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ABSTRACT

A common approach to short-range precipitation forecasting
involves the extrapolation of gridded radar reflectivity
fields. 1In general, the future rainrate at any given point
is forecasted by assuming that the current rainrate pattern
inferred by radar will move at some known velocity, and that
the rainrates within the echo region remain constant in time
or decrease at an assumed rate. The echo velocity may be
estimated by pattern correlation between the most recent
radar image and earlier ones, or it is assumed to be equal
to the environmental wind at some level between 850 and
500 mb.

As a refinement of this basic technique, a large number of
extrapolative rainfall amount forecasts were prepared and
then statistically correlated with the observed rainfall, as
estimated by radar, during the valid period. The relation-
ships between the purely extrapolative forecasts and the
observed amounts can then be used in interpreting other
extrapolative forecasts prepared operationally. The result-
ing extrapolative-statistical approach to rainfall forecast-
ing implicitly accounts for echo decay and uncertainty in
the extrapolation process, and is a form of the Model Output
Statistics technique often used to produce forecasts of
sensible weather from numerical weather prediction model
output. Both low-level reflectivity and vertically-integra-
ted liquid (VIL) are used as predictors of rainfall amount.
In practice, the extrapolative-statistical algorithm pro-
duces probabilities that the radar-estimated rainfall will
exceed 0.1, 0.25, 0.5, and 1 inch, within each box of a 4-km
grid, during the next hour. A categorical rainfall forecast
can then be derived from the probabilities. The operational
WSR-88D Z-R relationship was used to convert reflectivity to
rainrates.

Because it incorporates input from a variety of statisti-
cal predictors, the extrapolative-statistical approach
yields improvements over a purely extrapolative one, at the
expense of a modest increase in computing time. This note
shows that the use of multiple statistical predictors mea-
sureably improves forecasts of rainfall amounts of 0.5 inch
and greater.
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1. INTRODUCTION

Quantitative forecasts of rainfall, particularly for situations involving
convective storms, represent a difficult forecast problem. It is now possi-
ble, in theory, to use time-dependent physical models to forecast the develop-
ment and intensity of convective storms in real time. However, the interpre-
tation of such model forecasts of Precipitation can be difficult, because
users often have little documentation on bias in the forecasts and what range
of observed rainfall values can be expected for any forecasted value.

To produce short-term forecasts (less than 3 h) of many weather phenomena,
stochastic or statistical models can be used. Though they may not incorporate
explicit models of atmospheric physical processes, these models may be based
on prognostic relationships derived empirically from a substantial number of
historical cases. Statistical models are also generally inexpensive to run
operationally. The rainfall forecasting model described below requires only
radar reflectivity data, and can Produce forecasts in less than 1 minute on
platforms as small as a personal computer.

A particular class of statistical models, namely extrapolative models, have
been used for operational forecasts of rainfall at a number of forecasting
centers (Austin and Bellon 1974; Conway 1987: Takemura et al. 1987). These
generally use radar reflectivity, sometimes augmented by satellite measure-
ments or automated raingage networks, to specify a rainrate field. A forecast
of rain accumulation at any one point is then derived by forecasting the
. movement of the rainrate pattern, under the assumption that the shape of the
pattern is constant in time, or that it changes according to some known
principle. An extrapolative rain forecast algorithm was developed for use in
the WSR-88D pProcessing system (Walton and Johnson 1986) and tested in real
time on a similar system by Kelsch (1990), but it has not been implemented
operationally at this time.

The rainfall forecast algorithm described here uses a statistical method to
refine the basic extrapolative approach. First, extrapolative forecasts of
reflectivity and rainfall fields were prepared from archived data for a large
number rainfall events. These forecasts were then statistically correlated
with observed rainfall fields. The correlation procedures provide guidance on
interpreting the purely extrapolative forecasts, They show, for any given
forecasted rain amount, the range of observed rainfall amounts that can
reasonably be expected, and the probabilities that some fixed rainfall
thresholds will be exceeded.

