Focal Point
=“Foundations

Click “Next” to begin the presentation...

[No audio for this slide]

Warning Decision Training
Division

Presenter:

Eric Jacobsen Hazard Services,
Course Contacts:

o leecheen Focal Point Foundations Course

Tools &
Recommenders

Welcome to the module covering “Tools & Recommenders”, part of the Hazard Services
Foundational Training Course for Focal Points.

My name is Eric Jacobsen, with the Warning Decision Training Division. If you have
guestions about this course, or technical problems, please use the contact information
listed on this slide.

Tools & Recommenders: Objectives

After completing this module, you will be able to identify:
* The primary function of tools and recommenders

* Where tools and recommenders are organized

* The relationship between recommenders and tools

* The language used for tools and recommenders

* The degree of configuration possible

* How recommenders primarily access AWIPS data

» Limitations in recommender data access

* How visibility of recommenders is managed

These are the objectives for this module. Please take a moment to review them,
then, when you’re done, click next to proceed with the module.

What are Tools & Recommenders?
O\

* Suggest and modify sl
hazard events TOOLS —
— Type
— Space and Time
— Metadata

* Code-based path to
hazard creation
— Typically edited/
completed by
forecaster R o

— Wide range of control e D;m'fm’;aensog

EventiD Lock Status Hazard Satus Stream Poind
i Burn Scar Flood

sl River Flood Recommender
Flash Flood Recommender ||
Create RVS

Tools and recommenders are one component of hazards services that’s sure to expand in
usefulness as the software takes hold.

As was summarized in the workflow segment, tools and recommenders assist forecasters
by initiating and managing hazard events. This may entail setting the hazard types,
managing their spatial and temporal extents, and even pre-populating some of the hazard
attributes which we know as Metadata.

Ultimately, tools represent an alternate, code-based path to hazard creation which parallels
or surpasses some of manual capabilities users have access to. Typically, the generated
events may be interacted with by forecasters through the console and Hazard Information
Dialogue before product generation.

However — as we’ll see later —tools are not limited to specific user actions and have a wide
range of control behind the scenes, to where they may even, in exceptional cases, send

events directly to product generation with minimal user interaction.

Let’s take a closer look at the design and power of tools.

Currently Available Tools & Recs
S [0) T e S [T

Flash Flood Recommender FFW,FFA FFMP None (inherits config from FFMP)

River Flood Recommender FLW, FL.A, Hydro Code: Potentially remove hazard types Possible
FLY, HY.S Other: Reformat some river flood products*

DamlLeveeFlood FFW, FF.A Maps Other: Provide shapefile and scenario details Required
nonConvective

BurnScarFlood FFW,FF.A Maps Other: Provide shapefile and burn details Required
nonConvective

RVS Tool n/a Hydro Other: Potentially reformat river stage product™® Possible

— e —— — -

| s s of Hydro 10C, |

2 Aug 2019
« Baseline hazards, data, and setup | D Aug 2028 |

* Configuration preview:
— Often relate to supporting files, follow-up processes
— Tool logic does not need substantial change

Before we begin, this chart presents a summary of the tools and recommenders which are
currently available, valid for the Hydro Initial Operating Capability.

Some core design features of each tool and recommender are summarized here for the
benefit of focal points. For example, the second column contains the hazard types that may
be generated by each. Likewise, the primary data types accessed by each tool are shown,
which relates to the database tables that python code is actually querying via a framework
introduced later in this module.

Perhaps most importantly, the final columns identify the more common configurations
related to each tool that focal points may need to make (and their likelihood). But we’ll
revisit these columns of the table a little later, after taking a look at how tools and
recommenders are set up.

For now, rest assured that, although small tweaks to code may be needed for minor
changes to tool behavior, many configuration tasks will relate not to the tool’s logic, which
is functional as delivered, but to auxiliary files or follow-up processes. Substantial edits to
code for tools and recommenders are very unlikely to be necessary.

