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1. INTRODUCTION

Frequently, it is necessary to provide a categorical forecast of an
event given only probabilities of several event categories. For example,
at the Techniques Development Laboratory we make automated categorical
forecasts of precipitation amount by comparing probability forecasts to
a preselected threshold probabilityl that will maximize the threat score
for dichotomous forecasts of a category (Bermowitz and Zurndorfer, 1979).
The purpose of this paper is to describe an objective method for determining
threshold probabilities that is more efficient than the one currently used.
In addition, we will describe the results of a verification in which fore-
casts Made from threshold *values obtained with this new method are compared
to those obtained from the current technique.

The technique now used to compute threshold values which maximize the
threat score is an empirical, iterative one. On successive passes through
the dependent data sample, threat scores are computed for categorical fore-
casts made by comparing the actual probability forecasts against preselected,
incremented threshold probabilities. The procedure is terminated when
the threat score reaches its maximum value within the accuracy of the
given increments. The threshold probability associated with that maximum
threat score is then subjectively evaluated to see if it_should be used
operationally. Usually, this involves checking the bias3 to make sure
that it is not unacceptably high. If it is too high, a threshold value
associated with a lower bias is chosen; unfortunately, this usually re-
sults in a lower threat score. Although the initial step to find the
threshold probability which maximizes the threat score is certainly ob-
jective, the use of the accompanying bias information introduces subjectivity
to the entire procedure.

The threshold probability for a category, say > .25 inch of precipitation,
is a value that if exceeded by a probability forecast for that category,
would result in a categorical forecast of > .25 inch. If the threshold
value is not exceeded, the categorical forecast would be < .25 inch.

Threat score = H/(F+0-H) where H is the number of correct forecasts of
a category and F and O are, respectively, the number of forecasts and ob-
servations of that category.

Bias is the number of forecasts of a category divided by the number of
observations of that category. A categorical bias equal to 1 means un-
biased forecasts of that category.



An example of the output from one such computer run is shown in Fig. 1.
The objectively chosen (by computer) threshold probability which appears
at the top of the output is .21. The bias associated with this threshold
probability, 1.81, is somewhat high. In this case, one may wish to choose
a threshold probability of .23 which is associated with a lower bias (1.55)
without much loss in threat score. Note, that there is a secondary maximum
in the threat score at a threshold probability of .17; however, the bias is
too high for this threshold to be used.

The important thing to note is that this iterative procedure, while
adequate, is very time consuming from the standpoint of both the human and
the computer. Consider that threshold probabilities must be evaluated for
every category for all regions for all forecast periods. In a normal develop-
mental effort for quantitative precipitation, there are 4 categories, 9
regions, and 12 projections, or 432 threshold probabilities to be obtained.
Furthermore, prior to determining threshold probabilities, probability fore-
casts must be prepared by the forecast program, which consumes still more
time. Therefore, it is obvious that it would be worthwhile to have a more
efficient technique to determine threshold probabilities which could replace
the current one without any loss in skill of the resulting forecasts.

2. DESCRIPTION OF METHOD

Generally, a high threshold probability is associated with an event which
has a high relative frequency and vice versa. It is also true that the
higher an event's relative frequency is, the more likely is an equation
with a substantial reduction of variance to be found. This suggests a
relationship between threshold probability and correlation coefficient,
since higher forecast probabilities are obtained from regression equations
with higher reductions of variance.

To better define this relationship, we plotted warm season, regionalized
correlation coefficients for six different forecast projections obtained
from our operational probability of precipitation amount (PoPA) equations
against corresponding threshold probabilities. The latter were not deter-
mined through subjective evaluation; rather, they were chosen by the
computer and were the ones that gave the highest threat score on the de-
pendent data without regard to bias. The resulting plot, shown in Fig. 2,
indicates that the relationship is quite linear for the range of threshold
probabilities and correlation coefficients shown. The equation for the
line of best fit, determined by least squares, is

T =-.208 + .597R,

where T is threshold probability and R is correlation coefficient. Here,
we will refer to this equation as the R model. The reduction of variance
in fitting T with the R value is a very good .912.

Recent work by Miller and Best (1978) to determine efficient methods of
minimizing categorical bias (bias=1) has shown that the event climate (C)
is an important parameter. Accordingly, we developed another regression
equation in which R, C, and their product were introduced as predictors
of T. The result, to be referred hereafter as the RC model, is



T = -.027 + .528R + .744C - 1.237RC.

The reduction of variance for this association is .947. The range of the
predictand relative frequencies was from .0020 to .1612.

Finally, gtill another regression equation was developed in the form of
the generalized threshold probability model discussed by Miller and Best
(1978). This equation, which we will call the M&B model, is

T = .698R (.5-C) + C.
This equation produced a reduction of variance of .943.