It is logical to expect that rainfall in the 0-1 h time frame can be
forecasted by one or more predictors such as the current rainrate and VIL, and
by forecasts of the rainrate and VIL. The future rainrate and VIL can be
estimated by extrapolating the current fields, and assuming that the initial
echo pattern’s shape and rainrate remain fixed during the forecast period. We
refer to the initial-time rainrate and VIL as persistence predictors, and to
the rainfall and VIL forecasts as extrapolation predictors. Additional
candidate predictors included spatially-smoothed rainfall and VIL forecasts,
from which local noise has been removed. Also, forecasts valid during the
0-30 and 30-60 minute portions of the valid period were included. The 0-30
minute forecast is probably more accurate in an absolute sense than the full
60-minute forecast, and might contribute independent information.
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We do not know a priori what combination of predictors has the most informa-
tion with respect to rainfall. Both extrapolation and persistence predictors
have certain advantages. The persistence quantities have high absolute
accuracy, while the extrapolation predictors contribute information about the
short-term movement of the precipitation system. The performance of the
candidate predictors may be evaluated by correlating them with observed
rainfall over many historical cases for which verification data are available.
An objectively-derived optimum combination of the candidates can be selected
by some process such as screening regression.

In this development effort, the forecast fields were defined on a 4-km local
map grid of 230 km radius, centered on the radar site. The echo velocity
during the forecast period was estimated by pattern matching between reflec-
tivity maps at 10, 20, and 30 minutes prior to forecast initial time. For any
one box within the grid, the forecasted rainfall amount was derived from the
time-average rainrate over it, under the assumption that the echo pattern
shape and rainrate remain constant, while the pattern itself moves at a fixed
velocity. The rainfall forecasts were then correlated with radar-estimated
rainfall amounts in the 0-1 h period after initial time. By forward-selection
linear screening regression, a combination of these potential predictors was

selected which explained a large percentage of the variance in observed rain-
fall.

From the forecast/observation dataset, we derived expressions for the
probability that the observed rainfall will exceed 0.1, 0.25, 0.5, and 1 inch
during the 0-1 h period. The probability values are also used to derive a
categorical forecast rainfall field (essentially a forecast of the isohyets)
by applying thresholds to the probabilities. We will demonstrate the degree
of improvement that the extrapolative-statistical method offers over purely
extrapolative forecasts.

This method is a form of Model Output Statistics (MOS), as described by
Glahn and Lowry (1972). An application of this extrapolative-statistical
(EXSTAT) approach for forecasting radar reflectivity at 30 and 60 minutes was
documented by Saffle and Elvander (1981) and by Kitzmiller and Ator (1993).
Another probabilistic forecast model for precipitation amount, based on
extrapolation, was developed by Andersson and Ivarsson (1991). The Andersson-
Ivarsson model'’s probabilities are based on the advection of a rainrate field
inferred from initial-time reflectivity, rather than on a sample of historical
radar observations. The probabilities are based on the assumption that the
initial rainrates are always correct; our model accounts for errors in the
extrapolation rainfall forecasts based on historical observations.

2. DATA USED IN DEVELOPMENT AND VALIDATION

The radar data used in this study were collected at the WSR-57 site in
Oklahoma City, Oklahoma (OKC), which was first equipped with Radar Data
Processor II (RADAP II) minicomputer equipment during the early 1980’'s. The
RADAP II controlled the radar during volumetric scanning operations, digitized
the reflectivity measurements, and automatically archived the observations.
The most common scanning strategy used yielded a new volumetric scan every
10 minutes. For the development work described here, we used observations
from the period 1985-1991. The cases were largely spring and summer convec-
tive events, which are those most likely to cause flash flooding in that part
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of the Plains. Cases were manually edited to eliminate those featuring
anomalous propagation echoes.

We wished to demonstrate the application of this method to WSR-88D as well
as RADAP II data. Therefore a number of sample forecasts were prepared and
verified with WSR-88D Archive Level II data from the sites at Twin Lakes and
Norman, Oklahoma, and at St. Louis, Missouri.

3. PREPARATION OF REFLECTIVITY FORECASTS

To collect data for the development, we obtained sequences of scans that
were continuous for 90 minutes. The nominal initial time was 30 minutes into
the sequence; data prior to 30 minutes were used in deriving the echo motion,
and those afterward for estimating the verifying rainfall amounts. A total of
392 sequences were used.