Tools vs. Recommenders

Recommenders Tools
* Create or update hazard * Operate on hazard events
events

_ or related data
* Source data -> “first guess”

* Pass to forecaster for
consideration

* More clear-cut outcome

Examples:
Examples: * “Zorro” tool (not 10C)

* River Flood Recommender

— Make initial hazard " ”
recommendations based on * “Create RVS” tool

river data — Routine product generation

— Complex polygon masking

+ Subtle differences in application/use
* Configurations share common framework and similar code

Before we get too far, is there a difference between tools and recommenders?

The differences, to be sure, are subtle, and mainly relate to their application, rather than
their back-end construction. In fact, from a configuration standpoint the two are very
similar, as we’ll see shortly that all tools and recommenders branch from the same
templates and use very similar code.

Nevertheless, the following loose classification can be useful in explaining their differing
applications.

Recommenders are focused on providing a “first guess” for a potential hazard (or multiple),
which they do through comparing source data to user-defined parameters. Examples of this
include the river flood recommender, which analyses the hydro database to identify
possible river flood hazards, but which a forecaster subsequently validates prior to
manually issuing any product.

In comparison, tools also operate on hazard events, but with a more clear-cut, generic
outcome. For example, forecasters will eventually see advanced tools for masking complex
polygons with specific conditions. Or there is the RVS tool, which — though it does
dynamically query hydrologic data —is not interactive and directly produces a routine RVS
product.

Once again, from a configuration standpoint this distinction is not extremely rigid, and so

we’ll often use the terms “tools” and “recommenders” interchangeably in the rest of this
module.

How they work

INSIDE TOOLS & RECOMMENDERS

Let’s take a closer look now at the construction and inner workings of tools and
recommenders.

Recommenders in the Localization

Perspective
* Localization Perspective > ")l
Hazard Services > o
Recommenders e '
b [B) BurnScarFlood.py
— config: Core framework files b B CreateRvsTool py

b [F) DamLeveeFlood.py
b [P FlashFloodRecommender.py
[7) GridBasedRecommender.py
[B) ModifyStormTrackTool.py ‘

— One file for each
tool/recommender

— Additional future tools,
currently disabled

b
b
P [RiverFloodRecommender.py
b [F) SaveHazardAreas.py

b [B StormTrackTool.py ‘
b

[ZorroTool.py

Focal points should know that all tool and recommender files, which we’re about to look
at, are available for viewing — and editing - in the localization perspective, under the
“Recommenders” directory within “Hazard Services.”

What you see within this folder will include; a “config” subdirectory, mainly for core
framework files, which should not be edited; and a file for each tool or recommender.

Some visible tools may not yet have been deployed operationally, and their use will be
disabled by settings. For now, this module only addresses those which belong to hydro I0C

Tool/Recommender Logic

|class Recommender (RecommenderTemplate.Recommender): |
deT __imit__ (sel7T):
self._riverProFloodRecommender = None

thon self.bridge = Bridge()

pu self._riverForecastUtils = RiverForecastUtils()
self._riverForecastManager = RiverForecastManager()
self.hazardEventLockUtils = None

i lf.siteld = N
* Fu”y E‘.jltable (as most Zilf.:;ce= Textgcsduct(:ommon()
things in HazSvcs)

* PVthon Class based on =—> def execute(self, eventSet, dialogInputMap, spatiallnput

“recommender”
template
i @param eve
* Built from methods
which act on inputs to e
yield hazard event gparam
information
* Interfaces available for greturn: / ,
connectlng to AWIPS sessionAttributes = eventSet.getAttributes()
sessionMap = JUtil.pyDictToJdavaMap(sessionAttributes
datasets if self.hazardEventLockUtils is None:
— E.g. Data Access practice = GeneralUtilities.isPractice(sessionAt
lf.hazardEventLockUtils = HazardEventLockUtils
Framework EL

if self.siteld is None:

Tools and Recommenders are written in Python. Existing ones can be edited and new ones
created.

Behind the scenes, they are simply class files, which —as explained in the Python overview —
suggests that they are like templates, in this case for repeatable actions, as tools and
recommenders certainly are.

