
The Megawidget Framework:

A Reference for Focal Points

Table of Contents

Table of Contents

Overview
Definitions
Properties: Mutable vs. Immutable

General Categories
Stateful
Notifier
Container
Detailed
Decorative

Available Types
BoundedListBuilder (stateful)
Button (notifier)
CheckBox (stateful)
CheckBoxes (stateful, detailed)
CheckList (stateful)
ComboBox (stateful)
Composite (container)
DetailedComboBox (container, detailed, stateful)
ExpandBar (container)
FractionRange (stateful)
FractionSpinner (stateful)
Group (container)
HiddenField (stateful)
HierarchicalChoicesTree (stateful)
IntegerRange (stateful)
IntegerSpinner (stateful)
Label (decorative)
MenuButton (notifier)
RadioButtons (stateful, detailed)
SwtWrapper
TabbedComposite (container)
Table (stateful)
Text (stateful)

Time (stateful)
TimeDelta (stateful)
TimeRange (stateful, detailed)
TimeScale (stateful, detailed)
UnboundedListBuilder (stateful)

Properties
autocomplete (false)
betweenLabel (empty string)
bold (false)
bottomMargin (0)
choices

children (None) [for hierarchical choice megawidgets only]
detailFields (None) [for detailed megawidgets only]
displayString
identifier (displayString)

color (None)
red
green
blue

columnHeaders
columnSpacing (15)
currentUnit (smallest of unitChoices)
detailFields (None)
durationChoices
editable (true)
enable (true)
expandedPages (empty string)
expandHorizontally (false)
expandVertically (false)
extraData (None)
fieldName
fields
fieldType
fullWidthOfDetailPanel (true)
headerExpandHorizontally (false)
incrementDelta (minimum that would cause a change in state)
interdependencyOnly (false)
italic (false)

label (empty string)
leftMargin (0)
lines (6)
maxChars (0)
maximumTime (no practical limit)
maximumVisibleTime
maxValue (no practical limit)
minimumInterval (0)
minimumTime (0 (indicating Jan 1, 1970 00:00 GMT))
minimumTimeInterval (1 minute)
minimumVisibleTime
minValue (no practical limit)
numColumns (1)
numericOnly (false)
pages

numColumns (1)
pageName
pageFields

precision (1)
preferredWidth (width of text)
promptText (empty string)
rightMargin (0)
scrollable (false)
selectedLabel (empty string)
sendEveryChange (true)
showAllNoneButtons (true)
showScale (false)
spacing (0)
spellcheck (false)
timeDescriptors (None)
topMargin (0)
unitChoices
valueEditables (None)
valueIfEmpty (empty string)
valueLabels (None)
values (default value(s) for specific type of megawidget)
valueUnit ("ms")
visibleChars (same as maxChars, unless latter is 0, in which case defaults to 20)
visiblePage (first page)

width (1)
wrap (false)

Positioning and Size of Megawidgets
Inline Detail Fields

Megawidget Interdependencies
Persisting Arbitrary Data between Script Executions
Debugging and Flushing Buffers
Performance Concerns

Overview
The ​megawidget​ framework provides a set of user interface widgets for displaying and
manipulating data within dialog boxes via a common set of interfaces. Megawidgets are
themselves made up of SWT controls, but they isolate the user from many of the chores of SWT
widget layout and configuration, performing much of the grunt work themselves.

Megawidgets may be used within Hazard Services as follows:

● Recommenders: If desired, a recommender may be written to display a dialog box
populated by megawidgets in order to collect information from a user before executing.

● Product Generators: If the process of generating a particular product requires additional
information, megawidgets may be displayed to collect said information within the Product
Staging Dialog.

● Hazard Event Metadata: Different types of hazard events may include different
associated metadata. This metadata changes not only with type, but also with the status
of the hazard event. The Hazard Detail View (also known as the Hazard Information
Dialog) displays megawidgets allowing event metadata to be viewed and manipulated.

Megawidgets are created by specifying their types and parameters within ​definitions​ in Python
code. (They may be instantiated and used within Java classes as well, but Java-based
megawidget manipulation beyond the scope of this document.) A collection of definitions
providing the contents of a recommender dialog, product generator panel, or metadata panel,
including definitions of any child megawidgets, is referred to hereafter as the ​total set​.

Definitions
Definitions hold the various ​properties​ of the megawidgets to be created. Each such property is
expressed as a key-value pair within the dictionary making up the definition. An example of a
definition for a button megawidget might read:

{

"fieldName": "reset",

"fieldType": "Button",

"label": "Reset"

}

This would result in the creation of a Button megawidget. The properties in this case provide,
respectively:

● the unique identifier of the megawidget
● the type of the megawidget (a button)

● the text to be displayed on the button face

Properties: Mutable vs. Immutable
As discussed above, each megawidget has a set of properties. When a megawidget is first
created, its properties, mutable or immutable, are assigned to the values given by that definition.
So, in the Button example above, the property ​label ​ has the value "Make Polygon"; thus, the
Button megawidget created by that definition will have this text displayed within its body.

Two important properties that must be provided for each megawidget are ​fieldName ​ and
fieldType ​. The former serves as the identifier for that megawidget; it must be unique within
the total set, meaning that no other megawidget within the same total set may use that same
identifier. The latter is used to specify the ​type​ of the megawidget to be created.

Many of these properties are ​immutable​, meaning that they cannot be changed once the
megawidget is created. For example, a megawidget's ​fieldName ​ property cannot be changed;
the megawidget has the same identifier throughout its lifetime.

However, a subset of the properties for a given megawidget are ​mutable​. These may be altered
during the megawidget’s lifetime. An example of a mutable property is the ​enable ​ property:
During a megawidget's lifetime, it may be enabled or disabled. Such manipulation is possible via
the use of ​interdependencies​, discussed later in this document.

General Categories
Each ​type​ of megawidget falls into at least one of the following general categories.

Stateful
Most megawidgets are ​stateful​, meaning that they hold some sort of value as their state. An
example is a ​Text​ megawidget, which has the text string found within its text entry field as its
state. Likewise, an ​IntegerSpinner​'s state is the integer found within its entry field. Each state
has an identifier, so that when a dictionary of states is supplied to the total set of megawidgets
to set their values, or such a dictionary is provided by the megawidgets, the states may be
ascertained by finding the values associated with the identifiers.

Most stateful megawidgets only hold one state at a time. For these, the ​fieldName ​ functions
as its state's identifier. Certain types of megawidgets, however, are capable of holding more
than one state. The ​TimeScale​ may have one or more states; each of a given TimeScale's
thumbs provides a timestamp, and each timestamp corresponds to a state. For such
megawidgets, the state identifiers are derived from the ​fieldName ​ by treating the latter as a
colon-separated list of state identifiers.

Thus, for example, if a TimeScale megawidget definition has the ​fieldName ​ of "impactTime", it
will have one thumb associated with a single state, the latter having the identifier "impactTime".
If instead the megawidget has as its ​fieldName ​ "riseAbove:crest:fallBelow", it would have
three thumbs, each associated with a different state identifier, which would be, in order,
"riseAbove", "crest", and "fallBelow".

When stateful megawidgets experience a state change, any ​interdependency script​ that has
been provided with the total set is executed with those megawidgets' ​fieldName ​ values as the
list of trigger identifiers.

Notifier
Some megawidgets function only to trigger ​interdependency scripts​. Unlike stateful
megawidgets, they have no state. The Button is the canonical example of such a megawidget.
When pressed, any interdependency script that was supplied with the total set is executed with
the megawidget's ​fieldName ​ value as the trigger.

Container
Container megawidgets are designed merely to hold other megawidgets as children. Examples
include the ​Group​ and ​TabbedComposite​. Each such megawidget has either one list of children,
or, if it has multiple pages (such as the TabbedComposite), one list of children per page. Such
megawidgets are used to visually group related megawidgets together and, for multi-paged
ones, to save space by displaying only one page at a time.

