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1. INTRODUCTION

An estimate of the uncertainty in a pre-
diction can significantly increase its value.
This is particularly true when the forecast accu-
racy varies significantly from prediction to
prediction, as is the case for most meteorologi-

" cal forecasts. Certain synoptic situationa are
very difficult to forecast while others are quite
easy to predict, For example, the forecast of
elements near the expected position of a frontal
boundary may be considerably less accurate than
average. A statement of the forecaster's confi-
dence in the prediction cam alert the user to
those forecasts which are not expected to perform
as well as others. This can have a significant
effect on decisions which are mede on the basis
of the informationm.

; Uncertainty is often expressed in meteor-
ology by probability forecasts. Probability
forecasts express the chance of the occurrence of
a specific event, The probability of measurable
precipitation forecasts, for example, have been
issued by the National Weather Service since
1965. A forecast of a continuous variable is
usually expressed in probability form by specifi-
cation of the probability that the variable will
fall within a specified range of values. The
range of assumable values for a continuous vari-
able can be divided into a series of intervals,
and the forecast probability that the observa-
tion will fall in each can be used to express
the probability distribution of the variable.

Many scoring rules have been developed for
the verification of probability forecasts., Prob-
abilistic predictions in meteorology have almost
exclusively been verified by quadratic probabil-
ity scoring rules. The Ranked Probability Score
(RPS) (Epstein, 1969) has been used for the
verification of probability forecasts for a
series of ordinal categories. The RPS can be
uvaed for forecasts of continuous variables which
are expressed by the probability that the obser-
vation will occur in each of a series of ordered

mutually exclusive, collectively exhaustive
intervals,

The RPS verifies the probability state-
ments for the intervals that are used to make
the forecast. While this is advantageous when
the intervals themeselves have special eignifi-
cance to the user, for other applicatione it may

be desirable to use a probabllity scoring rule

. which verifies a continuous probability distri-

bution function. Such a score would depend only
on the forecast distribution and the observation,

and not on the intervals used to make the predic~
tion.

A quadratic scoring rule for the verifi-
cation of a continuous probability distribution
function kmown as the Continuous Ranked Prob-
ability Score (CRPS) was developed in the 1970's
(Brown, 1974; Matheson and Winkler, 1976). To
the author's knowledge, the GRPS has rarely been
applied. This may be because a continuous fore-
cast distribution funection is difficult to spec~
ify and disseminate. The score also requires
integration to be performed on the forecast dis-

tribution, which also might have deterred its
use in the past.

The vastly increased amount of computing
power available today provides the opportunity
to issue forecasts in greater detail than ever
before. This makes it possible to specify and
analyze, on a routine basis, more information
relating to a forecast, such as the expression
of a forecast probability distribution for a
variable. Verification may. be required not only
to determine the accuracy of the forecasts them-
selves, but also to help determine the value of
the probability information.

The CRPS will be examined here to demon-
strate how it can be used in practical forecast~
ing situations. The score will be partitioned
into compoments which can help interpret the
score. The CRPS will help evaluate forecasts of
continuous variables in a continuous, rather than
a discrete, framework. This can be valuable for
the analysis of forecasts when a discrete repre~
sentation 1is inconvenient,

A method to approximate the CRPS for prob-
ability forecasts for discrete intervals shall
also be developed. This score is, to a large
extent, independent of the intervals used to make
the forecast, so that forecasts cen be evaluated
in terms of the continuous distributions repre~
sented, rather than for the specific intervals
for which forecasts are made. This can help com=-
pare forecasts of the same variable made from
different sets of intervals. The RPS cannot be

used to compare forecasts made from different
intervals.




2. VARIABLE DEFINITIONS

The following definitions shall be wused
throughout the paper. The variable to be fore-
casted, X, is represented by the set of numbers,
x. X might be the 12-h forecast of temperature
at a location, for example, and x be the range
in °C. T represents the verifying observatiom.

R(x) is the forecast cumulative probability dis-

tribution function (R(x) = P(T < x)), and r(x)
is the assoclated density function. K 1is the
median of the forecast distribution. For con-
venience of representation of the scores, the
function, D(x), is defined such that: D(x) =0
when x < T, and D(x) = 1 when x > T.

