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Abstract: Integrated analysis models provide a tool to estimate fish abundance, recruitment, and fishing mortality from a
wide variety of data. The flexibility of integrated analysis models allows them to be applied over extended time periods
spanning historical decades with little information from which to estimate the annual signal of recruitment variability to
modern periods in which more information about recruitment variability exists. Across this range of data availability, the es-
timation process must assure that the estimated log-normally distributed recruitments are mean unbiased to assure mean un-
biased biomass estimates. Here we show how the estimation method implemented in the integrated analysis model, Stock
Synthesis, achieves this unbiased characteristic in a penalized likelihood approach that is comparable to the results from
Markov chain Monte Carlo. The total variability in recruitment is decomposed into variability among annual recruitment es-
timates based on information in the data and a residual variability. Because data are never perfectly informative, we show
that estimated recruitment variability will always be less than the true variability among recruitments and that the method
implemented here can be used to iteratively estimate the true variability among recruitments.

Résumé : Les modèles d’analyse intégrée représentent un outil pour estimer l’abondance, le recrutement et la mortalité due
à la pêche chez les poissons à partir d’une gamme étendue de données. La flexibilité des modèles d’analyse intégrée leur
permet d’être utilisés sur de grandes périodes de temps, couvrant des décennies passées pour lesquelles il existe peu de don-
nées pour estimer le signal annuel de variabilité du recrutement, mais aussi sur des périodes contemporaines pour lesquelles
il y a plus d’information sur la variabilité du recrutement. Sur cette gamme de données disponibles, le processus d’estima-
tion doit assurer que les recrutements estimés selon une distribution log-normale n’ont pas de biais de moyenne afin de pro-
duire des estimations moyennes de biomasse non biaisées. Nous montrons ici comment la méthode d’estimation utilisée
dans le modèle d’analyse intégrée Stock Synthesis réussit à obtenir cette caractéristique non biaisée dans une approche de
vraisemblance pénalisée qui se compare aux résultats de la méthode de Monte Carlo par chaînes de Markov. La variabilité
totale du recrutement est décomposée en estimations annuelles du recrutement d’après l’information contenue dans les don-
nées et en variabilité résiduelle. Parce que les données n’apportent jamais de l’information parfaite, nous montrons que la
variabilité estimée du recrutement sera toujours inférieure à la véritable variabilité entre les recrutements et que la méthode
que nous utilisons peut servir à estimer de façon itérative la vraie variabilité entre les recrutements.

[Traduit par la Rédaction]

Introduction

Fishery assessment models estimate time series of fish
abundance and fishing mortality from data that ideally in-
cludes catch-at-age and fishery-independent surveys of fish
abundance. Where there is complete, precise information on
the age composition of the catch, age-structured (e.g., statisti-
cal catch-at-age) models (Ricker 1975; Deriso et al. 1985;
Quinn and Deriso 1999) can accurately estimate the abun-
dance of each annual recruitment in the modeled time series
(Maunder and Deriso 2003). Where catch-at-age data are
missing or incomplete, a more flexible class of fishery as-
sessment models, termed integrated analysis, can be applied.
Integrated analysis models provide a tool to estimate fish

abundance, recruitment, and fishing mortality from a wide
variety of data (Fournier and Archibald 1982; Methot 1990,
2000), including length composition, imprecise age composi-
tion with ageing error, and other data types. The flexibility of
integrated analysis models allows them to be applied over
long time series spanning historical decades, with little infor-
mation from which to estimate the annual signal of recruit-
ment variability, to modern periods in which more
information about recruitment variability exists (e.g., Haltuch
and Hicks 2009; Hamel 2009; Stewart 2009). However, when
applied to such heterogeneous data situations, the variability
among the estimated recruitments is also expected to be het-
erogeneous. Even in the data-rich years, the data will never
be perfectly precise with regard to the true recruitment devia-
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tions. Thus the estimate of each recruitment deviation will al-
ways be a compromise between the information in the data
and the central tendency that pulls the log(recruitment) devi-
ations towards zero. Here we describe a maximum likelihood
method to address this situation in a way that is comparable
to the unbiased estimation obtained from Bayesian integra-
tion (Maunder and Deriso 2003).
Maunder and Deriso (2003) explored a range of procedures

to estimate recruitments in statistical catch-at-age models.
These recruitments typically follow a lognormal distribution
with standard deviation sR (Power 1996; Quinn and Deriso
1999; Haddon 2001). The expected arithmetic mean recruit-
ment thus depends upon both the geometric mean and the
variability of the lognormal distribution. This means that
more of the biomass in the population, and in the long-term
average potential yield, comes from the relatively infrequent
large recruitments. Consequently, calculations based on the
median or geometric mean recruitment will underestimate the
mean stock abundance and mean potential yield. Maunder and
Deriso (2003) found that a wide range of procedures, includ-
ing a penalized likelihood method, worked adequately if the
data were reasonably informative about recruitment deviations
throughout the time series being analyzed. However, when the
data were less informative during all or part of the time series,
then a marginal likelihood or Bayesian integration method us-
ing Markov chain Monte Carlo (MCMC) performed better.
This difference is due to the nature of the MCMC integration,
which explores the full lognormal domain of each recruitment
deviation, in contrast with the maximum likelihood procedure,
which causes poorly informed recruitments to collapse to the
central tendency, which is a geometric mean recruitment level.
Unfortunately, the complexity of data and length of time ser-
ies often included in the integrated analysis models is often
not sufficient to estimate all recruitments well, but is suffi-
ciently large to preclude routine use of MCMC because run
times to achieve convergence can be several days.
In an assessment model in which log(recruitment) is penal-

ized for deviating from 0.0, time periods during which the
quantity of data regarding recruitment fluctuations is weak
will have small fluctuations among the estimated log(recruit-
ments), and the resultant arithmetic mean recruitment during
those periods will be underestimated. This may then cause a
bias in the estimate of other model parameters, such as
spawner–recruitment steepness, that also affect the long-term
trend in mean recruitment needed to provide the biomass
from which the catch has been taken. The true annual varia-
bility among recruitments is also a key factor in forecasting
the range of future fluctuations in stock abundance. These
fluctuations will depend on the actual variability of recruit-
ment, not the degree of variability estimated from our imper-
fect historical data (Maunder and Deriso 2003).
Here we extend the results of Maunder and Deriso (2003)

to show how a penalized likelihood method can be modified
to incorporate a time-varying bias correction to produce re-
sults that are equivalent to those produced using MCMC.
The method is based on a modification of the bias adjust-
ment, R�

y ¼ Ry e
ry�s2

R=2, commonly used to adjust recruitment
estimates to be mean unbiased. We start by showing how any
imprecision in data will cause any assessment model to
underestimate the variability among recruitments. Second,
we establish a procedure for calculating the correct degree of

bias adjustment for each recruitment deviation based upon
the variance in the estimate of that recruitment deviation.
This is basically a partitioning of the total variability in re-
cruitment into a component that is the variability among the
annual recruitments and a component that is the variance of
the estimate of each recruitment. We demonstrate the per-
formance of this procedure first with a hypothetical example
in which the only data is a young-of-the-year survey that di-
rectly measures, with error, the fluctuations in actual recruit-
ment. Then we show the performance using simulated data
that are comparable to the types of data used in typical as-
sessment situations. We compare the results with estimates
of recruitment variability obtained using MCMC on the
same data sets, then we show how the bias adjustment proce-
dure can be used to improve estimates of the underlying sR
associated with the true recruitment variability.

Materials and methods

A better understanding of how to model variability in re-
cruitment was sought using both analytical derivations (using
notation described in Table 1) and simulation experiments.