For each sequence, a storm motion vector (SMV) was derived by using the
pattern-matching method described in the next section. Forecasts of the
reflectivity and VIL fields were made at 10-minute intervals through 60 min-
utes. For the sake of simplicity, reflectivity was converted to nominal
rainrates and integrated to create rainfall amounts. The VIL forecasts were
temporally averaged.

Reflectivity was converted to rainrate through the WSR-88D Z-R relationship:
R = (Z/300)-714 L)

where R is rainrate in mm h! and Z is reflectivity in mm® m™3. The VIL was
derived by integrating the Marshall-Palmer Z-M relationship with respect to
height; this relationship is given by:

M = (Z/100)4/7 (2)

where M is mixing ratio in g m™3 (Greene and Clark 1972; Marshall and
Palmer 1948).

The statistical predictor/predictand sample was created by drawing the
predictor values and the verifying rainfall value from every fifth box in each
of the analysis grids. Only boxes between 20 and 80 nm from the radar were
used. We thus obtained a sample of 16,463 individual cases.

4. DERIVATION OF STORM MOTION VECTORS

A binary-correlation pattern-matching technique was used to estimate the SMV
for each test case. This method, described by Saffle and Elvander (1981) and
by Ciccione and Pircher (1984), is computationally efficient and works well
when the entire echo region does not change size or shape appreciably between
images. The method reduces two radar grid maps to all "0" or "1" points
according to some criterion. In the present work, this criterion was a ZTR
value of 30 dBZ. The later map grid was shifted relative to the earlier one



until the binary correlation coefficient between the two was maximized. This
coefficient (BC) is given by:

BC = Nwarcs / ¥ NiN2 ' (3)

where N; and N, are the number of "1" boxes (boxes with 30 dBZ echoes) in the
first and second images, and Nycg is the number of boxes in which the earlier
map and the shifted later map are "]" gimultaneously. Note that BC approach-
es 1 as N, approaches N,, and as Nuarcy approaches N; or N,. Thus the binary
correlation approaches unity if the reflectivity pattern undergoes only small
changes in size and shape between the two images.

The process of finding the optimum shift between two binary patterns is
shown schematically in Fig. 1, in which a dot indicates a "1" point and a
blank square a "O" point. Shifting the pattern in t, to the left two boxes
and up one box maximizes NMATCH. Since the patterns in both ty and t; have 17
"1" points, and the maximum value of NMATCH is 15, the maximum binary correla-
tion between the images is is 0.88.

The SMV was estimated using two possible pairings of the images prior to
initial time, namely t, and t_z,, and t, and t._p. The 30-minute image pairing
was used whenever it was possible to realize a binary correlation of at least
0.4 between the two images. If the maximum correlation was less than 0.4, the
20-minute pair was matched. If the value of BC was still less than 0.4, a
suitable SMV from any pairing of images between 30 and 60 minutes before t,
was used. In practice, we were able to obtain a reasonable SMV for all the
cases included here.

5. RELATIONSHIPS BETWEEN FORECASTS AND RAINFALL OBSERVATIONS

The relationship between purely extrapolative forecasts of rainfall and
observed (radar-estimated) rainfall appears in Fig. 2a. The solid curve shows
the 50th percentile (median) observed rainfall, the dashed curve shows the '
amount that is exceeded in 75 per cent of the cases, and the dotted curve the
amount exceeded in 25 per cent of the cases. For forecasted amounts above
0.25 inch, the forecasts are biased somewhat high (the observed amount is
generally lower than that forecasted). Forecasts of time-averaged
(0-60 minutes) VIL are also strongly correlated to the estimated rainfall
(Fig. 2b), which is logical since our verifying observation is essentially a
temporal average of reflectivity. The percentile values for average VIL above
15 kg m™2 had to be estimated from less than 100 cases, and thus the curves
are not smooth. Both of these predictors explain about 40% of the variance in
observed rainfall, and the spread between the 25th and 75th percentile values
indicate substantial absolute errors in forecasting larger amounts.