For discrete representation of the fore-
casts, x is divided into N intervals defined by
the breakpoints x4, i =1, 2, ..., N-L, Ri re-
presents the forecast probability T $xy. The
forecast probability that xy_] < T £ x4 is repre-
sented by rj, r; = Rj, and ry = 1-Ry-i. Xy
represents the lowest value of x; for which
Ri_>_ .53 in other words, x,_; <K< Xy The
discrete representation of D(x) is Dy = D(xy).

When the intervals into which x is
divided extend well above and below the pos-
sible range of X, a value, x; is defined to be
the highest value for which both Ry and
Dy = 0. The value xy is defined as the low-
est value for which both Ry and Dy are 1.0.

Table 1 summarizes these definitions.

Table 1., Summary of definitions used in this
paper.
Variable Meaning
X The variable to be forecast
x The domain of X
r(x) The forecast probability
density funection
R(x) P(T £ x)
T The verifying observation
K The median of the forecast
distribution: R(K) = .5
D(x) 0 for x < T
1 for x > T.
Ry R(xy)
Di D(Xi)
r{ Ry = Ry
N The total number of intervals

The discussions presented here shall
represent a single forecast event unless other-
wise noted. The performance on a series of fore-
cast events can be represented by a simple aver-
age of the scores presented.

An example to illustrate a probability
forecast of a continuous variable is shown in
Fig. 1. The forecast and observation are arbi-
trarily chosen for the purpose of illustrationm.
The forecast diatribution, R(x), might be a 12-h
prediction for temperature at a particular loca~-
tion. R(x) is from a Gaussian distribution with
a standard deviation of 2,0°C and a mean of

P(TLx)
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Figure 1. Example forecast probability distri-
bution, R(x) for a hypothetical temperature
forecast. See text for explamatiom.

10.0°C. The forecast has been expressed in dis-
crete form at the specific points, Xq. The
observation, T, can fall into any one of eight
intervals, (N = 8). For this example, it was
assumed to be 13.0°C.

3. THE RANKED PROBABILITY SCORE

The RPS is a probability scoring rule for
prediction made for ordinal categories. Early
references (e.g., Epstein, 1969) display the
form of the score which is computed by the
ri's. A  much simplified formulation was
presented by Murphy (1971) in which the
calculations are performed on the cumulative
probabilities, Ry's.

In its scalar form, the RPS can be repre-
sented by:

N-1 2
RPS, = 1E1 (R, - D)%, \ (09)]

where the subscript, N, on the left side of the
equation denotes the number of intervals from
which the score was computed.

The RPS is a probability score which not
only measures the accuracy of the probability
statements, but also is sensitive to distance., A
better score will be attained when the observed
event occurs in a category which is close to the
categories in which the forecast probabilities
are concentrated.

The score has a negative orientation,
which means that a lower value signifies a better
forecast. The RPS takes on a minimum value of
zero for a perfect forecast, and has a maximum
possible value of N-1. It is a strictly proper
measure of the probability forecasts--one in
which the best score is obtained when the fore-
caster's stated probabilities conform to his/her




true beliefs (Murphy, 1969), This is an extreme-
ly important quality for a probability scoring
rule, because a probability forecast must ulti-
mately be judged in terms of the correspondence
between the forecast and observed probabilities,

" Great care must be exercised 1In the use of a

scoring rule to ensure that the forecaster will
be encouraged to state the frequencies that he/
she actually believes will occur; otherwise, the
scoring rule used will actually contribute to an
inaccurate forecast.

Not only should a scoring rule be proper,
but it also should reward forecasts which are
highly certain. The scores for a reliable fore-
cast which have a high degree of certainty (prob-
abilities close to either 0 or 1) should yield
better scores than those which have probabilities
near .5. This feature will encourage the fore-
caster to forecast with as little uncertainty as
possible. The RPS also has this characteristic.