Lognormal recruitment variability
Variability in recruitment for fisheries stock assessment

models is typically modeled using a lognormal distribution
(Maunder and Deriso 2003). Values for the number of indi-
viduals recruited to the population in each year are often cal-
culated as

ð1Þ R�
y ¼ Ry e

ry � s2
R=2

where Ry is the mean value of recruitment, often calculated
as a function of spawning biomass, ry is the recruitment de-
viation in year y, which is assumed to have a normal distribu-
tion, so that ery is lognormally distributed, and, sR is the
standard deviation for recruitment in log space.
The subtraction of the term s2

R=2 in the exponent is a bias
adjustment that is made so that the mean of the resulting log-
normally distributed recruitments R�

y is equal to Ry. This re-
sults in a median recruitment value that is less than Ry.
However, mean recruitment is a better representation of the
long-term contribution to the population than median recruit-
ment, because most of the population biomass comes from
the numerous recruits in the upper tail of the lognormal dis-
tribution. As an illustration of this property, the average bio-
mass under variable recruitment may be compared with the
biomass at equilibrium. Assuming recruitment occurs at
age 0, the total biomass B0 associated with an equilibrium re-
cruitment R0 can be calculated as

ð2Þ B0 ¼
X1
a¼0

wa e
�aMR0

where wa is the mean mass at age a, and M is the natural
mortality, here set equal for all ages. A is a maximum age
chosen to be high enough so that little growth occurs beyond
this age. Numbers at age A are calculated so as to include
older ages implicitly, so represented by ∞ here.
The average biomass across n years associated with varia-

ble recruitment may be calculated as
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ð3Þ By ¼ 1

n

Xn
y¼1

By

¼ 1

n

Xn
y¼1

X1
a¼0

wa e
�aMRy�a

¼
X1
a¼0

wa e
�aM1

n

Xn
y¼1

Ry�a

where Ry–a is the recruitment in year y – a.
If the mean recruitment over n years, given by 1

n

Pn
y¼1

Ry�a,

is equal to the equilibrium recruitment R0, then eqs. 2 and 3
will match, and the mean biomass By will equal the equili-
brium biomass B0. It is straightforward to confirm via simu-
lation that the bias adjustment is also needed under more
complex scenarios, such as including a spawner–recruitment
relationship and harvest.

Influence of data on recruitment estimation
Estimated logarithmic recruitment deviations, bry, are in-

formed by two general sources of information. First, an ob-
jective function component for ry (noted later in this text)
pulls all deviations toward 0.0 with a strength determined by
sR, representing the assumption that the distribution of ry is
approximately normal; thus large deviations are less common
than small ones. Second, the data, especially age and length
compositions (but other sources as well), provide information
about individual year class strengths and thus pull the bry to-
ward whatever value maximizes the likelihood components
for these other data sources. The influence of the data on thebry will depend on the quality and quantity of the data, while
the influence of sR is independent of data richness. Thus, for
years with little information in the data on recruitment, the bry
will be close to 0. The data would have to be extremely pre-
cise for the influence of the data to completely overwhelm
the influence of the objective function component for recruit-

ment. Thus, in all practical applications, the estimated varia-
bility among bry will be lower than sR.
A simple illustration of this point comes from the case

where there is a time series of recruitment deviations and a
survey (e.g., a recruitment survey, or young-of-the-year sur-
vey) that provides data, with measurement error, about these
deviations. The likelihood for a random variable, informed by
observations with a mean and standard deviation under the
assumption of normal error, has a maximum that occurs
where the estimate of the random variable is a weighted aver-
age of the estimates that would be calculated from each
source of data independently and a standard error that is a
combination of the uncertainty around these means. In the
context of estimating deviations in recruitment, with two
sources of information, mdy and sdy representing the informa-
tion in the data about a given ry, and mRy = 0 and sR repre-
senting the contribution of the assumptions about
recruitment, the resulting estimated deviation is

ð4Þ bry ¼ mdy

s2
dy

þ 0
s2
R

1
s2
dy

þ 1
s2
R

¼ s2
R

s2
dy þ s2

R

mdy

with standard error

ð5Þ SEðbryÞ ¼ 1

s2
dy

þ 1

s2
R

 !�1=2

If the data provide rich information about ry, then sdy will
be small relative to sR and the estimate bry will approach mdy.
If the data are uninformative about ry, then sdy will be large
relative to sR, and the estimated value will approach 0. Under
no circumstances will the estimate bry be of greater magnitude
than mdy.
Because of sampling error, the values for mdy will vary

around the true ry. If the distribution of the mdy about the ry
has standard deviation equal to sdy, and, for simplicity, the ry
are assumed equally informed by the data (and thus all sdy =
sd), then the standard deviation of the vector of mdy values,
denoted SDmd, is

ð6Þ SDðmdÞ ¼ s2
R þ s2

d

� �1=2
and the standard deviation of the vector of bry values, denoted
SDðbrÞ, will be scaled toward zero following eq. 4 as

ð7Þ SDðbrÞ ¼ SD
s2
R

s2
d þ s2

R

md

� �
¼ s2

R

s2
d þ s2

R

SDðmdÞ

¼ s2
R

s2
R þ s2

d

� �1=2
¼ sR

sR

s2
R þ s2

d

� �1=2
< sR

From this equation, it is clear that in the extreme cases, as
sd approaches infinity (no information in the data) then
SDðbrÞ approaches 0 (with all bry approaching 0), and as sd

Table 1. Definitions of key symbols used in the analysis.

Symbol Definition
Ry Expected value of recruitment experienced by the

population in year y
R�
y Realized recruitment after the application of a bias

adjustment factor
ry True deviation in recruitment on a log scale

experienced by the population in year y
sR Standard deviation of the distribution from which

true recruitment deviations are drawnbry Estimated recruitment deviation for year y
SEðbryÞ Standard error of the parameter estimate bry as

estimated from the Hessian matrix
SEðbrÞ Mean of the SEðbryÞ across some specified range of

years
SDðbrÞ Standard deviation among the set of bry values across

some specified range of years
E SDðbryÞ� �

Expected standard deviation of distribution for the
estimated recruitment deviation bry in year y

mdy Value for the recruitment deviation in year y that best
fits the data

sdy Standard deviation around mdy implied by the data
by Fraction of bias adjustment applied in year y
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approaches 0 (perfect information in the data) then SDðbrÞ
goes to sR (with all bry approaching the true ry).

Derivation of annual bias adjustment
In eq. 1, the term s2

R=2 is intended to adjust for bias in the
lognormal distribution so that the distribution of exponenti-
ated recruitment deviations, ery�s2R=2, has mean equal to 1.0.
However, the true ry values are never known, so models are
projected using a time series of estimated bry values, which
will be less variable than the true values, as shown in eq. 7.
Thus, the mean of the lognormal distribution of recruitments,
and the appropriate degree of bias adjustment associated with
this mean, is dependent on the distribution of the estimated
recruitments, not the distribution of true recruitments. If we
shift from consideration of the variability among the esti-
mated bry values over the full range of years to the expected
standard deviation associated with a single year y, denoted
E SDðbryÞ� �

, then to have mean unbiased recruitment, the cor-
rection applied to the annual recruitment equation should be

ð8Þ R�
y ¼ Ry e

bry � E SDðbryÞ� �2
=2 ¼ Ry e

bry � bys
2
R=2

where by ¼ E SDðbryÞ� �2
s2
R

is the bias adjustment fraction applied
in year y.
In practice, data available for stock assessments is not uni-

formly informative for all years. Indeed, for most commer-
cially exploited fish stocks, data on removals are available
much further back in time than age and length-composition
data, and the quality and quantity of these data typically in-
crease over time. Consequently, the information about re-
cruitment variability in an age-structured population model
may be expected to be initially low, increase steadily for
years where the cohorts are more and more represented in
the data, remain higher for a period with similar data levels,
and fall off at the end. Even during the most data-rich period,
the estimated recruitment deviations will have uncertainty as-
sociated with the number of years for which each cohort can
be observed, as well as factors such as ageing error, selectiv-
ity, and the identification of individual cohorts in length-
composition data.
Integrated analysis models do not have a strong require-

ment for age-composition data, so can function across a
range of years that span data-poor and data-rich periods.
While it is possible to configure these models to not estimate
recruitment deviations during the early years, this practice re-
sults in an underestimate in the uncertainty about population
abundance during the early years because actual recruitment
was fluctuating during that data-poor period just as much as
it fluctuated during the subsequent data-rich era. However,
allowing estimation of recruitments during the data-poor pe-
riod results in estimated recruitment deviations that collapse
towards 0.0 and will result in an underestimate of mean re-
cruitment during that era. Thus, the bias adjustment fraction,
by, that is appropriate for years without information should be
close to 0.0, while the by for the years with informative data
should be some value that is a function of their variability. A
first approximation to time-varying bias adjustment is a pat-
tern that linearly ramps up during an era of increasing infor-
mation about recruitment variability, reaches a plateau, then
decreases during the most recent years.