Given the errors associated with direct forecasts of rainfall amount, it may
be preferable to treat the forecasting problem as one of answering one or more
yes/no questions. Will it rain more than 0.1 inch? Will it rain more than
0.5 inch? This information may be more useful to a forecaster who is most
concerned with whether some critical amount will be reached, rather than with
the absolute amount. Furthermore, it is logical to expect that an objective
forecasting system designed to yield information on whether or not some
specific threshold will be reached can be tuned more precisely than a system
that attempts to forecast the rainfall directly.
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Accordingly, we developed a set of four equations relating the candidate
predictors of rainfall to the probability that the amounts 0:1. 0.25, 0.5, and
1 inch will be exceeded. When specific, or categorical, forecasts of rainfall
amount are needed, they can be derived by comparing the probabilities to
predetermined threshold values.

The relationships between extrapolation forecasts of rainfall and the
relative frequency (or probability) of observed rainfall exceeding the four
thresholds mentioned above appear in Fig. 3. Here, the forecasted rainfall
field has been averaged over a 3x3 box region. This horizontal smoothing
reduces random "noise" in the forecast field and improves the correlation with
the predictand. When the extrapolative forecast is for 0.1 inch, there is a
50% probability that 0.1 inch will be reached or exceeded; when the forecast
is from 0.25 to 0.5 inch, there is about a 40% chance that that amount will be
observed. Forecasts of 1 inch have only about a 30% chance of being realized.
This shows that the extrapolative model has less skill in forecasting the
higher, rarer amounts.

We have treated the extrapolative rainfall forecasts for the 0-30 and
30-60 minute periods as predictors in their own right; because of errors in
the extrapolation process, it is likely that there is more reliable informa-
tion in the first 30 minutes of the period than in the final 30. We found
that both of these predictors were strongly correlated to the 60-minute
observed rainfall, and that the 0-30 minute forecast was indeed the more
strongly correlated. As shown in Fig. 4, a 30-minute rainfall forecast of
0.5 inch or above was likely to be followed by 0.5 inch or more. This
predictor was selected by the screening regression procedure used to derive
expressions for the probability of amounts greater than 0.5 and 1 inch.

The observed relative frequency of rainfall in excess of 1 inch as a
function of time-average VIL is shown in Fig. 5. Time-averaged VIL values
above 10 kg m™? are associated with a rather high probability of rainfall
exceeding 1 inch, since VIL's in this range are usually observed only in and
near convective cells.

The relative magnitudes of the statistical correlation between some of the
candidate predictors and two of the binary predictands is shown in Fig. 6. The
correlation statistic is the nonlinear correlation ratio (Panofsky and
Brier 1968). This statistic shows approximately what fraction of the predic-
tand variance is explained by the predictor without any assumptions as to the
nature of the relationship between them (e.g., linear, exponential, or even
monotonic). In the event that the predictor and predictand are linear with
respect to each other, the correlation ratio approaches the square of the
linear correlation coefficient. Note that even the initial-time reflectivity
and VIL fields possess information with regard to the next hour's rainfall, an
indication that reflectivity persistence alone indicates something about
rainfall potential. However, for both the 0.1- and 1l-inch predictands,
extrapolation forecasts improve on the information in persistence. For the
0.1-inch predictand, the optimum predictor is the spatially-averaged rainfall
extrapolation forecast. For the l-inch predictand, forecasts of the spa-
tially-averaged VIL field and the 0-30 minute rainfall forecast are the
predictors most highly correlated with the event. These findings imply that
loading of convective updrafts with rainwater, and the existence of high
reflectivity immediately over and near the forecast grid box at initial time,
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are important in controlling whether large rain amounts, rather than lesser
amounts, occur there.

6. EXPRESSIONS FOR RAINFALL AMOUNT PROBABILITIES

We obtained expressions relating the various predictors to the probability
of reaching rainfall thresholds by a combination of methods. Certain lin-
earized predictors were created by defining curves or sets of straight lines
that best describe the relationship between the 0-60 minute rainfall forecast
and the event relative frequency. For example, the relationships between
forecasted rainfall amount and the relative frequency of = 0.1 and = 0.25 inch
rainfall, shown in Fig. 3, suggested a set of lines with varying slopes.