To summarize, the new method we propose to maximize threat score computes
a T value from either R alone or a combination of R and C by means of the
R, RC, and M&B models (or equations). This method is far more efficient
than the iterative technique since it requires no additional computer runs
or subjective evaluations. In fact, the threshold probabilities can be
computed at the completion of the regression program in which the forecast
equations are developed.

3. VERIFICATION

To test the three models, which is tantamount to testing the new method,
we performed a verification in which precipitation amount forecasts made
from thresholds obtained from the three equations were compared to those
made operationally from thresholds obtained from the iterative method.

Four sets of independent data were available for the comparative verifi-
cation: (1) 12-36 h forecasts from warm season (April-September), Primitive
Equation (PE) (Shuman and Hovermale, 1968) model-based PoPA equations,

(2) 12-36 h forecasts from cool season (October-March) PE-based PoFA
equations, (3) 12-18 h cool season forecasts from Limited-area Fine Mesh
(LFM) (Gerrity, 1977) model-based PoPA equations, and (4) 24-48 h cool
season forecasts from PE-based PoPA equations for the Bomneville Power
Administration (Bermowitz et al., 1977). The choice of these data sets
represents, at least in part, an attempt to select independent data with as
much difference from the dependent data as possible and with as much variety
as possible. The 12-36 h cool season PE-based PoPA data consisted of two
cool seasons; the other consisted of one season of data.

In all cases, threat score and biases were computed for forecasts of the
precipitation amount categories > .25, > .50, > 1.0, and > 2.0 inches.
An exception was the 12-18 h LFM-based PoPA data set for which forecasts
of > 2.0 inches were not available. Verification scores were computed at
233 cities over the conterminous U.S. for all data sets except Bonneville;
these forecasts were made for and verified at 65 stations over the Columbia

River Basin.



4. RESULTS

Comparative verifications on the four data sets are summarized in Tables
1-4. It is important to remember that we are not necessarily seeking a
technique that improves upon the existing method in terms of verification.
Since the new method is much more efficient than the existing one, we would
be satisified if it gave results about as good as those obtained with the
iterative technique.

Table 1 contains the results for the warm season, 12-36 h PE-based PoPA
data. It can be seen that there is very little difference in threat scores
among the three models. More importantly, there is very little difference
between the models and the operational system. Overall, the R model has
a somewhat lower bias than the others.

Results for the two cool seasons of 12-36 h PE-based PoPA data are given
in Table 2. The threat score for the category > 1.0 inch for the M&B
model is lower than that of the R and RC models, while the latter are about
as good as the operational system. Note, also, the excessively high bias
for the M&B model for this category. All three models do not perform as
well as the operational system for the category > 2.0 inches (the only time
this occurred). As shown by the bias, this may be due to the relative over-
forecasting of this category by the operational system when compared to the
three models. TFor the other two categories, the three models all perform
at least as good as the operational system with the R and RC models having
somewhat higher threat scores than the M&B model. Overall, the R and RC
models have about the same threat scores, but the bias characteristics
are better for the R model.

Table 3 contains the results for the cool season, 12-18 h LFM-based PoPA
data. For the category >.25 inch, M&B has a somewhat lower threat score
than the other models and the operational system. For all categories, the
R and RC models have threat scores at least as good as the operational
system; in fact, R has slightly better threat scores than either RC or the
operational system. In addition, the bias for the R model is considerably
better than those for the other models and the operational system.

Results for the cool season, 24-48 h Bonneville data are presented in
Table 4. Threat scores for the M&B model are lowest of the group in all
categories. Threat scores for the R and RC models are about the same and
are at least as good as those of the operational system. Note that again
R has a somewhat better bias than RC; overall, R's bias is about as good as
that of the operational systen.

Results for all four data sets were also broken down by region to determine
if there were any poor regional threat scores masked by the overall results.
With only one exception, there were none. In that case, (12-36 h cool
season) the R model failed to produce any forecasts of the category > 1.0
inch. The RC model, on the other hand, not only produced forecasts of that
category but had 57 hits. Of particular interest is the fact that the thres-
hold probability derived from the RC model was only .012 lower than that
from the R model for the category > 1.0 inch. The reason for this poor



regional result for R is that only binary predictors were used in the PoPA
equations for this data set. Forecast equations using only binary predictors
will cluster the forecast probabilities such that a slight change in thres-
hold value can cause radical changes in the categorical forecast statistics.
For example, the slightly lower threshold for RC with clustered forecasts
allowed the category > 1.0 inch to be forecast by RC but not by R. However,
this problem is not serious because continuous Predictors, which now are

used with binaries, alleviate clustering.