The magnitude of the by depends upon the degree to which
the overall variability in recruitment is partitioned into varia-
bility among the recruitment estimates in the time series and
residual variability of each recruitment estimate. Information
about the expected distribution for the individual bry may be
obtained using the following relation between the standard
error of the individual bry estimates from eq. 5 and the stand-
ard deviation of the distribution of the vector of bry values
from eq. 7 as

ð9Þ SEðbryÞ2 þ SDðbrÞ2
¼ 1

s2
d

þ 1

s2
R

� ��1=2
" #2

þ s2
R

ðs2
R þ s2

dÞ1=2
� 	2

¼ s2
R

The equation above is based on the standard deviation of
the vector of estimated bry, but we can infer that as the num-
ber of years is reduced, the SDðbrÞ term may be replaced by
the expected standard deviation associated with any individ-
ual year, E SDðbryÞ� �

. Thus, an estimated or specified sR,
combined with standard errors of the bry, can be used to esti-
mate the standard deviation of the distribution from which a
single parameter estimate in need of bias correction was
drawn, as

ð10Þ E SDðbryÞ� � ¼ s2
R � SEðbryÞ2

Thus, an alternative way to calculate the bias adjustment
fraction values, by in eq. 8, is

ð11Þ by ¼
E SDðbryÞ� �2

s2
R

¼ 1� SEðbryÞ2
s2
R

Refinement to the likelihood for recruitment deviations
The recruitment deviation penalty that contributes to the

objective function along with the negative log likelihood of
other objective function components is typically calculated as

ð12Þ Lrecruit ¼ 0:5
X
y

br2y
s2
R

þ ln ðsRÞ
" #

However, this formulation is based on the assertion that
the bry are distributed according to sR. Here we have shown
that the bry are distributed according to the combination of sR
and the amount of information about the recruitment devia-
tions in the data and that their variability will change over
the extent of a time series. Where there are weakly informed
ry, their values will collapse towards 0.0, and the value of sR
that maximizes Lrecruit will underestimate the true sR. In the
extreme case with no data to inform recruitments, the best es-
timate of sR would approach 0.0.
An alternative formulation can adjust for this problem:

ð13Þ Lrecruit ¼ 0:5
X
y

br2y
s2
R

þ by ln ðsRÞ
" #

where bry is the estimated recruitment deviation in year y, sR
is the standard deviation for the true recruitment deviations,
and by is the bias adjustment fraction applied in year y.
With this approach, the contribution of the second term, ln
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(sR), smoothly scales according to the value of by, ranging
from by near 1.0 for data-rich years, thus equivalent to
eq. 12, and near 0.0 for the data-poor years. But maintaining
sR in the first term means that the estimated standard errors
of the poorly informed ry will approach sR. This refinement
means that when the vector of estimated recruitment parame-
ters is expanded to include years with no data on recruitment
(such as early in the time series or future years in a forecast),
the objective functions does not change — a desirable prop-
erty that allows better estimation of uncertainty in population
dynamics throughout the time series.

Experiments with simulated data
The experiments were conducted using the Stock Synthesis

(SS) integrated analysis model (Methot 1989, 1990, 2009).
The relevant features of this model are provided in an appen-
dix to this paper. The model and its user manual, which de-
scribes the full suite of model options, are available from the
NOAA Fisheries Toolbox (http://nft.nefsc.noaa.gov). Two
simulation experiments were created to test the theory de-
scribed above. The simulation procedures followed common
practices for such experiments (e.g., Garrison et al. 2011), in-
cluding the following four steps (all of which are described in
greater detail below and in Appendix A): (1) Create 100 si-
mulated populations using a set of assumed “true” parameter
values, including a set of randomly generated recruitment de-
viations, ry. (2) For each simulated population, create multi-
ple data sets by simulating the process of sampling from the
populations created in Step 1 under multiple assumptions of
uncertainty and sample sizes. This involves generating sto-
chastic data under an observation model using distributions
appropriate to each data type. (3) For each simulated data set
created in Step 2, apply multiple estimation models under
different assumptions about how recruitment deviations are
modeled. (4) Compare the estimated parameters and key de-
rived quantities resulting from the estimation models with the
true values and use these comparisons to evaluate the per-
formance of the alternative estimation models and how the
performance changes as a function of the uncertainty and
sample sizes used to generate the simulated data.

Data simulation
The first experiment provides a straightforward test of the

influence of a single data source on estimation of recruitment
deviations, the theory for which is described using eqs. 4
through 9, above. The simulated population is simply a time
series of 50 years of recruitment values ry from a normal dis-
tribution with mean 0 and standard deviation sR = 0.7. The
data are a recruitment survey that provides an estimate, mdy,
of each year’s recruitment with measurement error sdy. The
survey values, mdy, are sampled from normal distributions
with mean ry and standard deviation sd. Within each simula-
tion, one of four levels of sampling error were used, sd =
0.1, 0.5, 0.9, 5.0, ranging from highly informative to very un-
informative. This process was repeated 100 times for each
level of sampling error.
The second experiment is a fully age-structured configura-

tion, with age-composition data informing recruitment. The
simulated recruitments are as in the first experiment, but
here the data about the recruitments is more complex. SS
was used to generate 100 simulated populations, each with a

different time series of normally distributed stochastic ry. For
each time series, two sets of data were generated, one data-
rich and one data-poor, which differed only in the sample
size of the age-composition data.
The population was modeled for 50 years, designated 1961

to 2010. The ry were simulated for the years 1945 to 2010.
These values were generated from a standard normal distribu-
tion and then standardized so that that over the period 1945–
2004 they had mean 0 and standard deviation sR = 0.7. Prior
to 1945, recruitment deviations were not used and recruit-
ment was set to the mean level. Ages 20 and over were accu-
mulated as a plus group and natural mortality was fixed at
0.2 year–1 (parameter values used in the analysis are collected
in Appendix Table A1). Steepness of the spawner–recruit re-
lationship (eq. A.7) was set to 0.99 to focus the analysis on
estimating the central tendency of recruitment, rather than
the more complex problem of estimating steepness as well.
The catch for all simulations increased linearly from

500 mt in 1961 to 10 000 mt for the years 1980–1983 and
then decreased linearly to a constant level of 4000 mt for
1995–2010. Selectivity was a logistic function of age, with
50% selected at age 5 and 95% selection at age 7. The equili-
brium recruitment was constant across simulations at a value
that resulted in a median value for the minimum biomass
level of 33% of B0, with 90% of simulations having a mini-
mum between 13% and 46% of B0. The catch for the last
15 years of the model was sufficiently low to allow rebuild-
ing of the stock, with a median 2010 spawning biomass
value of 72% of B0. These changes in catch and thus fishing
mortality caused changes in the number of years that cohorts
from different time periods would be represented in the age-
composition data.
The simulated data were age compositions and a time ser-

ies of catch per unit effort (CPUE). The age compositions
covered the last 30 years of the model, from 1981 to 2010,
with a sample size of either 200 (data-rich) or 20 (data-
poor). The age compositions were simulated as samples
from the multinomial distributions with probabilities equal to
the projected population age composition for each corre-
sponding year in the operating model. Bins were integer
ages 1 to 20 for males and females, with the first bin includ-
ing age 0 and the last bin including all members of the plus
group. The CPUE data covered the last 40 years of the
model, from 1971 to 2010. To increase the information about
biomass trends and thus amplify any signal due to model
mis-specification, the CPUE standard error was set to a low
value of 0.1 in log scale (roughly equivalent to a coefficient
of variation (CV) of 0.1).
Ageing imprecision was applied in both simulation and es-

timation models. The observed ages were assumed to have an
unbiased distribution around the true age with variability in-
creasing with age (eq. A.15). The same ageing imprecision
was applied in both simulation and estimation models,
although these matching assumptions do not eliminate the
uncertainty in recruitment created by adding ageing impreci-
sion to the composition data.