These linearized predictors were then submitted along with those in the basic
set to a forward-selection linear screening regression procedure.

In the expressions below, rainfall amounts are in .0l inch and VIL is in
kg m2. For the 0.1l-inch predictand, the best fit to the dependent data was
obtained by defining two straight lines relating rainfall amount to event
relative frequency, and truncating the output probability value at 90%:
=1 + 4.2[RAIN6O]g, if [RAIN60]g < 15;
P(= 0.1) = 65 + 0.706{[RAIN6O]g - 16}, if 15 < [RAIN60]g =< 50; S (4)
= 90, if [RAIN60]g > 50.
where P is in per cent and [RAIN60]s is the extrapolation forecast of
60-minute rainfall, averaged over the adjacent 3x3 grid box region. This set
of linear functions explains 49% of the predictand variance.
A similar set of expressions was derived for the probability of 0.25 inch:
= 0.5 + 1.39[RAIN60]5, if [RAIN6O]s =< 50;
P(= 0.25) = 71 + 0.31{[RAIN60]g - 51), if 50 < [RAIN60]5 =< 80; (5)
= 85, if [RAIN60]gs > 80.

This function explains 42% of the predictand variance.

For the 0.5-inch predictand, the following expression involving both the 30-
and 60-minute rainfall forecasts was derived:

P(= 0.5) = 0.27 + 0.41(RAIN30) + 0.22(RAIN60) (6)

where RAIN30 is the 0-30 minute rainfall amount forecast and RAIN60 is the
0-60 minute rainfall forecast. Both rainfall forecasts are for the grid box
at which the probability is defined; these predictors are not spatially
averaged. The expression in (6) explains 30% of the predictand variance.

The expression for the probability of rainfall in excess of 1 inch is:

P(= 1) = -.135 + 1.87[VIL60]qs + 0.14(RAIN30) - (7)



where [VIL60];g is the 0-60 minute VIL forecast, averaged over that time
period and over the 3x3 grid box region adjacent to the box in question. The
expression in (7) explains 21% of the predictand variance.

7. SKILL LEVEL OF PROBABILITY FORECASTS

The skill of the probability values obtained from (4)-(7) above can be
assessed by converting them to categorical (yes/no) forecasts and scoring the
forecasts. The most common method of deriving categorical forecasts from
probabilities is by applying a threshold value: all probabilities below the
threshold are interpreted as "no," those at and above the threshold as "yes."
Such forecasts can be scored in terms of probability of detection (POD), false
alarm ratio (FAR), and critical success index (CSI). The calculation and
characteristics of these scores have been discussed by Donaldson et al. (1975)
and by Schaefer (1990). Another measure of forecast utility is bias, which is
the ratio of the number of "yes" forecasts to "yes" observations.

The skill of algorithms of this type appears higher in the dependent
(development) dataset than when evaluated on independent cases. This infla-
tion of skill occurs because the probability equations incorporate not only
physical relationships common to all Precipitation systems, but statistical
properties peculiar to the development data sample.

To improve our assessment of the skill level, we employed a form of cross
validation (Elsner and Schmertmann 1994). In our approach, three new develop-
ment data samples were created by withholding, in turn, all cases from
1985-87, from 1989, and from 1991. Each new development subsample had from
12,000 to 14,000 cases. Prototype probability equations were derived from
each of the subsamples, by forward-selection linear screening regression. The
equations were then evaluated on the data withheld from development and the
forecasts verified and scored. Thus, each forecast was prepared from an
algorithm that had been developed from cases observed during other calendar
years. There were 5460 cases in the verification sample.