All tools and recommenders also inherit functionality from a parent class in the
RecommenderTemplate file, which simply outlines the structure for writing new
recommender code.

Recommenders heavily use internally defined python “methods,” such as the “execute”
method shown here on screen, to accomplish their tasks. Ultimately these functions act on
inputs (which can vary depending on the recommender or scenario) to yield hazard event
information.

Another pivotal aspect of recommenders is their ability to interface with AWIPS datasets, in
particular through the data access framework which will be covered later.

Recommender Inputs

Functional Inputs

Session: Current session
information
Ex: what is CAVE clock time?

OPE Saurce: DHR

Input Dialog

GPF Source (select for split window):
KLWX ~

RFCFFG

Input Dialog: what options should
guide how the recommender is
run?

Ex: what QPE inputs for flash
flooding?

Spatial Selections: are point,
polygon, or other spatial
interactions used?

Ex: point for storm track

Hazard Events: recommender

can be triggered to run with one ' VBl Sclected Events
or more hazards selected > B :
Ex: Masking polygon with edit =

areas

Although an in-depth review of Recommender code is beyond the scope of this training,
focal points who are interested in configuring recommenders should be familiar with the
basic inputs, and how some of them correspond to key methods within the file.

From a functional perspective, recommender inputs can include: information about the
session, such as the CAVE clock time; a configurable input dialogue, consisting of execution
options and criteria; potential spatial selections such as points or polygons drawn; and
finally, hazard events which may have been selected prior to running the recommender.

10

N Core Code Components
defineDialog() S
def defineDialog(self, eventSet, **kwargs):
@return: t _init_
i L S one) * Basic parameter initializations
d n - It . o
1 SHethodinput 1s nos Hone: *defineScriptMetadata
et el b b Lo Hap « Reference info about code &
self.siteld = methodInput.get() .
authorship
dialogDict = { : } . i
defineDialog
execute() . ; ; Hdi
def execute(self, eventSet, dialogInputMap, spatiallnput MEgaWIdget COlIECtlon for bu”dlng
; options GUI prior to execution
gparan 2 defineSpatiallnfo
gparan di « Define what spatial display input,
eparam " if any, is used by recommender
*execute
Ryathmn: ¢ CORE function of recommender
et bl i L + consolidates ALL inputs (dialog,
if self.hazardEventLockUtils is None: . 5
nractice « Generalutilities spractica(sessionat spatial info, event sets), returns
return filteredEventSet event set * required

Certain of these inputs correspond to well-defined methods within a recommender’s code
which can be modified by the focal point.

Notably, the “defineDialog” method is the method which constructs the recommender’s
input dialogue, such as the one shown here for setting how the flash flood recommender
will run before it executes. These dialogues, like many others in Hazard Services, are built
with megawidgets (which were introduced in the metadata & megawidgets section). Edits
here can change the behavior, choices, defaults, included megawidgets, and more for
recommender dialogues.

Another method, “defineSpatiallnfo” can be used to specify what, if any, spatial selections
are supported by the recommender. For example, whether to consider only a user-selected
area (as shown), a specific point, or some other criteria.

The method at the heart of the recommender, however, is “execute.” Every recommender
must have this method, which consolidates all inputs and returns an event set. Focal points
editing existing recommenders or writing their own will concentrate much of their
customizations on the behavior within this “execute” method and any auxiliary methods
which help it.

Ultimately, the “execute” method always ends in the output of events, if any were found,

which embodies that the fundamental focus of all tools and recommenders is on
manipulating events.