Estimation models
In the both the simple and age-structured experiments, sR

was assumed known without error, except in the case of an
additional analysis comparing methods for estimating sR.
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The estimated ry were calculated as a zero-centered vector of
deviations. The zero-centering causes a small interaction be-
tween estimates. However, the influence of centering the val-
ues to have mean 0 is expected to be small. Standard errors,
SEðbryÞ, for each bry were calculated from the Hessian matrix
as implemented in the AD Model Builder software (ADMB
Project 2009).
In the simple experiment, the objective function as a sim-

ple least-squares minimization of the differences between es-
timated bry and the observations of these values combined
with a term related to the variability in estimated recruit-
ments:

ð14Þ L ¼ 0:5
X
y

ðmdy � ryÞ2
s2
dy

þ 0:5
X
y

r2y

s2
R

where the components of this equation are as described for
eq. 4 above.
For the age-structured experiment, six estimation models

were applied (Table 2), differing in the pattern of the bmax val-
ues and in the weight applied to the objective function com-
ponent for the recruitment deviations (u in eq. A.19). The
pattern with less weight applied to recruitment deviations was
chosen to mimic the approach taken by the influential statisti-
cal catch-at-age (SCAA) model CAGEAN (Deriso et al.
1985), whereby the weighting of the contribution from the bry
(u in eq. A.19) was reduced from 1.0 to 0.1. This strongly
reduces the degree to which the bry are pulled toward 0.
The annual bias adjustment fraction (by) was set to either a

constant or to a series of values starting with 0 for the initial
years, ramping up to a maximum bias adjustment fraction,
bmax, for an intermediate period and then back down to 0 for
the final years of the model, according to the formula

ð15Þ by ¼

0 for y � yb1

bmax 1� y� yb1
yb2 � yb1

� �
for yb1 < y < yb2

bmax for yb2 � y � yb3

bmax 1� yb3 � y

yb4 � yb3

� �
for yb3 < y < yb4

0 for yb4 � y

8>>>>>>>>>>>><>>>>>>>>>>>>:
where the yb1 . . . y

b
4 are 4 years that form the break points for

the piecewise linear relationship. The values for these break
points were set based on a visual examination of the time
trend of SEðbryÞ in initial model runs. The estimated para-
meters were equilibrium recruitment (R0), the two logistic se-
lectivity parameters, and the bry for the years 1945–2010, a
total of 69 estimated parameters. The annual fishing mortal-
ity, F, was calculated by an iterative routine that finds the Fy
that matches the catchy exactly. All other parameters were
fixed at the true values. Initial values of the bry were 0, but
the estimates of R0 and the selectivity parameters were
started at the true values. This is an artificially high level of
information for an assessment model, but was intended to fo-
cus the results on the relationship between the amount of in-
formation about recruitment deviations and the method of
modeling these deviations.
The estimation models were evaluated by comparing

the estimated with the simulated values for initial bio-
mass B0 and final depletion B2010/B0. The relative error,
100%� qi � qtruei

� �
=qtruei , of these quantities was used as a

performance measure for each of the methods described
in Table 2. For plotting, the ratio qi=q

true
i was used as a

more visually informative quantity.

Estimating sR
The standard deviation sR of the ry was not estimated

while investigating alternative bias adjustment methods to fo-
cus the analysis on the best-case scenario in which the true
value was correctly specified. However, in practical applica-
tions, this quantity is not known, so further analyses were
conducted to explore its estimation. First, a profile approach
was applied to the data-poor and data-rich data sets. Estima-
tion models were applied with sR fixed at a range from 0.5 to
0.9 as well as the true value used in the simulations, sR =
0.7. Then, three methods were used to estimate sR using
only the data-poor simulations. (1) In the first method sR
was estimated as a parameter in the estimation model. (2) In
the second approach, sR was determined using the bisection
method (Conte and de Boor 1980), where repeated model
runs were used to numerically estimate a value of sR within
0.02 of a value that would satisfy the equality s2

R¼SDðbrÞ2,
where SDðbrÞ is the standard deviation of the vector of bry val-
ues for the years 1975–2004. This iterative approach has
been used in cases where method 1 was not able to find a
local minimum. (3) The last method also used the bisection
method to tune sR, but this time it was brought to within
0.02 of the value that would satisfy the equality

s2
R¼SDðbrÞ þ SEðbryÞ2, where the additional term, SEðbryÞ2, is

the square of the mean standard error estimates for the bry
from the years 1975 to 2004. This method should perform
better than method 2 based on the theory presented above.
In each of these investigations into sR, the bias adjustment

values by were ramped up to and down from a maximum of
0.52 for the data-poor scenario and 0.72 for the data-rich sce-
nario, respectively.

MCMC
In addition to maximum likelihood estimation, MCMC

chains of parameter estimates were calculated for the 100 si-
mulated data files from the data-poor scenario. For the
MCMC, the bias adjustment fraction was fixed at by = 1.0
for all years according to the findings of Maunder and Deriso

Table 2. Estimation models differing in the pattern of annual bias
adjustment fraction, named by the maximum bias adjustment frac-
tion value in each case.

Name Description
0 (SCAA) Bias adjustment fraction by = 0 for all years and

u = 0.01 in eq. A.19
0 Bias adjustment fraction by = 0 for all years
0.52 Ramp for data-poor: following eq. 15 with

bmax = 0.52
0.72 Ramp for data-rich: following eq. 15 with

bmax = 0.72
1 Ramp to 1: following eq. 15 with bmax = 1.0
1 (no ramp) Bias adjustment fraction by = 1.0 for all years

Note: SCAA, statistical catch-at-age.
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(2003). The MCMC samples were calculated using the de-
fault algorithm included in AD Model Builder (ADMB Proj-
ect 2009). Each chain was 1 000 000 MCMC samples, with
the first 200 000 discarded as a burn-in period and thinned
to every 1000th samples. Bayesian analyses implementation
in AD Model Builder have often used longer chains with
greater thinning (e.g., 5 000 000 thinned to every 5000th or
2500th sample; Punt et al. 2006; Stewart et al. 2011), but
the need to perform these calculations for each of 100 simu-
lated data sets necessitated shorter chains. Convergence diag-
nostics for the MCMC chains were calculated using the
“coda” package (Plummer et al. 2010) in the software R
(R Development Core Team 2011).

Results

Simple simulation model
The mean values for SDðbrÞ and SEðbryÞ, calculated from

100 simulations for each level of sampling error, held very
tightly to the relationship predicted by eq. 9 (Fig. 1). The ob-
served parameter standard errors were lower than the pre-
dicted values by about 1% (Table 3), which is likely due to
the zero-centering of the deviation vector in the estimation
model. Variability in the sampling for each simulation leads
to variability in the standard deviation of the 50 recruitment
estimates, SDðbrÞ, while the standard error of each recruitment
estimate were constant across all years as a result of the con-
stant sdy values in the time series, so in this case
SEðbryÞ ¼ SEðbryÞ for all y.