Detailed
Detailed megawidgets are those that are themselves ​stateful​, but which allow the option of
having child megawidgets function as detail fields for their states. Examples include the
CheckBoxes​, ​RadioButtons​, ​TimeRange​, and ​TimeScale​.

Decorative
Decorative megawidgets have no state, cannot be invoked, and hold no children; they simply
serve to explain or decorate the panel in which they reside. (​Note: at this time, there is only one
such type.​) The ​Label​ is an example. They are the simplest megawidgets.

Available Types
The following types of megawidgets are available. Using the given type as the value for
fieldType​ in the definition dictionary indicates that this sort of megawidget is to be created.
Each type is annotated with the ​categories​ into which it falls, and includes a list of the ​mutable
and immutable properties​ that it has. Any property that has no default value, and thus must be
specified, has its name given in ​bold​​.

BoundedListBuilder (​​stateful​​)
This megawidget is applicable to situations in which there is a bounded set of options from
which the user must be able to select zero or more choices, like a ​CheckBoxes​ or ​CheckList​;
however, unlike said megawidgets, it allows the user to order the choices. It consists of two
scrollable lists side by side, one holding the available (unselected) choices, and one holding the
currently selected choices, with buttons allowing the reordering of the latter list, and the
selecting and deselecting of individual choices. It allows the dragging and dropping of items
within the latter list, as well as between the two lists.

Example​​:

{

"fieldType": "BoundedListBuilder",

"fieldName": "boundedListBuilder1",

"label": "Available Columns:",

"selectedLabel": "Selected Columns:",

"choices": ["Name", "Type", "Description", "Threat Level",

"Time Until Impact", "Confidence", "Duration"],

"values": ["Description", "Time Until Impact", "Threat

Level"],

"expandHorizontally": True,

"expandVertically": True

 }

Immutable​​: ​fieldName​​, ​fieldType​​, ​interdependencyOnly ​, ​label ​,
lines ​, ​selectedLabel ​, ​spacing ​, ​width

Mutable​​: ​choices​​, ​editable ​, ​enable ​, ​extraData ​, ​values

Button (​​notifier​​)

This is a simple command button. Unlike most megawidgets, it has no state, but like stateful
megawidgets, it may be used to trigger the execution of an ​interdependency script​.

Example​​:

{

"fieldType": "Button",

"fieldName": "button1",

"label": "Reset to Initial Values"

}

Immutable​​: ​fieldName​​, ​fieldType​​, ​label ​, ​spacing ​, ​width

Mutable​​: ​enable ​, ​extraData

CheckBox (​​stateful​​)
The CheckBox is a simple toggle, allowing the display of a particular label associated with a
boolean value as state.

Example​​:

{

"fieldType": "CheckBox",

"fieldName": "checkBox1",

"label": "Include surrounding counties",

"values": True

}

Immutable​​: ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​spacing ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​values

CheckBoxes (​​stateful​​, ​​detailed​​)
This is comprised of a list of checkboxes, each representing one of the possible choices
available to the user for its state. If provided with a label, the latter appears as a descriptive

string above the checkboxes. The megawidget's state is a set of zero or more chosen choices.
Like the ​CheckList​, it is used in situations where the user may want to choose multiple
(non-mutually-exclusive) options. Unlike a CheckList, it allows the inclusion of zero or more child
megawidgets providing detail fields for any of the choices represented by its checkboxes.

Example​​:

{

"fieldType":"CheckBoxes",

"fieldName": "checkBoxes1",

"label": "Include:",

"choices": [

{

"identifier": "ffwEmergency",

"displayString": "**FLASH FLOOD EMERGENCY**",

"detailFields": [

{

"fieldType": "Text",

"fieldName": "text1",

"expandHorizontally": True,

"maxChars": 40,

"visibleChars": 20,

"values": "|* Enter Location *|"

}

]

},

{

"identifier": "+SM",

"displayString": "Also Snow Melt"

},

{

"identifier": "-FL",

"displayString": "Flooding not directly reported,

only heavy rain"

},

{

"identifier": "+SS",

"displayString": "Small streams"

},

{

"identifier": "+US",

"displayString": "Urban areas and small streams"

},

{

"identifier": "+AS",

"displayString": "Arroyo and small streams"

},

{

"identifier": "+HA",

"displayString": "Hydrologic Flooding"

}

],

"values": ["+SM", "+SS"]

}

Immutable​​: ​choices​​, ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​spacing ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​values

CheckList (​​stateful​​)
This is a scrollable list containing one or more checkable choices. If provided with a label, the
latter appears as a descriptive string above the list box. It is identical in purpose and state to the
CheckBoxes​ type, except that it may be used in situations where the number of choices is too
great for the vertical space available, and thus scrolling is required. An advantage over the
CheckBoxes megawidget is that its list of choices is mutable.

Example​​:

{

"fieldType": "CheckList",

"fieldName": "checkList1",

"label": "Possible Results:",

"choices": [

"Dog-Cat Detente",

"General Grumpiness",

"Skyrocketing Insurance Premiums",

"Reports of UFOs",

"A Sense of Unease",

"Waving of Arms",

"Screaming",

"Talking to Neighbors",

"Existential Crises"

],

"values": ["A Sense of Unease"],

"expandHorizontally": True,

"expandVertically": True

}

Immutable​​: ​fieldName​​, ​fieldType​​, ​interdependencyOnly ​, ​label ​,
lines ​, ​showAllNoneButtons ​, ​spacing ​, ​width

Mutable​​: ​choices​​, ​editable ​, ​enable ​, ​extraData ​, ​values

ComboBox (​​stateful​​)
This is a drop-down selector containing one or more choices, and allowing a single choice to be
chosen. If provided with a label, the latter appears as a descriptive string to the left of the combo
box. Its state is the currently selected choice. Like the ​RadioButtons​, it is used in situations
where the user may want to choose exactly one option from a list of choices. One advantage
over the RadioButtons megawidget is that its list of choices is mutable; another is that it allows
autocomplete ​ to be used, helpful when the list of choices is very large.

Example​​:

{

"fieldType": "ComboBox",

"fieldName": "comboBox1",

"label": "Level of Threat:",

"choices": ["Moderate", "Severe", "Extinction"],

"values": "Severe",

"expandHorizontally": True

}

Immutable​​: ​autocomplete ​, ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​spacing ​, ​width

Mutable​​: ​choices​​, ​editable ​, ​enable ​, ​extraData ​, ​values

Composite (​​container​​)
This is a simple undecorated widget with the sole purpose of holding child megawidgets, akin to
the SWT composite. It may be constructed with scrollbars that are displayed when the child
megawidgets take up too much space to fit if desired. Any label provided is ignored.

Immutable​​: ​bottomMargin ​, ​columnSpacing ​, ​expandHorizontally ​,
expandVertically ​, ​fieldName​​, ​fields​​, ​fieldType​​,
fullWidthOfDetailPanel ​, ​leftMargin ​, ​numColumns ​, ​rightMargin ​,
scrollable ​, ​spacing ​, ​topMargin ​, ​width

Mutable​​: ​extraData

DetailedComboBox (​​container​​, ​​detailed​​, ​​stateful​​)
Like the ​ComboBox​, this is a drop-down selector containing one or more choices, and allowing
a single choice to be chosen. Its state is the currently selected choice. However, it differs from
the ComboBox in that the drop-down selector, and its optional label, are superimposed over an
SWT Group, acting as the latter's visual header instead of the label usually found atop a group.

The group displays within itself any detail fields that are specified as associated with the
currently selected choice within the combo box, optionally with scrollbars if the detail fields take
up too much room to fit. This may be preferable to a detail-field-equipped ​RadioButtons​ when
the detail fields for at least one of the choices will take up significant amounts of space, since
only a single choice's details are shown at any given time within the group. Unlike the
ComboBox, the list of choices is not mutable.