11

The Hazard Event
Daml Flood. IIAPI”

if hazardEvent.getEventID() == None:
hazardEvent . setEventID("")
hazardEvent . setHazardStatus(ING")

hazardEvent.setSiteID(str(sessionDict[0°1))
hazardEvent . setPhenomenon()
hazardEvent.setSignificance(significance)

hazardEvent. setGeometry(GeometryFactory.createCollection([hazardGeometry] A
if hazardGeometry else None)
hazardEvent.setHazardAttributes({ : ,
N :damDrLeveeName,
HazardConstants.RECOMMENDED EVENT: True, Event|
: riverName,
: True |I]

H
return hazardEvent

* Tools & Recommenders directly
access hazard events

— Virtually full control for setting
any attribute, value

— Event methods similar to “API”
* Assignments are “hard-wired”,

[Hazard Information £3

& 35 FEWNonConvective 8

Type
Cajegory: [Hydrology
Flash Flood Waming (FF.WNonConvective)
Drawing
Update Hazard Hatched Area
Time Range.
start: [12-Aug2019 |) [21:03
End: [13-Aug-2019 | () [00:15%

Duration: |3 hrs

Details

Dam Name: damOrLeveeName
River Name: Patuxent River and portions of the Hawlings and riy@rName
Nearest Impacted Occupied Area:
the shoreline of Rocky Gorge reservoir, and areas downstream of Duckett Dam
Scenario: unknown | &
Locations Affected (4th Bullet)
® Downstream of Dam
List of Cities.
None

self-contained

Additional Locations:

Preview. Propose

Although the exact ‘wiring’ of each recommender and tool may be very different, what’s

inherent to them all is an ability to directly access hazard creation and attribute
assignment.

Just to help illustrate this point, consider the relatively lightweight - but still capable - dam
break recommender. This tool takes user selection of a pre-configured dam, as well as an
“urgency” level, and initiates a hazard of matching significance, using a polygon from the

maps database for that dam, and launches the HID with certain pre-populated megawidget

fields.

Through this process, many of the manual steps that the user might have taken in the
spatial display, and in the HID, to craft a hazard were executed behind the scenes before
the HID was even shown. This was enabled by a set of powerful methods granting control
over “hazard events”... something like what programmers might call an “Application
Programming Interface”, or “API”.

Peering more closely at the code for the dam break recommender, we get a glimpse of
some of these methods, such as: the assignment of “FF” as the phenomenon; one of two
significance types (watch or warning) —read from the user input on the dialog; the hazard
geometry; and also a hazard cause and other helpful “attributes” which, where they

happen to correspond to the “field name” of a megawidget that later appears on the HID,
will cause those fields to be pre-populated.

12

The syntax of these methods is not as important for beginning focal points to memorize as it
is to appreciate that these routines are, in a sense, “hard-wired” to generate certain hazard
types and metadata. And, moreover, they execute their task in a self-contained way with no
direct awareness of the constraints of the HID.

12

Manage Baseline Recommenders

Flood Recommender X ‘| s May I"equwe adJUStment
Type — Baseline behavior
O Waming - undesirable
© Wat
o plficory . * Recommenders (& tools)
e ALL .
have self-contained
[?) RiverFloodRe... & behaV|Or
.1‘1 class Recommender (RecommenderTemplate.Recommen — W||| not update unless
: def __init__(self): E
self.riverProFloodRecommender = None dll"ectl\/ cha nged

self.bridge = Bridge()

e e s Mierereee - Most recommenders ready
to go out-of-the-box

* Need may vary by office,
and evolve

-

def definedEventSigs(self):

@returﬁ: i t nome T
return | F) River Flood Rec
) Configuration

A time may come where focal point need to edit some parts of baseline recommenders, for
example if the hazard choices or options they present are undesirable. Being largely self-
contained scripts, the hazards and metadata that tools and recommenders suggest must be
directly managed within their code to effect any change.

Many recommenders are fine out-of-the-box for some offices. For example, the baseline
river flood recommender (shown), as well as the flash flood recommender and RVS tool,
are provided ready to use as long as offices don’t have different product issuance policies.

To this last point, the river flood recommender could be one tool which offices need to
adjust, say to remove the ability to issue anything except for warnings. This would involve
editing choices in the inputDialogue method and ensuring that other event assignment
processes throughout the code have been completely decommissioned which consider
non-warning events.