Age-structured simulation model
The recruitments that are most precisely estimated from

the simulated data are for the cohorts born between 1975
and 2004 (Fig. 2). Age at 50% selectivity is age 5, so the
1975 cohort will be mostly selected when the age-
composition data begins in 1981 and will be represented in
the composition data through age 20 in 1995. Cohorts born
before 1975 will be represented in fewer years, and those
born prior to about 1965 will have very little potential to cre-
ate a signal in the data. This is the basis for the selection of
the ascending limb of the ramp function in eq. 15. Similarly,
cohorts born after 2004 will have little representation in the
data because of not being selected prior to the end of the
data series in 2010. Although the representation in the data
is not uniform for cohorts born over the range 1975–2004,
the data include the year in which the majority of these co-
horts are selected, which is the year where their representa-
tion in the composition data may be highest. Indeed, the
SEðbryÞ values are similar for these years, indicating similar
precision of bry (Fig. 2).
The relationship between the mean values of SDðbrÞ and

SEðbryÞ for the years 1975–2004 across the 100 simulations
for each level of age-composition sample size was again very
similar to that predicted by eq. 9 (Fig. 3), although to a lesser
degree than in the idealized simple model (Fig. 1). The dif-
ference may be due to a variety of factors, including the
zero-centering of the bry vector and the fact that the normal
approximation assumed in deriving the SEðbryÞ values from
the Hessian matrix is less exact when the information in the
data is not a point estimate as in the idealized scenario.

The maximum bias adjustment values bmax 0.52 and 0.72
shown on panels (b) and (d), respectively, of Fig. 2 were the
mean values of VarðbrÞ=s2

R for the years 1975–2004 calculated
from an initial set of model runs with no bias adjustment ap-
plied (Fig. 3). Calculating the bias adjustment fraction from
the values of 1� SEðbryÞ2=s2

R resulted in slightly higher bmax
in each case but produced similar results.
Estimation models with ramped bias adjustment performed

well in estimating B0 and final depletion (Figs. 4 and 5),
while those with constant bias adjustment performed poorly.
For the data-poor simulation model with age-composition
sample size of 20, the estimation model that was best suited
for this data based on the theory above had bmax = 0.52. In

Fig. 1. Mean estimated uncertainty in estimated recruitment devia-
tions (rec. devs.) vs. variability in the estimates for a simple model
in which the data is a survey of recruitment deviations for 50 years.
Four levels of sampling error in the survey are used (sd = 0.1, 0.5,
0.9, 5.0). Variability in simulated recruitment deviations is sR = 0.7
throughout. Grey points indicate results of 100 realizations of the
model for each level of sampling error sd (indicated by text label
associated with each cluster of points). Large Xs indicate observed
average value for each quantity across the realizations. Large open
circles indicate predicted values based on eq. 5 for mean parameter
standard error and on eq. 7 for standard deviation of vector of esti-
mates. Dotted arc indicates the predicted relationship between the
two measurements, as described in eq. 9.

Table 3. Results of simple model corresponding to Xs and
circles in Fig. 1.

Sampling
error sd

Mean
observed
sðbrÞ Predicted

sðbrÞ
Mean
observed
SEðbryÞ Predicted

SEðbryÞ
0.1 0.691 0.693 0.098 0.099
0.5 0.560 0.570 0.403 0.407
0.9 0.431 0.430 0.547 0.553
5.0 0.097 0.097 0.686 0.693
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practice, this model had the least bias in B0 of all estimation
models (relative error of –1.3%), but performed second best
at estimating final depletion (–2.2%), with the bmax = 0.72
model having slightly less relative error (1.2%). For the data-
rich simulation model with sample size of 200, the estimation
model with bias adjustment ramp based on the observed var-
iability (bmax = 0.72) performed best in estimating B0 (rela-
tive error of –0.1%), but was second best in estimating final
depletion (3.1%), with the model with ramp to bmax = 1 hav-
ing less relative error (–1.1%). The worst performing models
were those with constant bias adjustment fractions at 0 or 1,
which differed from the simulated values by at least 9% for
both quantities in both data-poor and data-rich estimation
models. The SCAA-like model overestimated final depletion
by almost 30% and underestimated B0 by over 20%.
Over 100 runs of the SCAA-like estimation model, the

mean of the SDðbrÞ values, which measure variability of the
estimated deviations in recruitment, calculated for the years
1975–2004, was 0.78 for the data-rich model and 0.80 for
the data-poor model (large pluses in Fig. 3). In both cases,
these values are higher than the simulated variability, which
had sR = 0.7. Furthermore, the model with less information
in the data had more variability in the estimated parameters.

This is in contrast with the non-SCAA estimation models
(large Xs in Fig. 3), where the objective function component
for recruitment deviations is sufficient to decrease variability
in the estimates by pulling these values toward zero as the
information in the data goes down.

Estimating sR
When sR was changed from the true value of 0.7 in the

age-structured simulation model, the sum of the variance in
estimated deviations and the average variance around each
estimate provided a total variance that was closest to s2

R

when the value of sR was specified at the true value
(Fig. 6). Specifying a value of sR that is too high is akin to
the SCAA approach in that it reduces the penalty associated
with more variability in bry. Conversely, a value of sR that is
too low will create a pull on the bry toward zero that will be
stronger than necessary in relation to the signal in the data.
This suggests that tuning sR to satisfy the relationship

s2
R¼VarðbrÞ þ SEðbryÞ2 could be a good way to estimate its

value. Indeed, this new approach to tuning sR provides
greater precision and less bias in the resulting value than ei-
ther estimating sR as an additional parameter or tuning it to

Fig. 2. Example realizations of full model with 40 years of age-composition data from 1971 to 2010. Model shown in panels (a) and (b) has
20 age samples in each year, while panels (c) and (d) have 200 samples per year. Plots (a) and (c) show recruitment deviations used in
simulation model (grey circles), estimated recruitment deviations in estimation model (black circles), and 95% intervals based on standard
error of estimated values (vertical bars). Plots (b) and (d) show transformed standard errors (triangles) based on eq. 10 and the bias adjustment
fraction chosen for each year of the estimation model (thick line with peak at 0.52 for data-poor model and 0.72 for data-rich model).
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match the standard deviation of the bry without considering
the uncertainty around these estimates (Fig. 7).

MCMC
The MCMC results indicated that the relationship between

the variability and uncertainty in bry holds even more closely
to the prediction from analytical derivations than in the max-
imum likelihood estimate (MLE) calculations (Figs. 8 and 9).
The MCMC samples represent the combination of variability
between and uncertainty within the bry values (Fig. 8). This
aggregate distribution has variability represented by sR
throughout the time series of recruitments, indicating that a
bias adjustment fraction of 1.0 is appropriate when integrat-
ing over the uncertainty in each bry. The distributions of
MCMC samples of bry from any given year were generally
found to be left-skewed, especially for years where the simu-
lated recruitment value was large (Fig. 10).
Convergence diagnostics indicated that chains longer than

the 1 000 000 samples used in this analysis would be neces-
sary to pass some tests of convergence. For the 6900 param-
eter chains (69 parameters estimated for each of 100
simulations), 99% of them passed the Heidelberger and
Welch test of stationarity, but only 74% passed the associated

half-width test of convergence (Plummer et al. 2010). How-
ever, the length of the MCMC chains appeared to be suffi-
cient for purposes of illustrating the relationships between
uncertainty and variability in recruitment estimates and the
differences in treatment of recruitment bias adjustment re-
quired for MCMCs compared with MLE calculations.