Example​​:

{

"fieldType": "DetailedComboBox",

"fieldName": "comboBox1",

"label": "Dam:",

"topMargin": 2,

"bottomMargin": 8,

"leftMargin": 10,

"rightMargin": 10,

"expandHorizontally": True,

"expandVertically": True,

"headerExpandHorizontally": True,

"values": "southbridge",

"choices": [

{

"identifier": "oxbow",

"displayString": "Oxbow Catchment",

"detailFields": [

{

"fieldType": "UnboundedListBuilder",

"fieldName": "list1",

"label": "Affected Areas:",

"values": [

"Oxbow Marina",

"The Meadows",

"Southern Northampton"

],

"expandHorizontally": True,

"expandVertically": True

},

{

"fieldType": "IntegerSpinner",

"fieldName": "spinner1",

"label": "Expected Depth (inches):",

"values": 4,

"minValue": 1,

"maxValue": 36,

"expandHorizontally": True

},

{

"fieldType": "TimeDelta",

"fieldName": "timeDelta1",

"label": "Duration:",

"unitChoices": ["hours", "days"],

"valueUnit": "hours",

"values": 8,

"minValue": 4,

"maxValue": 96,

"expandHorizontally": True

}

]

},

{

"identifier": "southbridge",

"displayString": "Southbridge",

"detailFields": "oxbow"

},

{

"identifier": "millRiver",

"displayString": "Mill River",

"detailFields": [

{

"fieldType": "CheckBox",

"fieldName": "evacuateSmith",

"label": "Evacuate Smith College",

"values": True

}

]

},

{

"identifier": "sewagePlant",

"displayString": "Sewage Treatment Plant",

"detailFields": [

{

"fieldType": "Label",

"fieldName": "yuck",

"label": "It's going to be gross.",

"italic": True

}

]

}

]

}

Immutable​​: ​autocomplete ​, ​bottomMargin ​, ​choices​​ (​with detail fields reuse​)​,
columnSpacing ​, ​expandHorizontally ​, ​expandVertically ​, ​fieldName​​,
fieldType​​, ​interdependencyOnly ​, ​headerExpandHorizontally ​, ​label ​,
leftMargin ​, ​rightMargin ​, ​scrollable ​, ​spacing ​, ​topMargin ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​values

ExpandBar (​​container​​)
This is akin to an SWT expand bar, as it holds one or more pages, each accessed via a header
label with an arrow next to it. Each page holds child megawidgets. Any label provided is
ignored. Clicking a header toggles the visibility of its corresponding page. Unlike a
TabbedComposite​, multiple pages may be shown at once. A disadvantage, however, is that the
area required to show multiple pages could take up a larger amount of vertical space.

Example​​:

{

"fieldType": "ExpandBar",

"fieldName": "expandBar1",

"leftMargin": 10,

"rightMargin": 10,

"topMargin": 5,

"bottomMargin": 5,

"expandHorizontally": True,

"expandVertically": True,

"pages": [

{

"pageName": "First Page",

"pageFields": [

{

"fieldType": "Label",

"fieldName": "label1",

"label": "This is the first

page...",

"italic": True

}

]

},

{

"pageName": "Second Page",

"pageFields": [

{

"fieldType": "Label",

"fieldName": "label2",

"label": "This is the second page.",

"italic": True

}

]

},

{

"pageName": "Third Page",

"pageFields": [

{

"fieldType": "Label",

"fieldName": "label3",

"label": "Each page may hold zero or

more child megawidgets.",

"italic": True

}

]

}

]

}

Immutable​​: ​bottomMargin ​, ​columnSpacing ​, ​expandHorizontally ​,

expandVertically ​, ​fieldName​​, ​fieldType​​, ​leftMargin ​, ​pages​​,
rightMargin ​, ​spacing ​, ​topMargin ​, ​width

Mutable​​: ​enable ​, ​expandedPages ​, ​extraData

FractionRange (​​stateful​​)
This is a pair of spinners allowing the selection of two floating-point values, each within a
defined range, that together comprise a range. If provided with a label, the latter appears as a
descriptive string to the left of the lower-bound spinner; a between-spinner label may also be
provided. It holds the two currently selected fractions as its two states. It may be specified with a
scale bar widget below it as an option.

Example​​:

{

"fieldType": "FractionRange",

"fieldName": "range1:range2",

"label": "Possible Snow Accumulation (inches):",

"betweenLabel": "to",

"minValue": {

"range1": 0.0,

"range2": 0.0

},

"maxValue": {

"range1": 50.0,

"range2": 50.0

},

"values": {

"range1": 15.0,

"range2": 19.0

},

"precision": 1,

"expandHorizontally": True,

"showScale": True

}

Immutable​​: ​betweenLabel ​, ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​minimumInterval ​, ​precision ​,
sendEveryChange ​, ​showScale ​, ​spacing ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​incrementDelta ​, ​maxValue ​,
minValue ​, ​values

FractionSpinner (​​stateful​​)
This is a spinner allowing the selection of a single floating-point value within a defined range. If
provided with a label, the latter appears as a descriptive string to the left of the spinner. It holds
as state the currently selected floating-point value. It may be specified with a scale bar widget
below it as an option.

Example​​:

{

"fieldType": "FractionSpinner",

"fieldName": "spinner1",

"label": "Richter Scale:",

"minValue": 1.0,

"maxValue": 10.0,

"values": 5.9,

"incrementDelta": 1,

"precision": 1,

"expandHorizontally": True,

"showScale": True

}

Immutable​​: ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​precision ​, ​sendEveryChange ​,
showScale ​, ​spacing ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​incrementDelta ​, ​maxValue​​,
minValue​​, ​values

Group (​​container​​)
Like a Composite, this megawidget has one or more columns and child megawidgets, but
visually it is identical to an SWT Group in that it has a border around it and its label, if provided,
is used as the border's title text. The area holding the children may be given scrollbars for when
the child megawidgets are too large to fit within it if desired.

Example​​:

{

"fieldType": "Group",

"fieldName": "group1",

"label": "Grouping Panel",

"leftMargin": 10,

"rightMargin": 10,

"topMargin": 10,

"bottomMargin": 10,

"expandHorizontally": True,

"expandVertically": True,

"fields": [

{

"fieldType": "Label",

"fieldName": "label1",

"label": "Each group may hold zero or more

megawidgets.",

"italic": True

}

]

}

Immutable​​: ​bottomMargin ​, ​columnSpacing ​, ​expandHorizontally ​,
expandVertically ​, ​fieldName​​, ​fields​​, ​fieldType​​, ​label ​,
leftMargin ​, ​numColumns ​, ​rightMargin ​, ​scrollable ​, ​spacing ​,
topMargin ​, ​width

Mutable​​: ​enable ​, ​extraData

HiddenField (​​stateful​​)
This megawidget has no visual representation; it is completely invisible within the window. Its
purpose is simply to hold any sort of state that should be changed via an ​interdependency
script​, as opposed to being manipulated directly by the user. For example, two other

megawidgets could, when experiencing a state change, trigger an interdependency script to
change the state of a HiddenField. It may hold as its state any type of Python primitive as a
value, as well a list.

Immutable​​:​ ​fieldName​​, ​fieldType

Mutable​​: ​extraData ​, ​values

HierarchicalChoicesTree (​​stateful​​)
This is comprised of a visual representation of a tree structure, with each node in the tree
(whether branch or leaf) being checkable to indicate that it is chosen. If provided with a label,
the latter appears as a descriptive string above the tree. This megawidget's state is the tree
(hierarchical list) of choices selected by the user, and all "branch" nodes (i.e. choices with child
choices) implicitly selected due to the selection of one or more of their descendants. Thus, the
state is always a tree structure that is a subset of the tree of choices.