The expected value of the RPS can be com-
puted under the assumption that the forecast
probabilities are correct. 1In that case, the
observation will fall in the ith category with a
frequency of ry. If RPSy(i) represents the
value of RPSy when the observation occurs in
the ith category, then,

N-1

E(RPSN)= b r RPS (1) (2)
i=m]l

(Murphy and Daan, 1985), This measure shall be|

referred to as the expected score. I

The RPS measures the accuracy for fore-
casts at the specific breakpoints for which fore-
cagts are available. The score is highly depend-
ent on the specific number and location of the
breakpoints used. This 1s advantageous when the
forecast at each breakpoint is considered equally
as important as another, or, when the breakpoints
themselves have significance in terms of economic
impact.

On the other hand, two forecasts with
identical distributions and verifying observa-
tions will have different RPS scores for a dif-
ferent set of intervals, even if the exterior
breakpoints, xj; and xy-1 (those that deter~
mine the range of x for which forecasts are made)
are the same. Since the breakpoints are often
arbitrarily chosen, frequently to represent
easily remembered numbers, it would be advanta-
geous, in some cases, to obtain a measure which
represents the forecast in terms of a continuous
probability distribution function rather than at
specific pointa.

The RPS can be computed from the discrete
probabilities shown in Fig. 1. For that example,
the RPS was computed to be 1.28 and its expected
value to be .45.

4, 4 THE CONTINUOUS RANRED PROBABILITY SCORE

A quadratic probability scoring rule for
continuous functions was introduced by Brown
(1974). A more general form, independently
developed and reported by Matheson and Winkler
(1976), shall be used in this paper.

In its general form, the CRPS is repre-
sented by

CRPS = 7 (R(x) - D(x))2dG(x). (3)

G(x) is a function which can be used to weight
the forecast more in certain ranges than in
others. This weighting function will be discuss~-
ed briefly in a later sectiom.

The CRPS is negatively oriented with a
winimum value of O for a perfect forecast, and
no upper bound. Its units are the same as for
G(x). Matheson and Winkler showed this score to
be strictly proper for continuous distributions.
That is, 1if the forecaster believes that the
probability distribution of a variable is P(x),
then the lowest (best) CRPS for that case will
be obtained when the stated probability distri-
bution, R(x), 18 everywhere equal to P(x).

For the current discussion, G(x) shall be
selected to give a score which will evaluate a
forecast made with absolute certainty by the
absolute error in x. For this purpose, G(x) = X,
and Eq. (3) can be stated as,

CRPS = 7 (R(x) - D(x))2dx. (4)
-

It is convenient to express a verificatiom
score in terms which are easy to comprehend.
This not only helps in the interpretation of re-
sults, but also can help the forecaster construct
a forecast which will provide a better score,
and, by virtue of its strictly proper property,

a better forecast. If a function, Q(x) is de-
fined such that:

Q(x) = R(x) for x < K
Qx) = (1-R(x)) for x > K; 0 < Q(x) < .5.

Then, Eq. (4) can be presented in expanded form
as,

T : w
CRPS = f R%(x)dx + 7 (R(x)-1)2dx.
- L) T

For T < K,
CRPS = [Q°(x)dx +{'(1-R(x)) dx + f(=Q(x))“dx
A X
@ 9 X 2
= 7 Q*Go)dx + S (-Q%(x) + (1-R(x)P]dx.
- -3 T

Recall:
R(x) = Q(x) for T < x <K

so, with simplification:

w K K
CRPS = 1 Q2(x)dx + / dx - 2 [ Q(x)dx.

The game procedure can be followed when
T 2> K if the direction of integration is re=
versed. The equations obtained for T < K and
T > K can be summarized as: :

0 K
CRPS = [ Q2(x)dx + |K-T| -2|/ Q(x)dx} °
- T

s




or,
CRPS = Sg + A - W. (5)
The first component of the score,
8¢ = ? Q2(x)dx,
—o

18 a measure of the degree of uncertainty which
is expressed in the forecast, and is independent
of the verifying observation. 80 = 0 for a
forecast made with absolute certainty and in-
creases as the degree of uncertainty increases.
The forecaster is rewarded for expressing as
little uncertainty as possible. The lowest CRPS
that can be attained for any given forecast dis-
tribution occurs when T = K, where CRPS = Sg.