We also examined how this new method will behave on data other than
precipitation amount. In categorical thunderstorm forecasting, Foster
and Reap (1978) have found through a procedure similar to the iterative
method that a threshold probability of .350 maximizes the threat score of
the category "occurrence of a thunderstorm." The threat score obtained
with this threshold is .452. We used their correlation coefficient and
climatology to compute threshold probabilities by means of the R, RC,
and M&B models. These thresholds along with corresponding threat scores
and biases are summarized in Table 5. It appears that the new method pro-
duces verification statistics about the same as those obtained by Foster
and Reap; the M&B model is particularly close in this example.

Gofus (1978) has used the R model and the iterative technique (lack of
a reliable climatology precluded use of the RC and M&B models) to compute
threshold probabilities for categorical fog forecasting over the Great
Lakes. Some preliminary results on independent data indicate that threat
scores for the R model are nearly as good as those for the iterative
technique.

5. SUMMARY AND CONCLUSIONS

A more efficient objective method for obtaining threshold probabilities
that maximize the threat score has been presented. This method, when
tested on independent precipitation amount data, gave results as good as
those from thresholds obtained from the current iterative procedure and
used operationally. (Strictly speaking, for the precipitation amount data,
this was true for only the R and RC models.) 1In addition, there were
indications that the new method can be used to maximize the threat score
when forecasting events other than precipitation amount. For example, it
appears to have held up when used in categorical thunderstorm and fog fore-
casting.

There is a question that remains concerning which model--R, RC, or M&B,--
to use. For example, in forecasting precipitation amount, the R model
performed the best. On the other hand, M&B appears to be the choice in
forecasting thunderstorms. Perhaps the safest answer, therefore, is that
potential users of this method do their own testing to determine which
model to use. One thing that is certain, however, is that the R model is
the only one that can be used if a reliable climatology is not available.

We strongly recommend that this new method be considered by those who
require that their categorical forecasts produce a maximum threat score.
The potential savines in both human and computer time over the current



iterative approach is considerable. For example, we estimate that the time
required by a person to develop PoPA forecast equations and theshold prob-
abilities can be cut in half. Computer time will be saved since no new
program has to be run to replace the ones which make the probability fore-
casts and perform the iterative procedure; threshold probabilities can be
computed in the regression program used to develop the forecast equations.
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Table 1.

Comparative verif
September) PE-based PoPaA

probabilities from the (1) iterative method (OPER),

and (4) M&B models.

233 cities.

Sample consists of one season o

ication of 12-36 h warm season (April-
categorical forecasts made from threshold

(2) R, (3) Rrc,
f forecasts at

CATEGORY THREAT SCORE BIAS

(INCH) |OPER R RC M&B OPER R RC M&B
>.25 .250 .245 .248 .249 1.88 2,03 1.94 1.76
>.50 <175 179 .178 .180 1.91 1.91 1.84 1.86
>1.0 .093 .094 . 095 . 096 1.78 1.63 1.66 1.87
>2.0 . 024 .029 .029 .033 1.60 1.21 1.98 1.92
Table 2. Same as Table 1 except for two cool seasons (October-March

of data. ‘ ‘ ) C s
CATEGORY THREAT SCORE BIAS

(INCH) |OPER R RC M&B OPER R RC M&B
>.25 .313 .338 . 325 . 316 1.88 1.65 1.93 1.94
>.50 .229 . 246 .233 .231 2.41 2,17 2.47 2,57
>1.0 .161 .152 164 124 '2.07 1.79 2,29 3.99
>2.0 . 054 .013 .015 .021 2.20 0.76 0.94 1.16




Table 3. Same as Table 1 except for one cool season of 12-18 h LFM-
based PoPA categorical forecasts.

CATEGORY THREAT SGORE BIAS

(INCH) |OPER R RC M&B OPER R RC M&B
>.25 «265 274 <272 <257 1.68 1.30 1.49 1.86
>.50 <175 .180 .176 .178 1.95 1.41 1.72 2:33
>1.0 .080 .088 .081 .080 2.65 1.32 21 2,64
>2.0 - - - - - - - -

Table 4. Same as Table 1 except for one cool season of 24-48 h fore-
casts for stations over the Columbia River Basin,

CATEGORY THREAT SCORE BIAS

(INCH) [OPER R RC M&B | OPER R RC M&B
2:23 4Ll 406 410 401 | 1.42 1.59 1.63  1.34
2.50  1.364  .371 366 358 .50 1.63 1,73  1.51
21.0 1255 259 251 941 1.81  1.77 1.8  1.90
22.0  L162  .171  .173 147 1.46  1.07 1.26 1.68
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Table 5. Comparison of threshold probabilities that
-maximize the threat score for categorical thunder-
storm forecasting, corresponding threat scores, and
categorical biases for the (1) iterative method
(OPER), (2) R, (3) RC, and (4) M&B models.

MODEL THRESH. PROB. THREAT SCORE BIAS
OPER . 350 «452 1.45
R . 312 450 1.63
RC .284 <444 1.76
M&B «359 <451 1.41
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