Scores for each of the four probability equations are shown in Figs. 7-10.
The POD, FAR, and CSI scores for all possible probability thresholds from 1%
to 50% are shown. For example, for the P(= 0.1) equation (Fig. 7), a yes/no
threshold of 20% yields a POD of 0.84 and an FAR of 0.42. That is, 84% of the
0.1-inch precipitation events were covered by "yes" forecasts, and 42% of all
"yes" forecasts were false alarms in which the observed rainfall was less than
0.1 inch. :

For the higher rainfall thresholds, skill in terms of the critical success
index decreases. When forecasting the occurrence of higher, rarer rainfall
amounts, it becomes necessary to issue more false alarms in order to correctly
forecast the same percentage of "yes" events. Thus the peak CSI for the
0.1-inch forecasts was 0.54, those for the 0.25- and 0.50-inch forecasts about
0.4, and that for the l-inch forecasts was 0.25 (Figs. 7-10).

8. COMPARISION OF EXTRAPOLATIVE-STATISTICAL
WITH PURELY EXTRAPOLATIVE FORECASTS

As is apparent from our results, purely extrapolative forecasts themselves
possess considerable skill even without the addition of a statistical compo-
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nent. However, we can demonstrate that extrapolative-statistical forecasts
are indeed more skillful than ones that could be derived by simply applying
thresholds to extrapolative forecasts.

In these experiments, a set of purely extrapolative forecasts was evaluated
in the same manner as probability forecasts. That is, the POD, FAR, and bias
were determined over a range of forecasted rainfall amount thresholds, just as
those scores had been determined for each in a range of probability thresh-
olds. We then compared the FAR and bias values yielded by the probabilistic
forecasts to those from the extrapolative forecasts, when the POD values were
identical. When both algorithms yield the same POD, the more skillful one
will yield a lower FAR value, or a bias closer to unity. Because the proba-
bility forecasts were evaluated on an essentially independent data sample, any
improvement offered by the EXSTAT method must be due to higher skill, and not
simply fitting of the model to the development data sample.

In Fig. lla, we show the biases associated with various POD values for both
the EXSTAT algorithm and the extrapolation model for forecasts of = 0.1 inch
of rain. The data sample was the same one used in the cross-validation
experiment described in Section 7. For POD values above 0.8, the EXSTAT
algorithm does produce lower biases (and fewer false alarms). At lower POD
values, the EXSTAT algorithm actually produces a higher bias. This is
probably because the probability model was specifically tuned to yield the
most precise specification of rain/no rain, rather than being tuned to yield
the lowest possible bias for some given POD. Moreover, the probability
forecasts were generally a function of the purely extrapolative forecasts
alone; the regression procedure added little further information.

At higher amount thresholds, the EXSTAT algorithms generally yield superior
skill for most POD values. As shown in Fig. 11b,c, the EXSTAT algorithm can
yield biases about three fourths the magnitude of those from the extrapolation
algorithm. The improvement is most dramatic for the 1l-inch amount. Thus the
slightly higher computational load imposed by the need to extrapolate both the
reflectivity and VIL fields appears to be rewarded with noticeably reduced
biases in categorical forecasts.

10. CATEGORICAL RAINFALL FORECASTS

For some purposes, it is desirable to express the rainfall forecasts in
terms of amount rather than yes/mo or probability. One of the simplest ways
of deriving categorical amounts from probabilities is to compare the probabil-
jties of to predetermined threshold values. Thus we may say that if P(= 0.1)
exceeds a threshold of 30%, then the rainfall will be at least 0.1 inch. 1If
the 0.1-inch threshold is exceeded, and if P(= 0.25) exceeds another thresh-
old, say 27%, then the rainfall is forecasted to be at least 0.25 inch, and so
on. This procedure essentially creates an isohyetal field from maps of the
four probability fields.

We have developed a set of thresholds that produce reasonable agreement
between forecasted and observed rainfall fields for a variety of cases. Our
aim was to determine thresholds that produce a reasonably high probability of
detection (at least 0.6) and not too large a false alarm ratio (no higher than
0.7). Note that these POD and FAR values are valid only for the subset of
cases where the forecasts have reached the next lower category. For example,
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we can detect l-inch events only when the thresholds for 0.1, 0.25, and

0.5 inch have been reached. Therefore, for the purposes of calculating the
POD, the total number of 1-inch events considered is a fraction of the total
number, s

By experimenting within the development sample of 16463 cases, we arrived at
the following thresholds:

For 0.1 inch: P(= 0.1) > 27%;
For 0.25 inch: P(> 0.25) > 25%;
For 0.5 inch: P(= 0.5) > 21s;
For 1 inch: P(= 1.0) > 18s.

