⊿


212

New Method 1:

Thresholds based on

Meld LAMP Biases

NATIONAL WEATHER SERVICE

A

 κ

明

 \square

512

New Method 2: Thresholds based on Individual Stations

Vis < 1 mi

September

NATIONAL WEATHER SERVICE

A

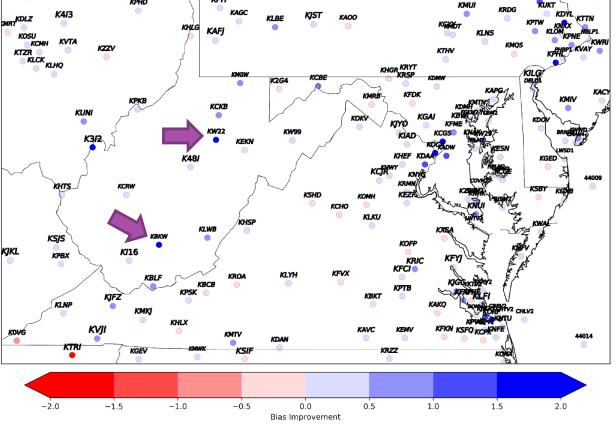
 \approx

哭

⊿

212

KBKW: 4.47 → 1.68


New Method 1:

Thresholds based on

Meld LAMP Biases

Vis < 1 mi

Bias Improvement over Meld LAMP using Meld Bias Thresholds VIS < 1 mi, Ext. Cool Season, 00z, Proj Hr 12 KBVI KBIP KIDI KAGC KLBE KIST KAGO

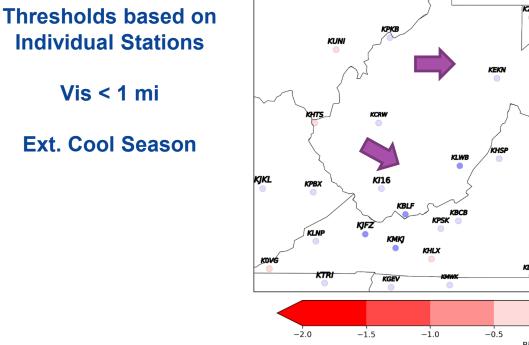
NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 9

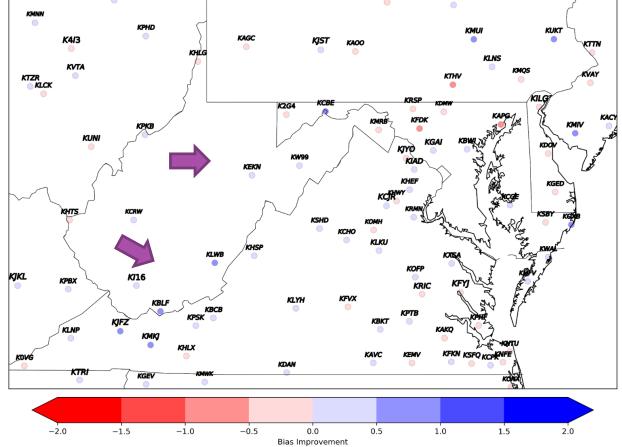
KABE

KSMQ

ž


औ

 κ


四

 \mathbf{r}

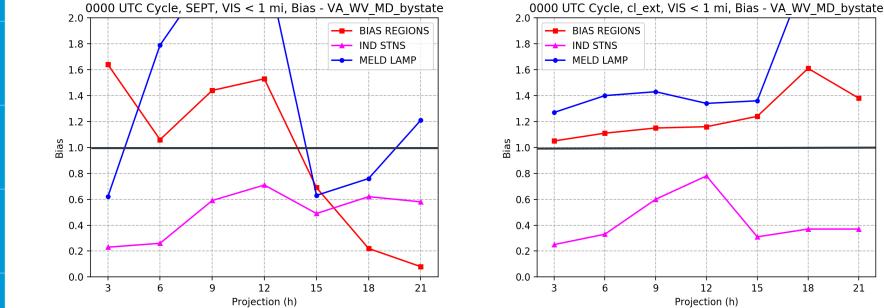
12

Bias Improvement over Meld LAMP using Individual Station Thresholds VIS < 1 mi, Ext. Cool Season, 00z, Proj Hr 12