Example​​:

{

"fieldType": "HierarchicalChoicesTree",

"fieldName": "tree1",

"label": "Hazard Types:",

"lines": 10,

"choices": [

{

"displayString": "Convective",

"children": ["EW.W", "SV.W", "TO.W", "SV.A",

"TO.A"]

},

{

"displayString": "Winter Weather",

"children": ["BZ.W", "BZ.A", "ZR.Y", "IS.W",

"LE.W", "LE.Y", "LE.A", "WC.W", "WC.Y", "WC.A",

"WS.W", "WS.A", "WW.Y"]

},

{

"displayString": "Hydrology",

"children": ["FF.A", "FF.W.Convective",

"FF.W.NonConvective", "FA.Y", "FA.A", "FA.W",

"FL.A", "FL.W", "FL.Y", "HY.S", "HY.O"]

},

{

"displayString": "Coastal Flood",

"children": ["CF.Y", "CF.A", "CF.W", "CR.S",

"LS.A"]

},

{

"displayString": "Fire Weather",

"children": ["FW.A", "FW.W"]

},

{

"displayString": "Marine",

"children": ["SE.A", "SE.W", "BW.Y", "GL.A",

"GL.W", "HF.W", "HF.A", "LO.Y", "MA.S", "MA.W",

"MH.Y", "MH.W", "MF.Y", "MS.Y", "SI.Y", "SC.Y",

"SW.Y", "RB.Y", "SR.A", "SR.W", "UP.A", “UP.Y",

"UP.W"]

}

],

"expandHorizontally": True,

"expandVertically": True

}

Immutable​​: ​fieldName​​, ​fieldType​​, ​interdependencyOnly ​, ​label ​,
lines ​, ​showAllNoneButtons ​, ​spacing ​, ​width

Mutable​​: ​choices​​, ​editable ​, ​enable ​, ​extraData ​, ​values

IntegerRange (​​stateful​​)
This is a pair of spinners allowing the selection of two integers, each within a defined range, that
together comprise a range. If provided with a label, the latter appears as a descriptive string to

the left of the lower-bound spinner; a between-spinner label may also be provided. It holds the
two currently selected integers as its two states. It may be specified with a scale bar widget
below it as an option.

Example​​:

{

"fieldType": "IntegerRange",

"fieldName": "range1:range2",

"label": "Wind Speed (mph):",

"betweenLabel": "to",

"minValue": {

"range1": 0,

"range2": 0

},

"maxValue": {

"range1": 50,

"range2": 50

},

"values": {

"range1": 5,

"range2": 25

},

"expandHorizontally": True,

"showScale": True

}

Immutable​​: ​betweenLabel ​, ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​minimumInterval ​, ​sendEveryChange ​,
showScale ​, ​spacing ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​incrementDelta ​, ​maxValue ​,
minValue ​, ​values

IntegerSpinner (​​stateful​​)
This is a spinner allowing the selection of a single integer within a defined range. If provided
with a label, the latter appears as a descriptive string to the left of the spinner. It holds as state
the currently selected integer. It may be specified with a scale bar widget below it as an option.

Example​​:

{

"fieldType": "IntegerSpinner",

"fieldName": "spinner1",

"label": "Relative Force:",

"minValue": 1,

"maxValue": 20,

"values": 5,

"expandHorizontally": True,

"showScale": True

}

Immutable​​: ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​sendEveryChange ​, ​showScale ​,
spacing ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​incrementDelta ​, ​maxValue​​,
minValue​​, ​values

Label (​​decorative​​)
The Label is a simple megawidget with no state, used only to display descriptive text.

Example​​:

{

"fieldType": "Label",

"fieldName": "label1",

"label": "This is a bold and italic label.",

"bold": True,

"italic": True

}

Immutable​​: ​bold ​, ​color ​, ​fieldName​​, ​fieldType​​, ​italic ​, ​label ​,
preferredWidth ​, ​spacing ​, ​width ​, ​wrap

Mutable​​: ​enable ​, ​extraData

MenuButton (​​notifier​​)
This is a command button that, when selected, displays a dropdown menu of commands. Like
the ​Button​ megawidget, it has no state, but like stateful megawidgets, its menu commands may
be used to trigger the execution of an ​interdependency script​. Such invocations will result in the
trigger identifier for the script being of the form:

<megawidgetIdentifier>.<commandIdentifier>

For example, the first command choice in the example provided below would, when invoked,
generate the trigger identifier "menuButton1.New set".

At first glance, the MenuButton would appear to be very similar in form to the ​ComboBox​, but
they are intended for fundamentally different tasks. The latter has state, and is thus used to
track the choice a user has made. It is not intended to be used to issue commands. The
MenuButton, in contrast, issues commands through its menu choices. In the example shown
here, it would be used to fire off one of three different commands, indicating the user wishes to
create something new, save existing information, or duplicate existing information.

Example​​:

{

"fieldType": "MenuButton",

"fieldName": "menuButton1",

"label": "Save/Restore",

"choices": ["New set", "Save existing", "Duplicate"]

}

Immutable​​: ​fieldName​​, ​fieldType​​, ​label ​, ​spacing ​, ​width

Mutable​​: ​choices​​, ​enable ​, ​extraData

RadioButtons (​​stateful​​, ​​detailed​​)
This is comprised of a list of radio buttons, each representing one of the possible choices

available to the user for its state. If provided with a label, the latter appears as a descriptive
string above the radio buttons. It is identical in purpose and state to the ​ComboBox​ type, except
that it is only appropriate for use in situations where the number of choices is small enough to fit
within the vertical space available. Unlike a ComboBox, it allows the inclusion of zero or more
child megawidgets providing detail fields for any of the choices represented by its radio buttons.

Example​​:

{

"fieldType": "RadioButtons",

"label": "Rain so far:",

"fieldName": "radioButtons1",

"choices": [

"One inch so far",

"Two inches so far",

"Three inches so far",

{

"identifier": "N inches so far",

"displayString": "",

"detailFields": [

{

"fieldType": "FractionSpinner",

"fieldName": "spinner1",

"minValue": 0,

"maxValue": 99,

"incrementDelta": 1,

"precision": 1

},

{

"fieldType": "Label",

"fieldName": "label1",

"label": "inches of rain so far"

}

]

}

]

}

Immutable​​: ​choices​​, ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​spacing ​, ​width

Mutable​​: ​editable ​, ​enable ​, ​extraData ​, ​values

SwtWrapper
This is a special megawidget that is simply a wrapper for SWT widgets. As such, it allows the
mixing of arbitrary SWT widgets into a megawidget-constructed graphical user interface. Any
label provided is ignored. (​Note: This megawidget is only useful if one is accessing it in Java
code to in order to add SWT widgets to it, and is thus never used for GUIs created by users.​)

Immutable​​: ​expandHorizontally ​, ​expandVertically ​, ​fieldName​​,
fieldType​​, ​fullWidthOfDetailPanel ​, ​spacing ​, ​width

Mutable​​: ​extraData

TabbedComposite (​​container​​)
This is akin to an SWT tab folder, as it holds one or more pages, each accessed via a tab and in
turn holding child megawidgets. It may be configured to display scrollbars in its pages whenever
the child megawidgets are too large to fit. Any label provided is ignored. Unlike an ​ExpandBar​,
only one page may be shown at a time, but this also limits the size of the area required to
display this megawidget and its children, which may be advantageous for some applications.

Example​​:

{

"fieldType": "TabbedComposite",

"fieldName": "tabComposite1",

"leftMargin": 10,

"rightMargin": 10,

"topMargin": 10,

"bottomMargin": 10,

"expandHorizontally": True,

http://help.eclipse.org/help33/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/widgets/ExpandBar.html

"expandVertically": True,

"pages": [

{

"pageName": "First Tab",

"pageFields": [

{

"fieldType": "Label",

"fieldName": "label1",

"label": "This is the first tab's

page...",

"italic": True

}

]

},

{

"pageName": "Second Tab",

"pageFields": [

{

"fieldType": "Label",

"fieldName": "label2",

"label": "... and this is the second

tab's page.",

"italic": True

}

]

},

{

"pageName": "Third Tab",

"pageFields": [

{

"fieldType": "Label",

"fieldName": "label3",

"label": "Each tab may hold zero or

more child megawidgets.",

"italic": True

}

]

}

]

}

Immutable​​: ​bottomMargin ​, ​columnSpacing ​, ​expandHorizontally ​,
expandVertically ​, ​fieldName​​, ​fieldType​​, ​leftMargin ​, ​pages​​,
rightMargin ​, ​scrollable ​, ​spacing ​, ​topMargin ​, ​width

Mutable​​: ​enable ​, ​extraData ​, ​visiblePage

Table (​​stateful​​)
This provides a table for displaying tabular data. Its state consists of a list of sublists, with each
of the latter constituting a row within the displayed table; the sublist elements are the items
shown in the cells of that row. At this time, this megawidget cannot have its state modified via
direct user manipulation; as with other stateful megawidgets, it may be changed via an
interdependency script, however.