As the number of tools grows and offices move to more advanced use of Hazard Services, a

greater familiarity with recommender code will be very beneficial to focal points seeking to
make such configurations.

13

Configuring Tools for
Pre-Defined Impact Areas

Damj/Levee Flood x

gid name the_geom cwa e
[PK] se character varying(80) y(MultiP« characte character varying(
Brighton Dam (Montgomery, Howard, PG, and AA Counties)| ~ 1 b Lake Barcroft Dam 0106000020E61000(LWX daminundation
Please Select Level of Urgency 2 12 Upper Occoquan Dam 0106000020E61000(LWX daminundation
@ WARNING (Structure has Failed / Structure Failure Imminent) : i :i:::;:\: t::: E:z gig:ggggsg:igﬁg:tﬁ ::E::::::i::
WWATCH (Botential Struicte Fallore) 5 5 Lake Accotink Dam 0166608020E61608 LX daninundation
6 6 Lake Barton Dam 9166000020E61000(LWX daminundation
Run Cancel 7 |7 Lake Holiday Dam 0106000020E61600(LWX daminundation
8 8 Savage River Dam 0106000020E61000(LWX daminundation
9 Jennings Randolph Dam 0106000020E61000(LWX daminundation
. Pr - H (). 1 Duckett Dam ©106000020E61000(LWX daminundation
€ dEflnEd area tOOIS IOC * Laurel Lumber Dam 0106000020E61000(LWX daminundatien
— Da m’lLevee Flood Brighton Dam 0106000020E61000(LWX daminundation
2. File Browser =l |% < = 0O | [/ DamMetaData 2
— BurnScar Flood - {l—
. b & GFE Server
. . 2
Required elements: o o Hasond Seices . pametanata = {

— Maps: hazardServicesArea | :
— MetaData files in Utilities b [AttributionFirstBulletText.py
& Scr|pts provided tO b [AttributionFirstBulletText_Basic.j

b @ AttributionFirstBulletText_FFA.py 16
— Migrate from WarnGen b [AttributionFirstBulletText_FFW_F 1 .

b [AttributionFirstBulletText FLW_F L & : {
- Add/U pdate b [B) BasisText.py S 1 ;
R 9 b [F) BumScarMetaData.py 1
Llnk: Dam/Burnscar b B callsToActionAndimpacts.py I'
(-) % . P B CrestsAndimpactsutil.py 18
Conflguratlon |+V ¥] DamMetaData.py h i

One type of tool will require much more Focal Point involvement both initially and over
time. These are the tools used for “pre-defined impact areas”, or locations with a known
risk which have been encoded in advance.

In particular, two 10C tools —one for dam or levee breaks, and another for burnscar flash
flood products — depend on a pre-populated map table and utility files to allow any
selection in their initial dialogues. In fact, the intensive configuration we’re referring to will
be in populating these supporting pieces, and not to the code itself, which is ready to work
as soon as back-end data has been made available.

The specific maps table is called “hazardserviecsarea” and is previewed here. This single
table is intended to store all pre-defined areas, whether dam, burnscar, or even some
custom type, and a “type” column is provided to differentiate each group.

In addition, each tool will have its own file for additional “metadata,” saved under the
“utilities” folder of Hazard Services, which allows for pre-determined location information,
scenario text, and more to be saved and called on by the tool for attributing to the hazard
event and populating the HID.

The easiest way to create the records and files referred to here is if offices already have this
data in WarnGen. Conversion scripts are provided with Hazard Services, whose use is
documented in the linked jobsheet, for migrating data from old velocity and xml files to the
new structure. In addition, the same scripts and jobsheet may be used for new records to

14

import shapefiles or to add additional information.

After their initial setup, focal points should plan to maintain this table and files with up-to-
date information to be best prepared to call on them during events.