Discussion

The results of the analytical derivations and the simulation
experiments have some clear implications for the estimation
of recruitment in age-structured population models. First,
within the context of the simulation model used in this anal-
ysis, it is possible to allow recruitment deviations to be esti-
mated parameters even in years with almost no information
about recruitment and still achieve relatively unbiased esti-
mates of initial biomass and final depletion. Second, without
an objective function component penalizing recruitment devi-
ations away from 0, the variability of bry will increase as the
information about the ry goes down. That is, in a data-poor
scenario, the bry in a SCAA-like model will follow the noise
in the data rather than accurately approximate the true varia-
bility in recruitment. Third, when an objective function com-
ponent for recruitment deviations is used under the common
assumption that recruitments are lognormally distributed, a
bias adjustment is necessary to adjust the mean of the distri-
bution, and this adjustment should be a function of the esti-

Fig. 3. Mean estimated uncertainty in estimated recruitment devia-
tions (rec. devs.) vs. variability in the estimates for the age-
structured model. Variability in simulated recruitment deviations is
sR = 0.7 throughout. Grey points indicate results of 100 realizations
of the model for each combination of age-composition sample size
(indicated by text label associated with each cluster of points) and
estimation model (circles = non-SCAA, triangles = SCAA). Large
Xs and pluses indicate observed mean values for each cluster.
Dotted arc indicates the predicted relationship between the two mea-
surements, as described in eq. 9. No bias adjustment was applied in
any case (by = 0 for all years). Application of a ramped bias adjust-
ment for the non-SCAA approach increased the mean values (posi-
tion of the Xs) by less than 2% in each dimension.

Fig. 4. Median biomass from the 100 simulations and for each of
the six estimation models applied to the simulated data, represented
as a fraction of the true B0 value (left axis) and the associated bias
adjustment fraction for each year (right axis). Only results for the
data-rich scenario are shown, as the patterns are similar for the two
cases. The points at 1960 indicate the median B0 values in each
case, while 1961 is the beginning of the time series that includes the
nonequilibrium initial age composition derived from estimated bry for
the years 1945–1960. The B0 points at 1960 correspond to the thick
median lines within the light gray boxplots in Fig. 5.
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mated variability of the recruitment deviations rather than the
true underlying variability in the population. This last conclu-
sion leads to a suggested refinement to previous approaches
to this problem; the bias adjustment applied to a lognormal
distribution needs to change across years within a model be-
cause of heterogeneity in the information about recruitment
in the data. A typical pattern will likely have zero bias adjust-
ment for the early years in the model, a ramp up to a plateau,
the height of which will be a function of the best level of in-
formation about recruitment in the data, and then drop down
to zero bias adjustment in the final years of the model, where

individuals typically have not yet been selected by any fish-
ing gear, and thus the data provide no information about the
strength of these cohorts. For models that include forecast
years in the estimation (as in Maunder et al. 2006), the bias
adjustment fraction for bry in the forecast is by = 0.0 and these
forecast parameters get an estimated uncertainty based solely
on sR.
The results of both the analytical and simulation analysis

indicate that the variability across estimated recruitments and
the uncertainty in these estimates are tightly coupled accord-
ing to a simple relationship. This relationship allows the un-
certainty in recruitment estimates to inform the choice of bias
adjustment pattern applied in the model. This requires run-
ning such models at least twice: once to get the point esti-
mates of recruitment deviations and the variability around
these values, which are then used to estimate a pattern of
bias adjustment values for each year, and then a second time
to apply the chosen pattern.
Among the patterns of bias adjustment applied in the age-

structured simulation models, no one pattern performed best
with regard to estimating B0 and the final depletion. How-
ever, some results were unequivocal. For the data-rich simu-
lations, a bias adjustment that ramped from 0 in the early
years up to either 0.72 or 1.0 performed better than all other
estimation models, including those with adjustment values of
either 0 or 1.0 for all years. For data-poor simulations,
ramped bias adjustment was again required to minimize bias
in B0 and depletion, but in this case, the maximum bias ad-

Fig. 5. Boxplots showing the performance of estimation models
using six different bias adjustment estimation models. The dark and
light boxes correspond to the data-poor and data-rich simulation
models, respectively. 100 simulations are used for each combination
of simulation and estimation models. Maximum bias adjustment
fractions of 0.52 and 0.72 correspond to the curves shown in Fig. 2,
while the value 1 indicates a similar ramp but with a peak at 1.
Cases 0 (SCAA) and 0 have no bias adjustment, and 1 (no ramp)
has 100% bias adjustment for all years. The SCAA case has low
weight applied to the likelihood contribution for recruitment. Box-
plots show median and 50% and 95% intervals. Boxes with thick
outlines indicate the cases predicted to perform best based on the
theory above.

Fig. 6. Ratio of observed combined variance (mean squared standard
error of parameter estimates + variance across recruitment devia-
tions) to expected combined variance (s2

R = 0.72) as described in
eq. 9 over a range of assumed values for sR in the estimation model.
The dark and light boxes correspond to the data-poor and data-rich
simulation models, respectively. Boxplots show median and 50%
and 95% intervals. Data-poor models use the bias adjustment pattern
with bmax = 0.52, and data-rich models use bmax = 0.72 as described
in Table 2.
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justment fraction needed to be less than 1, with the two cases
of 0.52 and 0.72 outperforming all others.
The result of no single model outperforming the others

may be due to various factors, including the relatively simple
approximation of a linear ramp in bias adjustment up to and
down from a constant value. However, application of this ap-
proach was able to achieve a median bias of at most 3.2% in
key quantities for both data-rich and data-poor simulation
models and may thus be recommended as an important re-
finement to the constant bias adjustment methods typically
employed in such models.
Estimation of sR is known to be problematic in fisheries

assessment models (Maunder and Deriso 2003) and is often
attempted by iteratively tuning sR to match the standard devi-
ation of the estimated recruitment deviations. For the data-
poor simulation scenario examined here, tuning in this way
performed the worst of three methods considered. Estimating
sR directly had relatively unbiased results for this parameter,
but high variability. The unbiased performance of this estima-
tion approach was made possible by the adjustment intro-
duced in eq. 13 to downweight the contribution of –ln(sR)
according to the degree of bias adjustment. The best results
came from iteratively tuning sR to match the combination of
both variability among recruitment deviations and uncertainty
about those estimates. This approach should be more robust
than the estimation method in cases where lack of informa-

Fig. 7. Performance of three methods for determining sR in the data-
poor model. Tuning methods use bisection method to match sR to
either recruitment variability, s2

R¼VarðbrÞ, or the combination of
variability and uncertainty, s2

R¼VarðbrÞ þ SEðbryÞ2, as described in
eq. 9, calculated over the years 1975–2004 in both cases. All cases
had the bias adjustment pattern with bmax = 0.52 as described in Ta-
ble 2. Estimated values are bounded between 0.1 and 1.5. Boxplots
show median and 50% and 95% intervals. The horizontal at 0.7 in-
dicates the true value of sR used in the simulations.

Fig. 9. Relationship between variability around median with chains
to variability of medians across chains for MCMC samples. Vertical
axis is standard deviation of points shown as boxplots in Fig. 8a.
Horizontal axis is standard deviation of points shown in Fig. 8b.
Shading of points indicates year from darkest (1945) to lightest
(2010). Large X shows mean of values from 1975 to 2004, which is
equivalent to the X for the data-poor stock in Fig. 3.
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Fig. 8. Boxplots showing results of 100 MCMC chains for the data-
poor case of the age-structured model. (a) Median values from each
chain (between-simulation variability), (b) difference between sam-
ples from each chain and their respective median values (within-
simulation variability), and (c) samples from all chains combined.
Boxplots show median and 50% and 95% intervals.
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tion about recruitment causes shrinkage of the estimated de-
viations toward 0.
This combination of variability and uncertainty is essen-

tially what is found in Bayesian models, in which MCMC
samples of the bry are the combination of variability among
recruitment deviations and variability around the best fit to
the data. Thus, when applying MCMC, the bias adjustment
fraction should be equal to 1 for all years, regardless of the
information in the data about recruitment. This result is con-
sistent with the recommendations of Maunder and Deriso
(2003) and Maunder et al. (2006), who suggest that Bayesian
integration be used in the context of a constant bias adjust-
ment based on sR applied in all years. In the SS model, bias
adjustment levels and ramps used during the MLE phases are
automatically turned to a full bias adjustment of 1.0 for the
MCMC phase. In situations where time does not permit the
use of MCMC for a full Bayesian integration, we suggest
that for both data-poor and data-rich models, a ramped bias
adjustment pattern can be used to allow the estimation of re-
cruitment deviations in all years of an age-structured model
to achieve both reasonable MLE estimates of key parameters
and also accurately reflect the uncertainty in these parameters
associated with variability in recruitment.