Example:

{

"fieldType": "Table",

"fieldName": "table1",

"label": "Shopping List:",

"lines": 6,

"columnHeaders": ["Item", "Type", "Quantity"],

"values": [["apples", "fruit", "3"],

["oranges, "fruit", "6"],

["pinapples", "fruit", "13"]]

}

Immutable​​: ​columnHeaders​​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​lines ​, ​spacing ​, ​width

Mutable​​:​ ​enable ​, ​extraData ​, ​values

Text (​​stateful​​)
This is a text entry field. If provided with a label, the latter appears as a descriptive string to the
left of the field if single-line, or above if multi-line. Its state consists of the text currently entered
into the field.

Example​​:

{

"fieldType": "Text",

"fieldName": "text1",

"label": "Additional Info:",

"visibleChars": 40,

"lines": 6,

"expandHorizontally": True

}

Immutable​​: ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,

interdependencyOnly ​, ​label ​, ​lines ​ [1], ​maxChars ​, ​numericOnly ​,
promptText ​, ​sendEveryChange ​, ​spacing ​, ​spellcheck ​, ​valueIfEmpty ​,
visibleChars ​, ​width

Mutable​​:​ ​editable ​, ​enable ​, ​extraData ​, ​values

Time (​​stateful​​)
The Time megawidget allows the selection of a single epoch time in milliseconds, via a
calendar/time field pair. It is a simplified version of ​TimeScale​, in that it does not allow the
selection of multiple times, has no detail fields, and does not display a scale widget.

Example​​:

{

"fieldType": "Time",

"fieldName": "time1",

"label": "First Noted:",

"values": 1402401600000

}

Immutable​​:​ ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​sendEveryChange ​, ​spacing ​, ​width

Mutable​​:​ ​editable ​, ​enable ​, ​extraData ​, ​values

TimeDelta (​​stateful​​)
This is a spinner allowing the selection of a single time delta within a defined range, and
optionally a drop-down selector allowing the selection of the time unit to be used. If provided
with a label, the latter appears as a descriptive string to the left of the spinner. Its state is the
currently selected time delta, expressed as an integer in the unit given by the ​valueUnit
parameter.

Example​​:

{

"fieldType": "TimeDelta",

"fieldName": "timeDelta1",

"label": "Time Until Impact:",

"minValue": 10,

"maxValue": 36000,

"values": 3600,

"unitChoices": ["seconds", "minutes", "hours"],

"valueUnit": "seconds",

"currentUnit": "hours",

"expandHorizontally": True

}

Immutable​​:​ ​expandHorizontally ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​sendEveryChange ​, ​spacing ​,
unitChoices​​, ​valueUnit ​, ​width

Mutable​​:​ ​currentUnit ​, ​editable ​, ​enable ​, ​extraData ​, ​maxValue​​,
minValue​​, ​values

TimeRange (​​stateful​​, ​​detailed​​)
This megawidget consists of two time selectors, with an optional two-thumbed scale and
accompanying time "ruler" showing what values on the scale correspond to in time. Each thumb
is associated with a different state; thus, the megawidget must have two states. The state
identifiers are taken as the colon-separated substrings of its megawidget identifier.

Each thumb is used to select a time value, specified as a long integer describing epoch time in
milliseconds. The time selector for the lower boundary is a pair of calendar/time fields, while the
one for the upper boundary is a drop-down selector allowing the choosing of a particular offset
(time delta) from the lower boundary. The upper boundary must be greater than the lower
boundary at all times. If provided with a label, the latter appears as a descriptive string above all
of the other component widgets.

Note that if the upper boundary value's distance from the lower boundary is not equal to one of
the time deltas provided as choices, the megawidget will allow the two scale thumbs to be
moved independently of one another, and the drop-down selector is changed to hold only one
value, "N/A". If the delta between the lower and upper boundaries becomes equal to one of the
time delta choices, the drop-down selector is changed to hold the list of time delta choices, and
the appropriate one is selected. Furthermore, the scale thumbs are locked together, so that
moving one moves the other so as to keep the time delta between them the same as the current
selection in the drop-down selector.

Note that by default, the two-thumbed scale and its accompanying ruler do not actually get
shown; the time selectors are the only ones displayed. The megawidget may be specified with
an option to show the scale and ruler.

Example​​:

{

"fieldName": "start:end",

"fieldType": "TimeRange",

"showScale": True,

"valueLabels": {

"start": "Start:",

"end": "Duration:"

},

"durationChoices": [

"12 hours",

"1 day",

"2 days",

"3 days",

"5 days"

],

"detailFields": {

"end": [

{

"fieldType": "CheckBox",

"fieldName": "endTimeUntilFurtherNotice",

"label": "Until further notice"

}

]

},

"values": {

"start": 1404291600000,

"end": 1404464400000

}

}

Immutable​​:​ ​detailFields ​, ​fieldName​​, ​fieldType
interdependencyOnly ​,, ​label ​, ​sendEveryChange ​, ​showScale ​,
spacing ​, ​valueLabels ​, ​width

Mutable​​:​ ​durationChoices​​, ​editable ​, ​enable ​, ​extraData ​,
maximumTime ​, ​maximumVisibleTime​​, ​minimumTime ​,
minimumVisibleTime​​, ​valueEditables ​, ​values

TimeScale (​​stateful​​, ​​detailed​​)
This megawidget has one or more time selectors (each comprised of a pair of fields, one
holding a date selector, the other a time of day selector), with an optional scale with one thumb
per time selector and accompanying time "ruler" showing what values on the scale correspond
to in time. Each time selector and associated thumb is associated with a different state; thus,
the megawidget may have one or more states. The state identifiers are taken as the
colon-separated substrings of its megawidget identifier.

Each time selector and associated thumb is used to select a time value, specified as a long
integer describing epoch time in milliseconds. Each thumb must have a greater than or equal
value to the previous one at all times. If provided with a label, the latter appears as a descriptive
string above all of the other component widgets.

Note that by default, the multi-thumbed scale does not actually get shown; the calendar/time
fields are the only ones displayed. The megawidget may be specified with an option to show the
scale.

Example​​:

{

"fieldName": "riseAbove:crest:fallBelow",

"fieldType": "TimeScale",

"showScale": True,

"valueLabels": {

"riseAbove": "Rise Above Time:",

"crest": "Crest Time:",

"fallBelow": "Fall Below Time:"

},

"minimumTimeInterval": 60000,

"detailFields": {

"fallBelow": [

{

"fieldType": "CheckBox",

"fieldName": "untilFurtherNotice",

"label": "Until further notice"

}

]

},

"values": {

"riseAbove": 1402401000000,

"crest": 1402401600000,

"fallBelow": 1402402200000

}

}

Immutable​​:​ ​detailFields ​, ​fieldName​​, ​fieldType​​,
interdependencyOnly ​, ​label ​, ​minimumTimeInterval ​,
sendEveryChange ​, ​showScale ​, ​spacing ​, ​timeDescriptors ​,
valueLabels ​, ​width

Mutable​​:​ ​editable ​, ​enable ​, ​extraData ​, ​maximumTime ​,
maximumVisibleTime​​, ​minimumTime ​, ​minimumVisibleTime​​,
valueEditables ​, ​values

UnboundedListBuilder (​​stateful​​)
The unbounded list builder is intended for situations in which the user must be able to build up
an ordered list of arbitrary text strings, each unique within the list. It consists of a scrollable list
holding the currently selected choices, with buttons allowing the reordering of the list, and the
adding of new choices and removal of existing ones. It allows the dragging and dropping of
items within the list as well.