14

Configuration Overview for
Current Tools

_m Data General Configuration Likelihood
Flash Flood Recommender FFW, FFA FFMP | None (inherits config from FFMP) Low
River Flood Recommender FLW, FL.A, Hydro | Code: Potentially remove hazard types Possible
FLY, HY.S Other: Reformat some river flood products*

DamlLeveeFlood FEW, FEA Maps Other: Provide shapefile and scenario details Required
nonConvective

BurnScarFlood FFW,FF.A Maps | Other: Provide shapefile and burn details Required
nonConvective

RVS Tool n/a Hydro | Other: Potentially reformat river stage product™® Possible

; | s /s of Hydro I10C,
* Most setup does not change tool logic | Aug 2019 I

— “Other”: Supporting files or follow-up processes —_—————
* Varying need for initial configuration
* *Associated product changes are separate from recommender code
* Anything (GUI to logic) is editable

Armed with a better understanding of their operation, let’s return to the table showing
configuration needs for currently available tools and recommenders.

Jumping to a key takeaway, many of the configuration needs depicted on this slide do NOT
entail editing the logic within tool or recommender code. Configurations which are related
to recommenders, but which involve some external file or process, are labeled “Other” in
this table.

Little to no change may be needed for some tools, such as for the “Flash Flood
Recommender,” which in fact leans mostly on the FFMP setup to populate its fields.

Others may function out-of-the-box, but have associated behaviors which are undesirable
for some offices. The “RVS tool” and “River Flood Recommender” fall into this group, due
to the hazards they issue or the products they lead to.

Relatively superficial edits to the River Flood Recommender’s logic are all that’s needed to
change the generated hazards. However, it’s completely external to recommender code to
tailor the product formats that might be triggered downstream of them, owing to Hazard
Services fundamentally separate treatment of hazards (to which recommenders contribute)
and products.

Finally we’ve seen that some tools, such as the the Dam and Burnscar tools in Hydro 10C,
will provide no useful output until local shapefiles and details on which they operate are

contributed by the focal point. Though a substantial effort, it IS important to identify once
again that this configuration deals with laying the groundwork in “auxiliary” files, and NOT in
the actual python code itself, which is fully functional and very unlikely to need edits.

Although most common configurations may not require substantial edits to the
recommender code, recall that, like so much in Hazard Services, all aspects of tools and
recommenders are fully editable if desired.

15

Accessing AWIPS Data

THE DATA ACCESS FRAMEWORK

In some of these last slides, we’ll introduce another important python framework at the
heart of many tools.

16

Data Access Framework (DAF)

Plugins DAF “Factories”
* API for

g (access to data plugins
GRID i, \ Plugin “Factories”

unify access interface

: REQUEST F’|Ugln_s without
0BS u'[m.. factories not yet
supported

‘ -) v x — Most are ready
i-B'-ADAR Ilil;l-- — See SSDD document,
or DAF Vlab Doc
* New Frontier:
, documentation,

UM . .
s " usage are improving

The decision-making that recommenders are tasked with is critically dependent on the
AWIPS Data Access Framework, often abbreviated as “DAF.”

Every AWIPS data type, equivalently termed plugins, has a unique way of being stored and
accessed. The DAF is an attempt to unify and simplify the commands needed to access all
plugins.

Although a bit technical-sounding, so-called “factories” can be programmed for each plugin
to map the normally complex handling of each data type to the common commands used
by the DAF. Over numerous plugins, this creates a consistent and comparatively easy
framework for what would otherwise be an overwhelming mix of behaviors.

The DAF, however, depends on these factories being written for each plugin before they
can be accessed, and although a few plugins may not yet have factories, the vast majority
of useful types do and can be accessed via the DAF. The Software System Design Document
or a community-created DAF VLab page can both be referenced to see the data types
available for use, and to get a start on writing DAF commands.

DAF in some ways remains a new frontier, with an ongoing effort by its growing community
to more fully document and test it. It may still be possible to encounter some “rough
edges” in the meantime, but for most applications it is a powerful resource which is ready
to use.