The term, A, is the absolute difference
of the verifying observation from the median of
the forecast distribution, A =|K-T|. This term
measures the accuracy of the forecast
independently of the uncertainty estimate.

. K
The remaining term, W = 2|{Q(x)dx |s 18

difficult to interpret, since it depends on the
forecast probability only in the interval between
K and T. It can be regarded as a measure of the
forecasted likelihood of the departure of the
verifying observation from the median. When

departures are considered likely (the forecast

probability that the observation will fall be~-
tween T and K, is small), W is close to A. When
the forecast distribution in the range between T
and K indicates that the verifying observation is
expected to occur much closer to the median than
it actually occurred, W << A, A larger value for
this term represents a better forecast. Note

that 0 < W < A, so that (A-W) > 0.

The CRPS penalizes the forecaster accord-
ing to the amount of uncertainty expressed in the

prediction, and by the distance of the verifying
observation from the forecast median of the dis-

‘tribution., It rewards the forecaster when depar-
tures from the median occur in a region in which
forecast distribution indicated it to be likely.

The score's reward and penalties are proportioned
8o that the total score is strictly proper.

From Matheson and Winkler (1976), the
expected score is

E(CRS) = 7 R(x) (1-R(x)) dx. (6)

The CRPS for a series of forecasts can be
combined to yield a measure of average forecast
performance. If CRPS; represents the score on

the jth occasion, and the overbar represents the
average value, then,

J
CRPS = L ;  cRPS =5 +A+W, and
j=1 10

14
E(CRPS) = ; = E(CRPS)
im1 ¥

5. APPROXIMATION OF THE CRPS

In practice, the GRPS will almost always
be estimated by numerical integration, Most
probability distribution Ffunmctions are difficult:

to integrate analytically. Continuous probabil-
ity distribution functions are also difficult
for a forecaster to specify unless he/she is re-
stricted to very simple ones. Even when the
forecast is specified by a continuous distribu-
tion which can be integrated amalytically, the
CRPS still might have to be approximated by
numerical integration if the reporting interval
for the observation is large when compared to the
forecast distribution. For example, for a tem-
perature reported in whole degrees C, a veri-
fying observation of 10°C might represent any
value 9.5 < x < 10.5°C. The CRPS then cannot be
computed as a continuous function becauvse T is
not known precisely. It is unacceptable to
assume that T occurs at some point within the
interval, such as the midpoint, because this will
encourage the forecaster to adjust the stated
forecast probability distribution to conform to
the assumption used to obtain T. The forecaster
would, then, predict the probability distribution
to be a step function, regardless of what he/she
actually believes. This is a form of hedging.

Eq. (4) can be approximated from the
values of D(x) and R(x) at discrete points by nu-
merical integration. The trapezoidal rule ghall
be uged here for integration. This rule states
that, any function, f, can be approximated in the
increment between points a and b, by

b
[ E)dx = (b-a) HALEE®)
a

For a continuous probability distribution
function, and an infinite series of regularly
spaced intervals which cover the entire possible

range of X and r(x), the CRPS can be approximated
by the score,

M . 2 i} 2
c= i ox (Ri_1 ni_l) + (Ri D;)
i=  * 2

where
bxy = X{ = Xf{-1-

The values of the subscripts, L and M are defined
such that (R(x) - D(x))2 =0 for x £ %1, and
X 2 M.

The terms in this equation can be sorted
to form the equation,

M 2
C=Ax =% (ni - Di) . (7)
i=,

where Ax = Axi. Some rounding of the probabili-
ties, Ry may be needed to limit the number of
categories required for integration, i.e., set

Ri = 0 or 1 when it becomes very close to those
values,

Eq. (7), is identical to the RPS computed

from the same categories except for the constant,
Ax.