NORA NATIONAL WEATHER SERVICE

New Method 2:

Results of New Thresholding Methods – VA, WV, MD

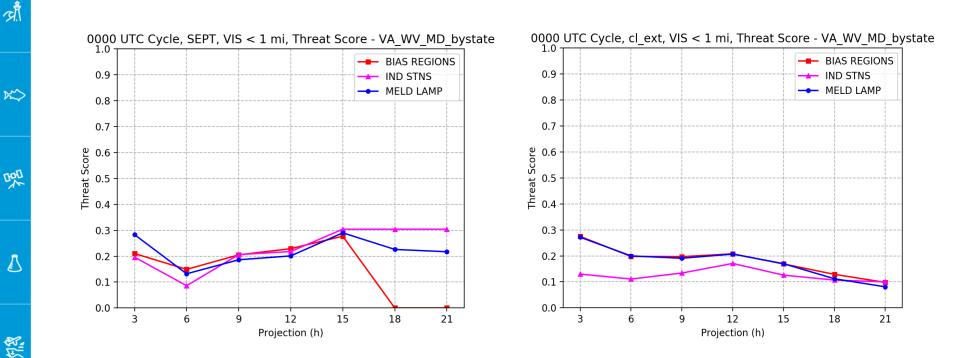


 \approx

明

 \square

512



Building a Weather-Ready Nation // 11

21

Results of New Thresholding Methods – VA, WV, MD

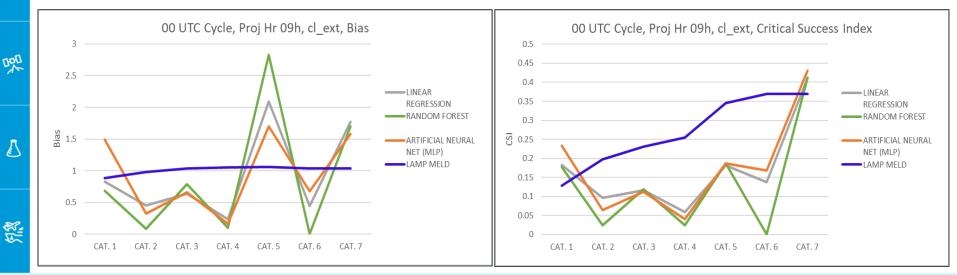
Utilization of AI Methods to Improve VIS Biases

- Compared logistic regression, random forest, and artificial neural network
- Input: the probability of each VIS category, the discrete category at each LAMP station
- Hourly data at 0000z in the extended cool season (Sept 16 – Apr 15) from 2017-2020
 - 2/3 used for training, 1/6 used for validation, 1/6 used for testing
- Tested and compared methods for only 9-h projection in the extended cool season

LAV Visibility (VIS) and Conditional Visibility (CVIS) Categories		
1	< 1/2 miles	
2	1/2 - < 1 miles	
3	1 - < 2 miles	
4	2 - < 3 miles	
5	3 - 5 miles	
6	6 miles	
7	> 6 miles	

ž

औ


K

PHP.

Preliminary Results of Al Work

- AI methods may be promising to improve forecasts of very low VIS (< ¹/₂ mi) and high VIS (> 6 mi)
- Additional work needed to analyze AI output in the middle VIS categories

LAV Visibility (VIS) and Conditional Visibility (CVIS) Categories		
1	< 1/2 miles	
2	1/2 - < 1 miles	
3	1 - < 2 miles	
4	2 - < 3 miles	
5	3 - 5 miles	
6	6 miles	
7	> 6 miles	

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 14

औ

ž

Conclusions & Future Work

Thresholding Method Work

- Creating thresholds using Meld LAMP biases improved biases in the Mid-Atlantic
 - Could be applied to operational forecasts in the future, additional testing needed
- Future work
 - Examine results in other locations
 - Consider spatial bounds for bias regions
 - Multiple iterations

Al Work

- The use of AI techniques is promising to improve visibility biases
- Future work
 - Apply methodology to other cycles and projection hours
 - Incorporate other variables (e.g. Relative frequency of event, Relation to a river or water body)

Contact info: Katelyn.Zigner@noaa.gov

Current LAMP Webpage: https://www.weather.gov/ mdl/lamp_home

Transitioning to: https://vlab.noaa.gov/web/ mdl/lamp

512

ž

औ

R