17

DAF Code

def getQPEValues(se]

Excerpt from Flash Flood Recommender

* DAF used extensively in
Hazard Services
Recommenders and Tools

/'| DataAccesslLayer

4= [request =
g request.setDatatype(FFMP_KEY)
request.setParameters(self. gpeSourceName)
. Python API Usage 3 request.addIdentifier(WFO_KEY, self.currentSite)
i ” g request.addIdentifier(SITE_KEY, self._siteKey)
— = 1 request.addIdentifier (DATA KEY, self. dataKey) =
Request”-centric * 1 request. addrdentifier(HUC KEY. ALL HUC) DAF call for times
. availableTimes = DataAccesslLayer.getAvailableTimes(request)
— Relies an DataAccessLayer
= usedTimes = []
library
startTime = self.currentTime - (self.accumulationHours * GeneralConsi
— Common request Syntax endTime = self.currentTime
and return formats if self. splitWindow:)
dl ft startTime += self._splitWindowMillis
regardiess o e
g yp for time in availableTimes :
= refTimeMillis = time.getRefTime().getTime()
* Small toolkit for broad data F refTineHillis »= SeartTine and refTinemillis < endTing:
access usedTimes.append(time)
self._qpeGapInfo = self. _getGapInfo(self. dataKey, self._gpeSourceNar
E?Sifid:,}nl(. DAF call for geometries
geometries = DataAccessLayer.getGeometryData(request, usedTimes)
T Tor geometry iIn geometries:
INnK: self.__storeQpe(geometry.getLocationName(), gebRetry.getNumbe
DAF Vlab return Troe

return False

O Documentation

def getQPFValues(self):

In Hazard Services, the python DAF interface is used extensively in recommenders, and also
for other purposes where data access is needed. An example use of the DAF is shown here
from the Flash Flood Recommender code, specifically within the method for getting QPE
values to help determine the precipitation received over the relevant area.

Fundamentally, using the DAF consists of building a data “request, initiated using the
“DataAccessLayer” python library, which is at the heart of DAF use in HazSvcs python files.
All DAF requests are similarly constructed, regardless of the data type, with only a few
common methods, including “setParameter” and “addldentifier” used here. These
methods take arguments specific to the data type which, in combination, help to narrow
the request.

Once sufficiently specific, the request can be used by various methods to retrieve data, for
example: the list of available times for the requested parameter; or geometric data, such as
shapes and points and corresponding values, which in this particular case contains the gpe
values mapped to their geographic coordinates, as visualized here. Other retrieval options
are available, such as to get gridded data, but ultimately the beauty of DAF lies in the
limited number of commands necessary for accessing data of any supported type.

Focal points are encouraged to check out the available references to better understand the
construction and return of DAF requests, but this example was shown to give a general
sense of how such requests appear and are used within HazSvcs python.

18

DAF Uses

* Examples of DAF usage with N
AWIPS: -
2" Hydro

— Retrieve grid or other Grid

observation data from
databases and compare to &\
:

hazard thresholds
R e reee FC

— Query GFE grids to identify
forecast hazards

— Load pre-defined shapes from
maps database for known @ P
o

impact area (e.g. dam breaks,
burn scars)

A
e

n

While potential uses for the DAF are nearly limitless, a few common applications are
summarized here.

The DAF can be used within recommenders or other scripts to retrieve grid or other
observation data from AWIPS, which can then be analyzed through Python code to detect
potential hazards

One of the many supported plugin types is GFE grids, thus enabling the DAF to retrieve and
analyze forecast data for potential risks

Other databases accessible by DAF include maps. Loading pre-defined polygons in the
maps database with shape-files, such as for dams and burn scars, then retrieving these with
the DAF, supports rapid, accurate hazard creation for pre-defined impact areas.

As Hazard Services matures, expect more discussion and guidance on the uses for DAF,
especially with new hazard types

19

o - = ” i i
Registering” Tools .
Name: [Hydrology_All

W i t h S ett i n gs Display Name: |Hydrology - All

Category: | Hydrology

* Accessibility within

[——
Hazards Filter Console ' Console Coloring HID/Spatial _Recommenders | Ma)

Sett | n gS Available Recommenders: Visible Recommenders:
— ALL recommenders StormTrackTool DamLeveeFlood
£ | IMyExperimentalRecommender | BurnScarFlood
visible by default
— Exception: restricted Author | Focal Po
localization level | SverstontiLo

Description Just testing - | don't want anyone to see this yet! !