The small amount of skewness in the MCMC samples ofbry suggests that the estimates of uncertainty from the normal
approximation to the likelihood surface may be slightly inac-
curate and may contribute to the minor differences between
theory and practice in the MLE results presented above. The
skewness is logical given the nature of the data and the pe-
nalized log-likelihood model formulation. Strong recruit-
ments are well represented in the data, and this signal is
strong relative to the penalty for deviating from median re-
cruitment. This is consistent with the finding that large pro-
portions are more precisely sampled than small proportions
in fishery catch-at-age sampling programs (Crone and Samp-
son 1998). On the other hand, to estimate a weak recruitment
of strength –2sR, the data would have to fit better with that
estimate to overcome the penalty for such a large deviation.
However, weak recruitments are not distinct in the data, espe-
cially if ageing error or use of length-composition data blur
the information among adjacent recruitments, so weak re-
cruitment estimates tend to accumulate at moderately weak
levels rather than be distributed down to more extreme val-
ues. This skewness in the estimates deserves further investi-
gation and may lead to refinements in the error distribution
used in the estimation models.

Fig. 10. Distribution of MCMC values and normal approximation from the maximum likelihood estimate (MLE) for bry from every fifth year
in an example case within the data-poor scenario. Grey histograms show MCMC samples and black lines show normal distribution around
point estimate based on Hessian matrix. Distribution of MCMC samples is left-skewed for all years after 1960, especially for years with larger
recruitment levels.
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Although this analysis was conducted with a fixed
spawner–recruitment relationship that was essentially flat
(steepness = 0.99), the results have strong implications for
estimation of the degree of estimated depletion in stock abun-
dance and for the estimated curvature in a spawner–
recruitment relationship. The steepness parameter basically
controls the expectation for mean recruitment as spawning bi-
omass declines below the equilibrium unfished level. The
findings presented here, as displayed in Fig. 4, clearly show
that the degree of bias adjustment imposes an offset between
the mean unfished biomass level and the mean level that oc-
curs during the data-rich portion of the time series. If the as-
sessment model has been set to estimate steepness, the
estimate of steepness will be influenced by the degree of
bias adjustment. Inaccurate specification of the bias adjust-
ment pattern will result in biased estimates of steepness or
biased estimates in the degree of stock depletion.
Not only would one expect an effect of the degree of bias

adjustment on estimates of steepness, it seems likely that
when steepness is much below 1.0, then an effect of steep-
ness on recruitment variability could occur (Minto et al.
2008; Methot 2009). This effect is due to the observation
that in natural systems some of the variability in young fish
survival happens before the density-dependent life stage, thus
introducing randomness in the effective spawner output. This
before-density-dependent variability is dampened at high
spawner abundance, but magnified by steepness at low
spawner abundance.
Our results provide an explanation for the finding that

MLE estimates of stock abundance sometimes differ from
the mean of the posterior distribution from MCMC applied
to the same data set. Typically, assessment practitioners using
MLE approaches have set the bias adjustment to 0 or 1
throughout the modeled time series under the expectation
that the bias was constant and would be simply offset by the
estimated mean level of recruitment. Our results show that
when there is heterogeneous information about recruitment
variability, the use of bias adjustment of 0 or 1 will result in
a biased trend in estimated stock biomass. Using our recom-
mended procedure for a ramp in the bias adjustment, we were
able to obtain MLE results that are consistent with the
MCMC results.
Stock assessment estimation models that are being fit to

long time series with changing degrees of information about
recruitment variability bridge the gap between age-
aggregated, biomass dynamics models (Prager 2002) during
data-poor periods and highly age-specific SCAA-like models
during data-rich periods. In the real world, recruitment varia-
bility occurs throughout the time series, but in the biomass
dynamics estimation model it is a hidden process. In Baye-
sian implementations of data-poor models (Walters and Mar-
tell 2004; Maunder and Deriso 2003), the estimaton process
can integrate across the variability in recruitment and
achieved unbiased results. Here we have shown that proper
attention to the expected distribution of estimated recruit-
ments allows for achievement of unbiased results in a maxi-
mum likelihood context also.
The protocols for recruitment bias adjustment described

here have been implemented in the SS assessment program,
which is available from the NOAA Fisheries Toolbox (http://
nft.nefsc.noaa.gov). The implementation includes ability to

specify a ramp and plateau for the level of the bias adjust-
ment and model outputs from eq. 11 to enable user adjust-
ment of the level of the bias adjustment. As more experience
with use of this bias adjustment approach is obtained, it is
likely that more flexible alternatives to the linear ramp and
plateau will be needed. The principles are not unique to SS,
and the protocols for bias adjustment should be implemented
in any model that uses a penalized likelihood approach to es-
timate annual recruitment deviations.
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Appendix A. Population dynamics, observa-
tion, and statistical models as implemented
in Stock Synthesis
The model description below, and with parameters shown

in Table A1, illustrates a simple subset of the wide range of
options available in Stock Synthesis. For a user manual de-
scribing the full range of model options, see the NOAA Fish-
eries Toolbox (http://nft.nefsc.noaa.gov).

Population model

Numbers at age, mortality, and catch
The number at age a in gender g in the beginning of each

year is incremented as

ðA:1Þ Nyga ¼
0:5Ry e

ry � bys
2
R=2 for a ¼ 0

Nyga�1 e
�Zyga�1 for 0 < a < A

Nyga�1 e
�Zyga�1 þ Nyga e

�Zyga for a ¼ A

8>>><>>>:
where

Ry is the expected recruitment derived from the
spawner–recruit curve (described below),
ry is the deviation in recruitment in year y,
by is bias adjustment fraction applied in year y, as de-
scribed in eq. 15 and associated text,
sR is the standard deviation for recruitment deviations,
Nyga–1 is the number at age a – 1 in gender g at the be-
ginning of year y,
Zyga–1 is the total mortality rate for age a – 1 in gender
g, in year y, and
A is the accumulator age.

The total mortality in year y for age a in gender g is calcu-
lated as

ðA:2Þ Zyga ¼ M þ Fyba

where

M is the natural mortality (assumed constant across
ages and genders),
Fy is the fishing mortality in year y, and
ba is the selectivity at age a.

The mortality values are used to calculate the catch in
numbers at age as

ðA:3Þ Cyga ¼ Nyga

Fyba

Zya
ð1� e�ZyaÞ

where the values of Fy in the two equations above are deter-
mined by iteratively solving for the values that make the total
expected catch match the observed catch in each year (with
starting value for the F search based upon a Pope’s (1972)
approximation so that the search itself is differentiable). This
total expected catch (in biomass) for year y is

ðA:4Þ bCy ¼
XA
a¼0

ba

X2
g¼1

Cyga

XAl

l¼1

efalwl

where

Al is the number of length bins,efal is the proportion of numbers at age a within length
bin l in the middle of the year, as described below in
eq. A.11, and
wl is the mean mass of individuals in length bin l, cal-
culated from Ll, the middle length of length bin l, as
wl ¼ 2L3l � 10�6 for both males and females. The
length bins used for the calculations in this example
are the 2 cm intervals between 2 and 90 cm.