The integration need not be restricted to

regular intervals, nor does it require that the
complete distribution be forecasted. This indi-

cates that the breakpoints for which forecasts




vere made need not cover the entire range of
possible values of X. ((Ry-Dy) and
(R§.1-DN-1) need not be 0.)° '

For a set of N intervals defined by the
points xy, i=1 ... N~1, the score can be writ-
ten as: Caes 4

Ax
=—_2. - 2
Cy 3 (R1 Dl)

N-2 (Ax, + Ax,..)
+ .
+ I L 5 Ll (Ri-Di)z'
i=2

Axi-a 2
t T Ry Dy

or,

X - X
2 1 2
Cy 3 (Rl'Dl)

N~2 x - x
+ T i+1

i=2

*N-1 " Fy-2 C2
2 (Rgoq1-Dy-1)"-

It is very important to note that the variable's
distribution is only verified in the interval
x £ x < xyeg.

i-1 21
3 (xi-ni)i

(8)

+

Eq. (8) indicates that the C is no longer
equivalent to the RPS for irregularly spaced
intervals. C weights the total score according
to interval width, which may vary 1n the range
of X.

The score, C, can be shown to be a strict~
ly proper measure of the stated probabilities by
comparison to the RPS., Since the RPS is strictly
proper, the minimum score will be obtained when

‘the forecaster's stated probabilities, Ry's,

‘conform to his/her beliefs, P;'s. Because the
stated probability for any given breakpoint,
x4, only appears in the ith term in Eq. (1),

; that term must be at a minimum when Ry = Py

‘as will any positive, finite multiple of that
term. The sum of positive multiples from many
terme will be & minimum when each Ry = Py.
Because Cy 1s equivalent to the RPS with each
term weighted by a positive, finite value, 1t
also is strictly proper.

The expected score for C can be computed
by numerical integration of Eq.. (6) to give:

X - X
2 ¥y
E(CN) = —— Rl(l Rl)
N-2 X - X
+ 1 AL > i1 R (1-R,) (9)
{=2 )

- X
,,iv;l__z__w__

-2
RN_l(l-RN_l).

Note that the accuracy of the estimate of
the CRPS depends on the interval widths, Axy's..
Trapezoidal integration approximates a funetion
between the intervals as 1f it varied linearly,

The approximation will be accurate if the prob-
ability density distribution remains fairly con-
stant throughout the interval, and the interval
width is reasonably small in relation to the
probability distribution. It should be empha-
sized that the actual forecast distribution is
not measured within the intervals, so there is
no reason for the forecaster to alter R(x) from
his/her belief's between the breakpoints on the
basis of the numerical integration rule used.

Numerical integration to estimate the CRPS
from Eq. (5) should be performed with caution,
since the method used to select the precise value
of K may promote hedging of the probability fore-
casts.

The CRPS for the example forecast in
Fig. 1, approximated from the discrete inter-
vals presented, was 1.98°C with the expected
score of 1,15°C,

6. EXAMPLES

Two examples shall be presented here; the
first for a Gaussian forecast probability distri-
bution, and the second for a climatological fore~
cast of precipitation amounts for a series of
breakpoints.

6.1 A Gaussian Forecast Distribution

Let r(x) be Gaussian with a standard devi-
ation of o and a mean of K. R(x) is the cumula-
tive distribution function for the same forecast.
The standard cumulative normal distribution,
¢(y), can be used by defining the variable, y, as

y = 555, dx = ody, ®(y) = R(x).

Because &(y) is symmetric about K, the
CRPS for a Gaussian distribution can be repre-
sented by:

0, 0
CRPS = 2g [¢“(y)dy + | o [ dy|
- (T~K) /o
~29 [ ¢$y)dy .
-] (r-x) /o |

This can be simplified to:

0
CRPS = 205 f (y)2dy + [K-T| -20 f o (y)dy.
(K)o |

From Eq. (5), the expected score is
0
E(CRPS) = 20f 4(y) (I-¢(y))dy.

These relationships show that E(CRPS) and
S50 for a Gaussian distributed forecast are lin-
early related to gq. This can greatly simplify
estimation of CRPS for Gaussian forecast distri-
butions.

The discrete approximation to the CRPS
for a Gaussian forecast distribution cam be
computed by substitution of

2

- %, =K
1




into Eq. (8). A similar substitution can be
used with Eq. (9) to obtain the expected score.