— TIP: Keep HazSvcs
development code
private, not site-wide

* “Register” tools lbarDefinitions":|
— CommonSettings.py 3__“”"”””& =52 e

— Prevents AlertViz 17 -
errors 174),

Save Save As ... Reset Dismiss

One final configuration point for recommenders overlaps with managing the Hazard
Services settings. This deals with how tools and recommenders become accessible to a
user, in particular within the settings management GUI.

All files in the recommenders directory, in fact, will by default be automatically visible to
the settings interface in the “Recommenders” tab, except for those in more restricted
localization levels. This emphasizes the importance of testing new recommenders, and
Hazard Services configurations in general, on a user- or more isolated localization level, to
prevent confusion in operations, even when running CAVE in practice mode.

With tools and recommenders, it is also important, however, to “register” the tool in the
“common settings” file under the “toolbarDefinitions” variable, or else an alertviz message
will appear indicating ambiguity about the tool. Jobsheets for creating new recommenders
will include the appropriate, straightforward steps for modifying this variable.

20

Tools & Recommenders Takeaways

* Generate/manage hazard events & metadata
— Wide range of flexibility

* Recommenders and Tools similar (subtle

differences)

— Common templates and code

Fully editable, Python code modules

— Accessible in “Recommenders” directory under
“Hazard Services” in Localization Perspective

— Need to “register” new tools in common settings

To summarize tools and recommenders in Hazard Services, we emphasize that their
fundamental purpose is to generate and manage hazard events and their metadata. A very
capable set of event access methods enable a wide range of flexibility in this area

We’ve clarified that Recommenders and Tools serve subtly different roles in building
events, but are structurally quite similar behind the scenes. This is especially reflected in
the fact that they share identical templates for their construction, and leverage very similar
code.

Speaking of code... like so much in hazard services, tools and recommenders are written in
python and are fully editable, allowing existing ones to be modified and new ones to be

created. All recommenders and tools (and their supporting files) can be seen and edited in
the “Recommenders” directory within the Localization Perspective under Hazard Services’

We’ve also noted that, once offices do begin to create their own tools, it’s important to
“register” them with the common settings file.

21

Tools & Recommenders Takeaways, 2

* Almost complete configurability

— Most recommenders are ready-to-go
* |OC: Flash Flood, RVS, River Flood recommenders

— Pre-defined “Impact Area” tools require significant
setup and maintenance

* |0OC: Dam Break, Burn Scar tools (Jobsheet)
* Powerful Data Access Framework

— Maps + most AWIPS data types can be accessed
within tools and recommenders

— Documentation and experience still improving

Thanks to their construction in editable Python, tools and recommenders can be almost
completely re-configured With that said, most will be ready-to-go and can be used
effectively without any edits.

In hydro initial operating capability, this includes the Flash Flood recommender, RVS tool,
and River Flood Recommender, although it’s likely that offices may need to configure
especially the River Flood recommender to limit the hazards it may issue out-of-the-box.

Tools which rely on a database of ‘pre-defined impact areas’, however, which are unique to
each CWA, will require significant initial setup and maintenance to be effective. In I0C, this
includes the dam break and burn scar tools, whose setup is documented in the provided
jobsheet.

Finally, one of the more powerful, configurable elements of tools and recommenders is the
data access framework, which allows access to maps, grids, and most other useful AWIPS
data types for a wide variety of analysis and decision making. As the user base and
documentation continues to grow, this should help to refine the overall experience of
leveraging this very powerful framework.

22

Take the Quiz

You’'re almost finished!
Click “Next” to take the quiz.

[No audio for this slide]

23

What e prmary functaon of the recomerander
oython Hes?

24