A verification of the categorical forecasts produced by these thresholds
appears in Fig. 12a. The outcome of all forecasts for the lowest rainfall
category (< 0.1 inch) appears in the leftmost column, outcomes for all
forecasts of 0.1-0.24 inch appear in the second column from the left, and so
on. As can be seen from the marginal totals, the forecasts are biased toward
larger values than observed; this is a result of our desire to achieve a
reasonably high POD, even when the FAR exceeded 0.5. For cases when the
forecast is greater than 0.1 inch, the observed amount is most likely to fall
into the next lower category.

For all forecasts greater than or equal to 0.1 inch, 31% fell into the
correct category, and 82% within one category of the correct one. Of all
forecasts for amounts greater than or equal to 0.25 inch, 68% were within one
category of the verifying one.

To validate the EXSTAT algorithm’'s performance for WSR-88D base data, we
prepared and verified forecasts for four events observed by the radars at
Twin Lakes, Oklahoma; Norman, Oklahoma; and St. Louis, Missouri. These cases
all included fairly intense convection. The verification results (Fig. 12b)
included all grid boxes between 20 and 75 nm from the radar, rather than every
fifth one as in the development sample. These events included substantially
greater coverage by 0.5 inch and larger amounts than appeared in the develop-
ment sample. Still, we again found that 33% of the forecasts for > 0.1 inch
verified, and 82% were within one category of the correct one. For forecasts
2 0.25 inch, 75% were within one category of the correct one.

It should be noted that forecasting for rainfall categories rather than for
specific amounts sometimes masks the existence of very large errors, particu-
larly for the few extreme amounts (> 2 inches) sometimes. observed. However,
the thresholding procedure generally produces a useful isohyetal field, as
will be shown.

11. RAINFALL PROBABILITY FIELDS FOR A DEMONSTRATION CASE
The relationship between initial-time reflectivity and VIL, and the result-
ing rainfall probabilities, appear in Figs. 13-15. The initial-time maps

(Fig. 13) are from the WSR-88D Operational Support Facility radar at Norman,
Oklahoma, at 1800 UTC, 11 May 1992. The radar is near the center of the radar
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image. An area of mature thunderstorms was creating light to moderate
rainfall over the region to the northeast of the site, with reflectivities
mostly less than 40 dBZ (Fig. 13a). A few new thunderstorms, with VIL values
_above 30 kg m'?, were developing immediately to the south and north of the
radar (Fig. 13b). All activity appeared to be moving to the northeast at

about 16 m s™!, and this velocity was used in preparing the forecast fields.

The probability fields derived from these data and the forecast echo
velocity appear in Figs. 14-15. The probability of rainfall exceeding
0.1 inch (Fig. 1l4a) exceeds 90 per cent over much of the region initially
covered by reflectivity in excess of 30 dBZ. For the higher amounts, the
probabilities decrease; the highest probability for 1+ inch is only 30 per
cent, which is associated with a high-VIL storm southeast of the radar
(Fig. 15b). A forecaster concerned with the chance that rainfall might exceed
0.5 in during the period 1800-1900 UTC would probably focus his/her attention
on the areas where the corresponding probability exceeds about 20% (Fig. 15a),
namely in two areas roughly north and south of the radar site.

A categorical rainfall forecast, and the verifying rainfall field, appear in
Fig. 16. The forecast equations apply only within about 90 nm (180 km) of the
radar, and the forecast field is truncated on its eastern edge (Fig. 16a).

The forecast clearly indicates the heavy rainfall associated with thunder-
storms immediately north and south of the radar. The lighter rainfall to the
northeast of the radar is overforecasted in terms of extent and intensity,
while a newly-developing storm that produced a heavy rain signature far to the
south of the radar site is outside the forecast region (Fig. 16b).