Example​​:

{

"fieldType": "UnboundedListBuilder",

"fieldName": "unboundedListBuilder1",

"label": "Cities:",

"values": ["Amherst", "Northampton", "Hadley", "South

Hadley", "Pelham", "Leverett", "Belchertown", "Florence"],

"expandHorizontally": True,

"expandVertically": True

}

Immutable​​: ​fieldName​​, ​fieldType​​, ​interdependencyOnly ​, ​label ​,
lines ​, ​spacing ​, ​width

Mutable​​:​ ​editable ​, ​enable ​, ​extraData ​, ​values

Properties
The following list describes all the properties that megawidget definitions may include. The
individual megawidget ​type​ descriptions indicate which properties are ​mutable​ and which are
immutable​. For those properties that may be optional, the standard default value is given in
parentheses following the property name. Note that individual megawidget types may use
different default values; in such cases, the defaults will be included in those types' enumerations
of their properties.

autocomplete (false)
Boolean indicating whether or not autocomplete should be available for the combo box text field.
If true, the user may enter text into the field, and as characters are entered, a list pops up
showing any choices that contain the string of characters entered into the field, if any. This
should be used with a combo box that contains a large number of choices, as it allows the user
to quickly narrow down the choices to a manageable number by typing in a few characters of
the desired choice's name.

betweenLabel (empty string)
Text string to be displayed between two visual components of a megawidget; for example, for
an ​IntegerRange​ this would be the text between the lower and upper value spinners.

bold (false)

Boolean indicating whether or not the label text should be displayed using a bold font.

bottomMargin (0)
Non-negative integer indicating the number of pixels of height to be used for the margin below
the panel holding child megawidgets.

choices
List of choices to be allowed. The list must contain at least one choice. Each choice is either a
string or a dictionary. If a dictionary, it must contain the following properties:

children (None) [for ​​hierarchical choice​​ megawidgets only]
Optional list of choices that are children of this choice. Each such list is made up of
either strings or dictionaries, just as is the ​choices​ property for the megawidget.

detailFields (None) [for ​​detailed​​ megawidgets only]
Optional list of definitions of child megawidgets to be used as detail fields for the choice.

Note that for detailed megawidgets that only display the detail fields associated with at
most one choice at any given instant, such as the ​DetailedComboBox​, another option
besides a list of child megawidget definitions is the supplying of a choice identifier. The
latter must identify a choice from farther up the list of choices.

If such an identifier is supplied, the detail fields associated with the specified identifier
are reused for this choice. This allows two or more choices that require the same detail
fields to define those fields within the specification of the first such choice, and then
reuse them for one or more subsequently specified choices.

Note that ​CheckBoxes​ and ​RadioButtons​ megawidgets display their detail fields ​inline​.

displayString
Text string describing the choice, to be used to show the choice within the megawidget.

identifier (displayString)
Text string providing the identifier of the choice. The identifier is what is used when
determining the state value of the megawidget, if the latter is ​stateful​, or the
subcommand that is invoked, if it is a ​notifier​. Identifiers must be unique in the list of
choices.

color (None)

Dictionary providing a color to be used in rendering the megawidget. If not given, the default

color is used. ​The color dictionary should hold the following properties:

red

Floating-point value between 0.0 and 1.0 inclusive, indicating the red component of the
color.

green

Floating-point value between 0.0 and 1.0 inclusive, indicating the green component of
the color.

blue

Floating-point value between 0.0 and 1.0 inclusive, indicating the blue component of the
color.

columnHeaders
List of one or more strings, each one a column header, displayed left to right in the order
specified within the list.

columnSpacing (15)
Non-negative integer indicating the number of pixels of spacing to include between each column
within the panel holding child megawidgets.

currentUnit (smallest of ​​unitChoices​​)
Time unit currently being used to specify the state value; must be one of the choices specified
by the ​unitChoices​ property.

detailFields (None)
Dictionary in which the keys are the state identifiers, and the values are lists of definitions of
child megawidgets that are to be used as detail fields for the associated states. Each list of
megawidgets is displayed ​inline​.

durationChoices
List of duration choices to be allowed. Each is a string holding a description of a time delta. The
description must include one or more of the following substrings. If more than one is included,
the substrings must be separated by a space, a comma, or both; furthermore, the substrings
have to be ordered by decreasing size of the time unit, i.e. days before hours or minutes, hours
before minutes. Note that the unit specifiers may be of any case (lowercase, uppercase, or

mixed), and alternate specifiers for the units are enclosed within parentheses and separated by
vertical bars (|):

num​ (d|day|days)

Number of days, with the days given by ​num​.

num​ (h|hr|hrs|hour|hours)

Number of hours, with the hours given by ​num​.

num​ (m|mn|min|mins|minute|minutes)

Number of minutes, with the minutes given by ​num​.

Finally, the time deltas specified by each such string must be unique within the list. Thus, a list
with entries for "60 minutes" and "1 hour" is invalid, since they both evaluate to the same time
delta.

editable (true)
Boolean indicating whether a ​stateful​ megawidget may have its state altered by the user. A
non-editable megawidget displays visual cues to indicate its read-only status. Those which are
containers​ also render their nested megawidgets read-only when they are uneditable. (Those
that are ​detailed​, however, do not, since it may be desirable to make a megawidget read-only
while keeping its detail fields editable.)

enable (true)
Boolean indicating whether or not the megawidget is currently enabled. Disabled megawidgets
cannot have their state changed or be invoked by the user, and are grayed out in appearance.
Container​ and ​detailed​ megawidgets disable their nested megawidgets when they are disabled.

expandedPages (empty string)
List of zero or more strings, each giving the name of a page that is currently expanded (visible)
within the megawidget.

expandHorizontally (false)
Boolean indicating whether or not the megawidget should expand to fill any columns it occupies.

expandVertically (false)
Boolean indicating whether or not the megawidget should expand to fill any rows it occupies.

extraData (None)
Dictionary that, if specified, may hold any arbitrary values associated with any arbitrary non-null
keys. This property is not used by the megawidgets themselves; rather, it is intended for use by
interdependency scripts​ as a way to persist values they use internally in between script
invocations.

fieldName
Identifier of the megawidget; any string is valid as long as it is unique within the total set of
megawidgets and their descendants. Note that ​stateful​ megawidgets use their ​fieldName ​ as
state identifiers.

fields
List of definitions of child megawidgets.

fieldType
Type​ of the megawidget being specified by the definition.

fullWidthOfDetailPanel (true)
Boolean indicating whether or not the megawidget should, if it is serving as a detail field for a
detailed​ megawidget, expand to the full width of of the detail panel in which it is embedded.

headerExpandHorizontally (false)
Boolean indicating whether or not the megawidget's header should expand to fill any columns it
occupies. The header consists of the components above any grouping panel; for example, for
the ​DetailedComboBox​, the header is the label and the combo box at the top of the group.

incrementDelta (minimum that would cause a change in state)
Positive number indicating the increment to be added or subtracted from a value when the
megawidget is instructed to change its state as a result of the user paging up or down.

interdependencyOnly (false)
Boolean indicating whether or not the megawidget's state(s) are to be used for the purposes of
interdependency scripts​ only. If true, any state changes the megawidget experiences are not
saved as part of the overall state of the entity being edited (be it parameters for a
Recommender, or for a Product Staging Dialog, or the metadata of a hazard event).