Recall that the sgample Fforecast from
Fig. 1 was selected from a Gaussian distribution
with ¢ = 2,0°C, and K = 10.0°C. T was 13.0°C.
The CRPS for this distribution and observation
was computed to a high degree of accuracy from
Eq. (7) with an integration step, Ax, of .02°C.
This yielded the GRPS of 1.97°C. The expected
score was computed from numerical integration of
Eq. (6) with the same Ax to obtain the value,
E(CRPS) = 1.14°C, These values can be compared
to those estimated by the discrete approximation
(see section 5). The CRPS and E(CRPS) arve
slightly lower then the values estimated by the
less precise approximation, although the differ-:

ence is relatively small.

Fig., 2 showa the sacores which would
result for various values of ¢ as a function of
(K-T) for a forecast of temperature reported in
whole degrees C. The reported temperature ial
assumed to be rounded to the nearest degree.
If T 1s reported to be 13°C, for example, then
the actual value can be anywhere within the
interval 12,5 < x < 13.5°C. Thus, the break-
points are at one degree Iintervals at the half
degree. K ig assumed to occur at the center of
the interval,

Fig. 2 1{llustrates the properties of the -

score for Gaussian forecast distributions. The
lowest value for any given ¢ always occure when
K~T = 0. The best score is obtained when ‘the:
forecast is made with a high degree of certainty
(low ¢) and (R-T) 1is near zero, A larger O
produces g hetter score than one from a forecast|
with a smaller o when K-Tl is large. !

6.2 A Precipitation Amount TForecast from
Climatic Frequencies

Climatic frequencies for precipitation
greater than or equal to specified amounts at,
Norfolk, Virginia for the 12-h period ending aﬂ
0000 GMT for the montha of September through
November are shown in Table 2. The values, orig-
inally in hundredths of inches, have been con-
verted to millimeters. Rounding of the observa-

tione has been sccounted for in the threshold

j1o
*ci
i
.8
C e
4
2
Figure 2. Value of C, approximated from one

‘degree intervals, for a series of Gaussian.
forecast distributions with varying ¢ and K-T,
Lines are labeled according to the ¢ in °C of
the forecast distribution verified.

values, sa, for example, the threshold for re-
ported precipitation > .01 actually includes all
values: x > .005 in, or > .l mm. Columns 4 and
5 display the value of the RPS and CRPS, respec-
tively, when the observation falls in the inter-
val x4 T < xy-1. The natural breakpoint,
] = 0.0 mm has been added for the computa-
tions, F; = 1.0.

Note that the forecast probability for
precipitation amount is F(x) = P(T > x), and not
P(T < x) as used 1in previous diacussions, 1is
stated. For this definition, the CRPS can be
shown to be:

CRPS =_Z (F(x) - (1-n(x))12dx.

This was derived by defining a variable y = -x,
80 that R(y) = F(x) and D(y) = 1-D(x).

The RPS is computed from the probabili-

ties, £f; = P(xy.; < T < x) and cumulative
probabilities,

i
(1-r,) =3¢ £,
i kel k
The RPS for this example is:

i=2 L

where
zg = (1 - Fy ~ Dy)2,
Note that z; = 0,
Since
24 = [=(F(xg) - (1-D(x4)))}2,

C can be expressed from Eq. (8), for these fore-
cast categories, by

Cg = 1.20 z3 + 3.05 z3 + 5.10 z4
+ 9.55 z5 + 12,70 zg + 12.70 zy
+ 6.35 zg.

Table 2. Climatic frequencies, Fy, for 12-h
precipitation amount greater than given thresh-
olds, x4y, for the Fall (September through
November) at Norfolk, Va. (Jorgensen et al.,
1969). The RPS and CRPS for precipitation
occurrence within categories, and the expected
score are also shown.