12. CONCLUSIONS AND FUTURE WORK

Our results demonstrate the manner in which the EXSTAT method improves on
purely extrapolative forecasts of reflectivity, at the expense of a modest
increase in computing time. The use of a variety of statistical predictors of
rainfall particularly improves forecasts of rainfall amounts in excess of
0.5 inch.

The skill of these forecasts is somewhat exaggerated by our use of a purely
radar-based predictand. We have essentially forecasted time-averaged reflec-
tivity rather than rainfall as might be observed by a gage network. Thus
forecast errors due to temporal and spatial variations in the Z-R relationship
are not accounted for. Therefore, we have begun work on refining the algo-
rithm by utilizing rainfall estimates that incorporate both WSR-88D and gage
data. These 4-km, 1-h estimates are produced by the WSR-88D Stage III
precipitation analysis operation (Hudlow 1988) conducted at the Arkansas/Red
River Basin River Forecast Center in Tulsa, Oklahoma. These estimates should
provide a predictand with higher absolute accuracy than can be obtained from
radar alone.
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Figure 1. Two binary patterns, with "on" or "1"
"off" or "0" points as empty boxes. Shifting p

pPoints shown as black dots,
one box up maximizes the binary corre

attern t; two boxes right and
lation with pattern t;.
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Figure 2. Distribution of observed 1-h rainfall amounts as a function of

(a) a purely extrapolative rainfall forecast of reflectivity and (b) time-
averaged VIL.
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Figure 3. Percentage of cases in which various 1-h rainfall thresholds are

exceeded, as a function of spatially-averaged, extrapolative rainfall fore-
casts. ’
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Figure 4. Percentage of cases in which 1-h rainfall exceeds 0.5 inch, as a
function of the 0-30 minute extrapolative rainfall forecast.
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the spatially-averaged VIL forecast. .
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Figure 7. Skill scores for categorical forecasts of rainfall exceeding
0.1 inch. Solid line represents POD, dashed line FAR, dotted line CSI.
Results are based on cross validation.
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Figure 8. As in Fig. 7, except for a 0.25-inch threshold.
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Figure 10. As in Fig. 7, except for a l-inch threshold.
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Figure 11. Forecast bias as a function of probability of detection, for
extrapolative-statistical forecasts (solid curves) and a purely extrapola-
tive forecasts (dotted lines). Scores are for forecasts of (a) 0.1 inch,
(b) 0.5 inch, and (c) 1 inch. Results are based on cross validation.
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FORECASTED

<.1 1-24 .25-.49 .5-.99 1+ TOTALS:

<.1| 13962 | 554 127 71 4 14718
> 1-24 303 349 163 75 6 |89 a
>
E 25-49 87 102 125 114 o6 |454
%)
m
O 5-99 41 29 88 113 59 |275

1+ 16 10 13 36 | 45 |120
TOTALS: 14409 1044 461 409 140

- FORECASTED
<.1 1-24 .25-.49 .5-.99 1+, TOTALS:

<1| 27147 | 1553 | 375 251 33 29359
a 1-24| 524 871 516 371 27  |2309 b
>
(2549 166 | 231 262 | 723 62 |1444
%)
m
O 5-99 109 101 200 748 166 |1324

1+ 27 41 67 340 | 565 |1040
TOTALS: 27973 2797 1420 2433 853

Figure 12. Verification contigency tables for categorical rainfall amount
forecasts. Results in (a) are from the dependent data sample based on
RADAP II radar observations; those in (b) are from four independent cases
based on WSR-88D observations.
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Figure 13.v Precipitation distribution at 1800 UTC, 11 May 1992, as observed
by the Norman, Oklahoma, WSR-88D. The field in (a) is 0.5° reflectivity,

that in (b) is VIL.
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Figure 14. Rainfall probabilities based on reflectivity and VIL in Fig. 13.
Probabilities are for (a) 0.1 inch and (b) 0.25 inch.
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Figure 15. As in Fig. 14, except that rainfall thresholds are (a) 0.5 inch
and (b) 1 inch.
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Figure 16. Categorical rainfall forecast based on probabilities in
Figs. 14-15 (a), and verifying amounts (b).
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