A value of true is useful for megawidgets that are meant to display state only, and that have the

particulars of such displays be determined by interdependency scripts. An example is the
uneditable text fields used to display the rise-above, crest, and fall-below times for FL.A, FL.W,
and FL.Y type hazard events within the Hazard Information Dialog.

italic (false)
Boolean indicating whether or not the label text should be displayed using an italic font.

label (empty string)
Text string to be displayed as part of the megawidget; for example, for a ​Button​ this would be
the text within the button, whereas for a ​CheckBoxes​ megawidget this would be the text above
the individual checkboxes.

leftMargin (0)
Non-negative integer indicating the number of pixels of width to be used for the margin to the
left of the panel holding child megawidgets.

lines (6)
Positive integer indicating the number of lines the megawidget should display in its text field,
scrollable list, etc.

maxChars (0)
Non-negative integer indicating the maximum number of characters that the state value can
hold. If 0, there is no theoretical limit.

maximumTime (​​no practical limit​​)
Either a maximum allowable time for all values, given as a long integer representing epoch time
in milliseconds, or a dictionary pairing state identifiers with the maximum allowable values they
can hold. Note that for the ​TimeRange​ megawidget, only the value associated with the first state
identifier is governed by this parameter.

maximumVisibleTime
Maximum time, given as a long integer representing epoch time in milliseconds, that is currently
visible along the scale bar of the megawidget, that is, the timestamp corresponding to the right
edge of the scale bar.

maxValue (​​no practical limit​​)
Maximum value that the state can take on. If there are multiple states associated with a
megawidget, the associated value should be a dictionary pairing state identifiers with the

maximum values they may take on.

minimumInterval (0)
Minimum interval between two state values for a multi-state megawidget; must be a
non-negative number of the appropriate type to the megawidget (whether floating-point or
integer).

minimumTime (0 (indicating Jan 1, 1970 00:00 GMT))
Either a minimum allowable time for all values, given as a long integer representing epoch time
in milliseconds, or a dictionary pairing state identifiers with the minimum allowable values they
can hold. Note that for the ​TimeRange​ megawidget, only the value associated with the first state
identifier is governed by this parameter.

minimumTimeInterval (1 minute)
Non-negative integer indicating the minimum interval of time allowed between adjacent thumbs.

minimumVisibleTime
Minimum time, given as a long integer representing epoch time in milliseconds, that is currently
visible along the scale bar of the megawidget, that is, the timestamp corresponding to the left
edge of the scale bar.`

minValue (​​no practical limit​​)
Minimum value that the state can take on. If there are multiple states associated with a
megawidget, the associated value should be a dictionary pairing state identifiers with the
minimum values they may take on.

numColumns (1)
Positive integer indicating the number of columns that the ​container​ megawidget has in which to
place child megawidgets.

numericOnly (false)
Boolean indicating whether or not the megawidget should only accept numeric characters (0
through 9) as input.

pages
List of dictionaries defining the pages of the megawidget. Each dictionary should hold the
following properties:

numColumns (1)
Positive integer indicating the number of columns the page is to provide its child
megawidgets.

pageName
Name of the page, to be displayed as the tab text.

pageFields
List of definitions of child megawidgets.

precision (1)
Positive integer indicating the number of decimals to be shown following the decimal point for a
floating-point state value.

preferredWidth (width of text)
Preferrred width of the megawidget, given in units equal to the average size of a character in the
font being used. This is intended to be used when the ​wrap​ property is set to true.

promptText (empty string)
Text string to be shown as a visual prompt for the user if the field is empty.

rightMargin (0)
Non-negative integer indicating the number of pixels of width to be used for the margin to the
right of the panel holding child megawidgets.

scrollable (false)
Boolean indicating whether or not the megawidget is to allow the panel(s) in which its child
megawidgets are embedded to scroll. If true, scrollbars are shown whenever the child
megawidgets are too large to fit within the available area.

selectedLabel (empty string)
Text string to be used to describe the list of selected choices.

sendEveryChange (true)
Boolean indicating whether or not every state change should result in the ​interdependency
script​ (if any) being executed. Megawidgets that experience rapid state changes, such as the
IntegerSpinner​ (in which the user may hold down a button to repeatedly increment or decrement

the value) or ​Text​ (in which the user may type multiple characters in quick succession) will not
execute an interdependency script for every such state change if this is set to false; instead,
they will wait for the rapid state change to come to an end before invoking the script.

showAllNoneButtons (true)
Boolean indicating whether or not the megawidget should include two buttons, labeled "All" and
"None", that allow the user to select or deselect all of its choices.

showScale (false)
Boolean indicating whether or not the megawidget should show a scale bar (slider with one or
more thumbs, as appropriate) below the other components making up its visual state to allow
the user another way of viewing and manipulating the current state value(s).

spacing (0)
Non-negative integer indicating the number of pixels separating the megawidget visually from
the megawidget above it, or from the top of the enclosing panel if it is the first megawidget in its
parent.

spellcheck (false)
Boolean indicating whether or not the megawidget will enable spellchecking on the entered text.

timeDescriptors (None)
Dictionary in which the keys are timestamps in the form of integers giving epoch time (or strings
holding the integers, as an alternative, e.g. 1200000 and "1200000" are functionally equivalent
keys for this application), and the values are text strings to be used to describe those associated
times if they are selected for any of the thumbs.

topMargin (0)
Non-negative integer indicating the number of pixels of height to be used for the margin above
the panel holding child megawidgets.

unitChoices
List of time units; must contain one or more of the strings "seconds", "minutes", "hours", and
"days". The units so specified are those that are to be offered as choices to the user as to how
to specify the state value.

valueEditables (None)
Dictionary holding a key-value pair for each state identifier, which functions as the key, and a

boolean indicating whether or not that state is editable, which is the value.

valueIfEmpty (empty string)
Text string to be used as the state of the megawidget if the latter is empty. This allows a
megawidget to be specified as having a particular non-empty value if the user enters no text.

valueLabels (None)
Dictionary holding a key-value pair for each state identifier, which functions as the key, and the
text label to be shown, which is the value.

values (default value(s) for specific type of megawidget)
For single-state megawidgets, the current value of the megawidget; for multi-state
megawidgets, a dictionary holding a key-value pair for each state identifier, which functions as
the key, and the current value for that state, which is the value.

valueUnit ("ms")
Either "ms", "seconds", "minutes", "hours", or "days"; must be the smallest of the units specified
by the ​unitChoices​ property, or something smaller. This indicates in what units the time delta
state is provided.

visibleChars (same as ​​maxChars​​, unless latter is 0, in which case defaults to 20)
Number of characters that should be displayable on a line without scrolling.

visiblePage (first page)
String giving the name of the page that is currently visible within the megawidget.

width (1)
Positive integer indicating the number of columns that the megawidget should span within its
parent. Note that this value may only be greater than 1 if the megawidget is a child of a
container​ megawidget, and the latter has ​multiple columns​.

wrap (false)
Boolean indicating whether or not the label text should, if too long for the existing horizontal
space, wrap to the next lines as necessary.

Positioning and Size of Megawidgets

Inline Detail Fields
Some ​detailed​ megawidgets lay out their detail fields ​inline​. This means that each such field
may be either to the right of whatever component with which it is associated, or below it. For a
CheckBoxes​ megawidget, they are associated with a particular choice's checkbox component;
for a ​TimeScale​ megawidget, they are associated with a particular state identifier's components.
How a particular list of detail fields are laid out is determined as follows.

First, the detail field megawidgets are classified as to whether they take up the full width of a
detail field panel (the area adjacent to and/or below the associated component, where detail
fields are laid out) or not. Any megawidgets that generally stretch across a parent's column are
considered to take the full width; examples include large megawidgets such as ​CheckList​,
containers such as ​ExpandBar​, and so on. Smaller megawidgets, such as ​CheckBox​ and
ComboBox​, do not. The ​Composite​ megawidget can be configured to either take up the entire
width of the detail field or to not do so, via its ​fullWidthOfDetailPanel​ property.

Next, the detail field megawidgets are inspected in order of specification. Each field that does
not take up the full width is placed:

● to the right of the associated component, if it is the first detail field for that component;
● to the right of the previous detail field, if the latter does not take up the full width; or
● in a new row below the previous detail field, if the latter does take up the full width.

In contrast, any field that does take up the full width is placed:

● in a new row beneath the associated component, if it is the first detail field for that
component; or

● in a new row beneath the previous detail field.

Thus, a list of specified inline detail fields may end up occupying the space to the right
of the associated component, in one or more rows below it, or both.