Virgin age structure
The age structure of the virgin population (divided equally

among males and females) is given by
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ðA:5Þ N 0
0a ¼

R0 e
�Maþ ry1�a � by1�as

2
R for 0 < a < A

R0

e�aM

1� e�M
for a ¼ A

8>><>>:
where

R0 is the initial recruitment,
y1 is the initial year of the model,
ry1–a is the recruitment deviation in the year y1–a, and
by1–a is the bias adjustment fraction for the year y1–a, as
described in eq. 15 and associated text.

Spawning biomass
Spawning biomass is calculated at the beginning of the

year as

ðA:6Þ Sy ¼
XA
a¼0

Ny;g¼1;aw
0
a

where

Ny,g=1,a is the number of females of age a in year y, and
w0
a is the average spawning output for females of age a

defined in eq. A.12 below.

Spawner–recruit relationship
Expected recruitment is based on the Beverton–Holt

spawner–recruit curve, as modified by Mace and Doonan
(1988), but with constant spawning biomass above the equili-
brium value

ðA:7Þ Ry ¼
4hR0Sy

S0ð1� hÞ þ Syð5h� 1Þ for Sy < S0

R0 for Sy � S0

8><>:

where

h is the parameter for steepness of the stock–
recruitment function,
S0 is the unfished equilibrium spawning biomass corre-
sponding to R0, and
Sy is the spawning biomass at the beginning of the
spawning season in year y.

Growth
Growth was assumed to follow the von Bertalanffy growth

curve, parameterized in terms of reference ages a1 and a2
(Schnute and Fournier 1980). The mean length at age a, des-
ignated either La when a is the integer age at the beginning
of the year or eLa when a is the real age in the middle of the
year, is calculated as

ðA:8Þ La ¼ L1 þ ðL1 � L1Þ e�Kða�a1Þ

where

a1 is the first reference age,
L1 is the mean length at age a3,
K is the growth coefficient, and
L∞ is the mean asymptotic length, calculated from

ðA:9Þ L1 ¼ L1 þ L2 � L1

1� e�Kða2�a1Þ

where

a2 is the second reference age, and
L2 is the mean size at age a2.

The standard deviation of length at age a increases with
mean length at age as

Table A1. Parameter values used in the age-structured simulation analysis.

Symbol Description Value in simulation
A Accumulator age (years) 20
Al Number of length bins 45
M Natural mortality (year–1) 0.2
a1 Reference age for growth parameterization 1
a2 Reference age for growth parameterization 12
L1 Length at age a1 (cm) 30
L2 Length at age a2 (cm) 70
K Growth coefficient (year–1) 0.25
CV1 Length CV at age a1 0.1
CV2 Length CV at age a2 0.128
x Constant added to the standard deviation of all ages 0.1
U1 Mass coefficient (kg·cm–3 × 10–6) 2
U2 Mass exponent 3
U3 Length at 50% maturity (cm) 50
U4 Maturity slope (cm–1) –0.25
b1 Age at 50% selectivity (years) 5
b2 Age at 95% selectivity – age at 50% selectivity 2
R0 Initial recruitment (log) 10.5
h Stock–recruit steepness 0.99
sR Recruitment variability 0.7
ry1 . . . ry2 Recruitment deviations for years y1 to y2 Stochastic
yb1 . . . y

b
4

Break points for piecewise linear function for annual bias adjustment fraction, by 1944, 1945, 2010, and 2011; or
1965, 1975, 2004, and 2008
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ðA:10Þ sa ¼

eLaCV1 þ x for a � a1

eLa CV1 þ ðeLa � L1Þ
ðL2 � L1ÞðCV2 � CV1Þ

" #
þ x for a1 < a < a2

eLaCV2 þ x for a � a2

8>>>>><>>>>>:
whereeLa is the mean length in the middle of the year for age a,

CV1 is the coefficient of variation for length at age a1,
CV2 is the coefficient of variation for length at age a2, and
x is a constant added to the standard deviation of all ages.

The resulting standard deviation in length at age is smoothly increasing from sa=0 at 1.7 to sa=20 = 9.40.

Age–length population structure
The numbers at age for each gender are distributed across the defined length bins. The proportion in length bin l for age a,

designated either fal when a is the integer age at the beginning of the year or efal when a is the real age in the middle of the
year, is calculated as

ðA:11Þ fal ¼

F
L0
min � L�a
sa

� �
for l ¼ 1

F
L0
lþ1 � L�a
sa

� �
�F

L0
l � L�a
sa

� �
for 1 < l < Al

1�F
L0
max � L�a
sa

� �
for l ¼ Al

8>>>>>>>><>>>>>>>>:
where

F is the standard normal cumulative density function,
L0
l is the lower limit of length bin l,

L0
min is the lower limit of the smallest length bin,

L0
max is the lower limit of the largest length bin,

L�a is the mean length of age a, either La at the start of
the year or eLa in the middle of the year, and
sa is the standard deviation of length at age a.

Maturity and fecundity
The fecundity at age is given by

ðA:12Þ w0
a ¼

XAl

l¼1

fal4lwl

where

fal is the proportion in length bin l for females of age a
at the start of the year,
4l is the fraction mature, given by the logistic function
4l ¼ 1þ e�0:25ðLl�50Þ� ��1, and
wl is the mass of females in length bin l.

Selectivity
Selectivity was assumed to be a logistic function of age

ðA:13Þ bfgal ¼ 1þ e�log ð19Þða� b1Þ=b2
h i�1

where

b1 is the age at 50% selectivity and

b2 is the difference between the age at 95% selectivity
and the age at 50% selectivity.

Observation model

Ageing imprecision
The proportion of age a assigned to age a′ is

ðA:14Þ Ua0a ¼

F
a0

sa

� �
for a0 ¼ 1

F
a0 þ 1

sa

� �
�F

a0

sa

� �
for 1 < a0 < A

1�F
a0

sa

� �
for a0 ¼ A

8>>>>>>>><>>>>>>>>:
where sa is the standard deviation of ageing imprecision at
age a given by the formula

ðA:15Þ sa ¼ 0:525þ 0:05a

Age compositions
The expected proportion at age a′ for gender g in year y is

calculated as

ðA:16Þ bpyga0 ¼
XA
a¼0

Ua0a

XAl

l¼1

Cygal þ 3

XA
a0¼1

XA
a¼0

Ua0a

XAl

l¼1

Cygal þ 3

 !
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where 3 = 10–4 is added to make the calculations more ro-
bust to zero values.

Index of abundance
The CPUE for the model is calculated as catchability and

vulnerable biomass

ðA:17Þ Gy ¼ QBy

where Q is the catchability of the fishery.
For simplicity, catchability was fixed at 1.0 in the operat-

ing model. In the estimation model, the catchability was cal-
culated as the median unbiased value:

ðA:18Þ bQ ¼ e

X
t
ln bGy=bBy


 �
=s2

1X
y
1=s2

1

24 35
where s1 is the standard deviation in log space of the index
observations for all years, ln(Gy).

Statistical model

Objective function
The objective function L is the weighted sum of the indi-

vidual components:

ðA:19Þ L ¼ Lcomp þ Lindex þ uLrecruit

where

L� are the negative log-likelihood components for the
components for the age compositions, index of abun-
dance, and recruitment deviations, as described below,
and
u is a weighting factor for the recruitment deviations.

Age compositions
The observed age compositions are assumed to have a

multinomial distribution. The contribution to the objective
function for the age compositions is

ðA:20Þ Lcomp ¼
X
y

X2
g¼1

nyg
XA
a0¼1

pyga0 ln pyga0 =bpyga0� �
where nyg is the number of observed ages in the catch in year
y.

Index of abundance
The objective function component for the index of abun-

dance is

ðA:21Þ Lindex ¼ 0:5
X
y

ln ðGyÞ � ln ðbGyÞ
s1

" #2

Recruitment deviations
The objective function component for deviations in recruit-

ment is

ðA:22Þ Lrecruit ¼ 0:5
X
y

r2y

s2
R

þ by ln ðsRÞ
" #
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