Scores for

ey ST <)
Lox (mm) F RPS, Cq (mm)
1 0.0 1.00 .04 .09
2 0.1 .17 .70 .88
3 2.4 .09 1.52 3.38
4 6.2 .06 2.40 7.87
5 12.6 .03 3.364 16.84
6 25.3 .01 4,32 29.29
7 38.0 .01 5.30 41.74
8 50,7 .00 6.30 48:08

Expeéted score 0.33 1,27




These equations show that C weights the
forecasts considerably more by the errors in the
forecasts at the higher precipitation amounts
than does the RPS.

7. USE OF THE WEIGHTING FUNCTION|

The function, G(x) in Eq. (3) can be used
to emphasize the forecasts for ranges of x where
the user requires a more accurate forecast. This
function increases the amount that errors in
some regions contribute to the total score. The
CRPS with the general weighting function,
CRPSG(x), analogous to Eq. (4) is:

CRPS (%) “‘__Z o (x)d6(x) +le(r) - e(m)|

K
-2 s alx)decx) |-
T

The second term on the right side might be used
to select G(x) for a particular application since
this term specifies the score which would result
if the forecast were specified with no uncertain-
ty. G{(x) can be selected to produce a probabil-
ity scoring rule which 1is compatible with a
particular categorical verification method.

For example, the Log Score (LS) was devel-
oped at the National Weather Service for the
verification of ceiling height and vigibility
forecasts with the assumption that the hazard to
aviation of a missed forecast is approximately
proportional to the absolute value of the loga-
rithm of the error (National Weather Service,
1982).

K
L8 = {log) ()| = |log)((R) - log, ()|

The scaling factor presented in the original
reference shall be neglected for this discussion.

The selection of G(x) = logjg(x) will
produce a form of CRPS to conform to the Log

. Score,

The discrete form of the CRPS15g10 for
a series of probability forecasts can be repre-
sented by:

*2 2
C(logm)N = .5 [loglo(;I) (Rl-Dl)

N-2

X
+ T logm('x—ir—l) (r,-D,)*
172 i-1

+ logm(%;]*) (Ry_y =Dy )2
-2

Here x3 > 0. This form can be derived by sub-
stitution of the variable, y = logjg(x) before
integration of Eq. (3).

Notice that {if xi's are selected to be

regularly spaced on a log1 scale, and cover the
entire range of X, ((RI'DIP and (Ry.-Dy.y) = 0),

then the RPS is equivalent to C with the welght~
ing function, G(x) = logy(x), since logig lfl)
would be constant. This suggests that the S
effectively emphasizes different ranges of the
forecast variable by the location of the break-
points in a similar way that the CRPS emphasizes
the forecasts by the G(x).

8. CONCLUSION

The CRPS is a quadratic scoring rule for
the verification of a continuous variable fore-
cast gpecified by a continuous probability dis-
tribution function. The score requires integra-
tion of the distribution function over the range
of the forecast variable.

The numerical integration can be used to
produce an approximation of the CRPS when the
forecasts are available only at discrete points,
when the probability distribution function can-
not be integrated analytically, or when the
observations are not reported with sufficient
precision to be considered continuous. This
allows the score to be used for practical fore-
casting situations.

The discrete approximation to the CRPS,
C, is similar in form to the RPS except that the
probability forecasts are weighted to account
for the distance separating the breakpoints.
The RPS weights the forecasts from all catego-
ries equally. The RPS effectively emphasizes
certain ranges in the predicted variable by the
location of the breakpoints which define the
categorical probability forecasts. The CRPS
emphasizes the forecast in certain ranges by a
weighting function.

The Iocation and distance between break-
points used to specify the forecast determine
the accuracy of the approximation to the CRPS.
C cannot be considered an accurate measure of
the CRPS when ‘the intervals are too large to
satisfactorily represent the probability distri-|
bution function for the numerical integration.,
The score, however, will remain a strictly|
proper measure of the stated forecasts regard-
less of the intervals used to make the nredic-g
tion. !

The CRPS is an appropriate score to verify
forecasts of continuous variables made in prob-
ability form. The score both measures the
accuracy of the probability distribution and is
aleo sensitive to distance in the continucus
sense. The score's sensitivity to distance is
determined by a weighting function. This func-
tion can be selected to produce a probability
score which corresponds to certain categorical

verification scores in use for continuous vari-
ables.
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