For example, consider the following megawidget definition:

[

{

"fieldType":"RadioButtons",

"fieldName": "include",

"label": "Include:",

"choices": [

{

"identifier": "cities",

"displayString": "Cities:",

"detailFields": [

{

"fieldType": "Text",

"fieldName": "cities",

"expandHorizontally": True,

"maxChars": 40,

"visibleChars": 20

}

]

},

{

"identifier": "entireState",

"displayString": "Entire state"

}

]

}

]

This yields the following visual layout of the megawidget:

The text field is to the right of the "Cities" choice because single-line ​Text​ megawidgets do not
take up the full width of a detail panel in which they are placed. If the intent is to position the text
field below the "Cities" choice, it may be embedded within a ​Composite​ megawidget which has
its ​fullWidthOfDetailPanel​ property set to True, as follows:

[

{

"fieldType":"RadioButtons",

"fieldName": "include",

"label": "Include:",

"choices": [

{

"identifier": "cities",

"displayString": "Cities:",

"detailFields": [

{

"fieldType": "Composite",

"fieldName": "citiesContainer",

"fullWidthOfDetailPanel": true,

"expandHorizontally": true,

"fields": [

{

"fieldType": "Text",

"fieldName": "cities",

"expandHorizontally": True,

"maxChars": 40,

"visibleChars": 20

}

]

}

]

},

{

"identifier": "entireState",

"displayString": "Entire state"

}

]

}

]

Because the Composite is configured to take the full width of the detail panel, it is placed on a
new row beneath the associated component, and thus any megawidgets the Composite
contains are also within this row:

Megawidget Interdependencies
In simpler dialog boxes, megawidgets have no need to affect one another’s state or other
mutable properties. For example, perhaps a dialog box provides two megawidgets, one a Text
megawidget allowing the user to enter a name, the other a ComboBox allowing the choice of
one item from a list of possibilities. It is probably not necessary for the two megawidgets to
interact; regardless of the text entered in the former, the latter does not change, and vice versa.

However, suppose that the total set of megawidgets for a River Flood Recommender consists of
two megawidgets: A ​RadioButtons​ megawidget, allowing the choice of the forecast type, and an
IntegerSpinner​ megawidget that is to be disabled unless the forecast type is set to “Set
Confidence”, in which case it is enabled to allow the selection of the confidence level. The
definitions for these megawidgets are as follows:

[

{

"fieldType": "RadioButtons",

"fieldName": "forecastType",

"label": "Type:",

"choices": ["Watch", "Warning", "Set Confidence:"]

},

{

"fieldType": "IntegerSpinner",

"fieldName": "forecastConfidence",

"label": "Forecast Confidence (%)",

"minValue": 0,

"maxValue": 100,

"incrementDelta": 10,

"showScale": True

}

]

In this case, the megawidgets can be said to require interdependencies, that is, when they
experience state changes, they must be able to change the mutable properties of one another.
In this case, the RadioButtons must be able to change the current state value and
enabled/disabled status of the IntegerSpinner when the former has its selection changed. The
changing of one megawidget’s mutable properties as a result of another’s invocation is known
as the application of ​interdependencies​.

To allow for such relationships, an ​interdependency script​ may be provided for a set of
megawidgets whenever the latter are specified. This script must be within the Python script
providing the megawidgets themselves (e.g. a metadata generation script); the latter must
include a function named ​applyInterdependencies() ​. This function must accept two
parameters:

● triggerIdentifiers ​: List of one or more megawidgets that underwent a state
change, or (for Button megawidgets) were invoked, as a result of user action. If ​None ​ is
provided, this means that the script is being run just as the megawidgets are first being
displayed.

● mutableProperties ​: Mutable properties of all the megawidgets, given as a
dictionary. Each megawidget from the set that has mutable properties will have an entry
within the dictionary, keyed by its identifier. The value associated with each key is itself a
dictionary, holding key-value pairs for all the mutable properties of that megawidget;
again, each key is the name of a mutable property, and each value is the current value
of that property.

The function must return a dictionary identical in structure to the ​mutableProperties

parameter, but with a difference: It should only include those mutable properties that were
changed as a result of the interdependency script's execution.

The script therefore, in essence, may look at all the mutable properties of all the megawidgets,
and may indicate via its return value which properties, if any, should be altered.

Continuing with the example above involving the RadioButtons and IntegerSpinner, the function
would, if called as the result of the RadioButtons identifier experiencing a state change, or of
initialization occurring, return a dictionary with a single entry. The latter's key would be the
IntegerSpinner identifier the corresponding value being another dictionary holding the mutable
properties that need changing, in this case either one or two key-value pairs, one indicating
whether or not the IntegerSpinner should be enabled, and if it should not, a second indicating
what its state value should now be. If called with the IntegerSpinner as the sole trigger identifier,
it would return nothing, since changes to the IntegerSpinner's state do not need to precipitate
any other changes. The script may be written as follows:

def applyInterdependencies(triggerIdentifiers, mutableProperties):

if triggerIdentifiers == None or \

"forecastType" in triggerIdentifiers:

if mutableProperties["forecastType"]["values"] == "Watch":

return {

"forecastConfidence": {

"enable": False,

"values": 50

}

}

elif mutableProperties["forecastType"] \

["values"] == "Warning":

return {

"forecastConfidence": {

"enable": False,

"values": 80

}

}

else:

return {

"forecastConfidence": {

"enable": True

}

}

else:

return None

Persisting Arbitrary Data between Script Executions
Suppose that an interdependency script needs to know something about what previous
executions of the same script had done. Since mutable properties are the only data elements
that may be set in one execution and then accessed in a later one, any sort of knowledge of
previous executions' results must come from mutable properties.

In order to enable scripts to store information for access by later executions of the same script,
the mutable property ​extraData ​ is available for all megawidgets. This property allows a script
to save data of an arbitrary type and value under a particular name, and then subsequently
access that data by querying the value of ​extraData ​ during a later execution of the script.

Thus, for example, the state change of a ​CheckBox​ with the ​fieldName ​ "useDefault" could
cause the editability and value of another megawidget, a ​Text​ with the ​fieldName ​ of
"description" , to change. Suppose that when the CheckBox is checked, the Text is to be
rendered read-only, and have its value to set to a certain default value. When the CheckBox is
unchecked, the Text should be made editable, and have its value restored to what it was before
the checking of the CheckBox. This may be accomplished by using ​extraData ​ associated with
the Text to store the old value while the CheckBox is checked. The script might be written as
follows:

def applyInterdependencies(triggerIdentifiers, mutableProperties):

if triggerIdentifiers == None or \

"useDefault" in triggerIdentifiers:

editable = True

if "useDefault" in mutableProperties and "values" in \

in mutableProperties["useDefault"]:

editable = not \

mutableProperties["useDefault"]["values"]

defaultText = "NOTHING TO TO SEE HERE"

if editable == False and \

mutableProperties["description"]["values"] != \

defaultText:

lastValue = mutableProperties["description"]["values"]

return {

"description": {

"editable": False,

"extraData": { "lastValue": lastValue },

"values": defaultText

}

}

elif editable == True and \

mutableProperties["description"]["values"] == \

defaultText:

if "extraData" in mutableProperties["description"] \

and "lastValue" in mutableProperties \

["description"]["extraData"]:

value = mutableProperties["description"] \

["extraData"]["lastValue"]

else:

value = ""

return {

"description": {

"editable": True,

"values": value

}

}

else:

return {

"description": {

"editable": editable

}

}

else:

return None

Debugging and Flushing Buffers
Debugging an interdependency script is generally done the old-fashioned way: inserting print
statements within the script to determine what values arbitrary variables have. Note that due to
the way Python scripts interact with the Hazard Services core, any output statements (e.g. calls
to ​sys.stderr.write() ​, ​sys.stdout.write() ​, etc.) must be followed up by flushing the
appropriate buffer (​sys.stderr.flush() ​ or ​sys.stdout.flush() ​, respectively, for the
two previous write statements) in order to ensure that the output is indeed printed out in the
console.

Performance Concerns
An interdependency script should execute very quickly. If it takes more than a very small fraction
of a second to run, then it will noticeably impact the performance of Hazard Services and of
CAVE. ​Thus, potentially long-running algorithms, queries to databases, etc. must be avoided. If
such scripts are required for hazard type metadata applications of megawidgets, a metadata
reload is the most appropriate approach.

