Modeling growth in Stock Synthesis

Ending year expected growth

Growth curves

- The von Bertalanffy, parameterized in terms of,
 - length at a given young age,
 - length at a given old age (or optionally L_{∞})
 - growth rate parameter, K
- Growth increment is modeled as a function of current length, current year's L_∞ and K
 - allow for temporal changes in growth without individuals shrinking

Growth example

- Example showing:
 - Two birth seasons
 - -CV = F(A)
 - Season durations:
 10 months
 & 2 months

Additional growth options

- Cohort-specific growth
 - Create as time-varying adjustment to the CGD parameter which has a base value of 1.0
 - Acts as multiplier on K
 - allows variation in growth rates between cohorts
 - may be due to intra-cohort density dependence (not modeled explicitly), genetics, or other factors
- Schnute's generalized growth curve (a.k.a. Richards curve)
 - has additional parameter that generalizes the von Bertalanffy curve
- Age-specific K

Cohort Growth Deviation

Age-Specific K

Parameter value is a simple multiplier on the K for the previous age; so creates a random walk

.

3 # GrowthModel: 1=vonBert with L1&L2; 2=Richards with L1&L2; 3=age_speciific_K; 4=not implemented 1 #_Growth_Age_for_L1 999 #_Growth_Age_for_L2 (999 to use as Linf) 5 # number of K multipliers to read 3 5 7 9 11

.

#_growth_parms							
#_LO	HI	INI	ΓPF	RIOR	PR_ty	/pe Sl	D PHASE
0.05	0.15	0.1	0.1	-1	0.8	-1	0 0 0 0 0 0 # NatM_p_1_Fem_GP_1
10	45	30	30	-1	10	1	0 0 0 0 0 0 0 # L_at_Amin_Fem_GP_1
40	250	200	200) -1	10	1	0 0 0 0 0 0 0 # L_at_Amax_Fem_GP_1
0.001	0.5	0.1	0.1	-1	0.8	-2	0 0 0 0 0 0 # VonBert_K_Fem_GP_1
0.01	3	1	1	-1	0.8	3	0 0 0 0 0 0 # Age_K_Fem_GP_1_a_3
0.01	3	1	1	-1	0.8	3	0 0 0 0 0 0 # Age_K_Fem_GP_1_a_5
0.01	3	1	1	-1	0.8	3	0 0 0 0 0 0 # Age_K_Fem_GP_1_a_7
0.01	3	1	1	-1	0.8	3	0 0 0 0 0 0 0 # Age_K_Fem_GP_1_a_9
0.01	3	1	1	-1	0.8	3	0 0 0 0 0 0 0 # Age_K_Fem_GP_1_a_11

Variation of length at age

- Several linear functions are available to model the variation of length at age
 - CV as a function of length at age
 - CV as a function of age
 - SD as a function of length at age
 - SD as a function of age
- Dogleg pattern uses growth A_{min} and A_{max}

Growth patterns

- Can be used to model the difference in growth among sub-populations
- In a multi-area model, the distribution of recruitment among areas and growth patterns is controlled by estimable parameters
- When an individual changes areas, it maintains the growth parameters of its specified growth pattern

Growth platoons for size-survivorship

- 3 or 5 platoons (morphs) nested within growth patterns and genders
- Used to account for the effect of size specific selectivity in the population size structure at age by dividing cohort into components with different size-at-age
- Size selectivity then causes different F-at-age for the different morphs

Length (cm)

Number of sub-morphs

Length-Specific Survivorship

Growth morph example

Interaction between selectivity and mean weight and length (at age 30)

Empirical weight at age (NS Herring)

Empirical weight at age in middle of the year

Year

Age

Data Needs

- Distinct length modes in length comp data
- Mean length (or body wt)-at-age data
- Conditional age-at-length data

Growth Estimation Notes

- If there is an existing set of growth parameters, consider using as priors and let SS update
- Be alert for existing growth curve to be half year shifted along age axis compared to SS' time stanzas
- CAAL data is voluminous and will slow the model