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Why is there a need for stochastic

physics?
In medium range NWP

* Even if the model is initialized with perfect initial
conditions, there will be errors in the forecast due to
model error.

* There are many sources of errors in the model:
e Discretion in space and time of a continuous fluid
* Errors in the physical parametrizations
e Missing physics
* These errors manifest themselves as an overconfident
forecast in an ensemble prediction system.

 Stochastic physics adds random perturbations to
represent the uncertainty associated with unresolved
processes.
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In ensemble Data assimilation

* Model error results in a first guess forecast that is deficient in spread.
This lack of spread would result in the EnKF analysis giving too much
weight to the model, and not draw close enough to the observations.

* During the 9-hour forecast, the ensemble spread would actually
decrease since the noise added that the analysis time would not
project onto the growing modes.

e At the time, multiplicative and additive noise was applied to the
analysis ensemble to make up for the lack of spread. But this initial
spread actually decrease during the first few hours of the first guess.



Benefit of stochastic physics

* Increase in ensemble spread, which makes the forecasts more reliable.

* A bonus result is a decrease in the Ensemble mean RMS error!
850 hPa Zonal wind

Ensemble mean error without stochastic physics

Ensemble spread without stochastic physics
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Benefit of stochastic physics

* Increase in ensemble spread, which makes the forecasts more reliable.

* A bonus result is a decrease in the Ensemble mean RMS error!
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What is
implemented?

* SKEB: Stochastic Kinetic Energy Backscatter (Berner et al., 2009)

* Add wind perturbations to model state. Perturbations are random in space/
time, but amplitude is determined by a smoothed dissipation estimate
provided by the dynamical core.

* Addresses errors in the dynamics - more active in the mid-latitudes

* SPPT: Stochastically Perturbed Physics Tendencies (paimer et al., 2009)

* Multiply the physics tendencies by a random number O [0,2] before updated
the model state.

X =(1+ruwX,

* Addresses error in the physics parameterizations — most active in boundary
layer and convective regions



What is
implemented?

* SHUM.: Speciﬁc HUMidity perturbations (inspired by Tompkins and Berner, 2008 )

* Multiply the low-level specific humidity by a small random number each time-
step.

qperturbed = (1 + rlu)q

* Attempts to address missing physics - most active in convective regions

e Land surface perturbations (Gehne et al. 2018 Submitted):

* Allow for land surface parameters such is Albedo, Soil Hydraulic Conductivity,
LAI, roughness lengths to vary in space.

e Addresses error in the land model



Special handling for stochastic
physics
* Traditional physics operates on columns, and does not know about

the surrounding neighbors.

 Stochastic physics requires that the random numbers used are
correlated in space and time.
- Time is easy, space is more complicated on the cubed-sphere grid.

* The random pattern generator is outside of the physics and dynamics.

* Currently uses spherical harmonics and spectral transforms
transplanted from the GSM.



Creating random patterns correlated
In space and time

* We aim for random patterns to have a spatial decorrelation scale on
the order of 500 km and a 6-hour time-scale.

* The spectral resolution of the random patterns is independent of the
”C” resolution of the model, but due to the parallelization of the
spherical harmonics, there is a minimum spectral resolution for a

given number of mpi tasks.
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Step-by-step

1. An AR(1) time-series is generated for each spherical
harmonic:

rimn (£)=gr Imn (t—At)+ain V(1—@T12) nlmn (t)

7 dmn spherical harmonic for zonal wave number m and total
wavenumber n

oln standard deviation of the time-series. Is a function of n,
decorrelation length scale, and desired amplitude of the pattern

@ temporal decorrelation
pdmn random gaussian number E(0,1)
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Step-by-step

2. A Legendre-Fourier transform converts the spherical
harmonics to a random pattern on a gaussian grid.

3. Each mpi task gathers the entire global gaussian grid to
interpolate to its piece of the cubed-sphere (inefficient)
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Schematic without stochastic

physics
» |

Physics -prep Dynamics -prep

U,V,T, and tracers are updated by physics

All physics output is flipped, and U and V increments
are interpolated to cube-relative D-grid locations
and added to the D-grid winds output from the last
dynamics time-step.

Model state is put
onto A-grid and
flipped in vertical

v
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Schematic with stochastic physics

Model state is put

onto A-grid and
flipped in vertical

Physics -prep Dynamics -prep

Stochastic Physics

Random Pattern
generator

All physics output is flipped, and U and V increments
are interpolated to cube-relative D-grid locations

and added to the D-grid winds output from the last
dynamics time-step.

Stochastic physics modifies the physics output.

U,V,T, and tracers are updated by physics
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Results from FV3GFS with cycled Data
assimilation

e Hybrid 4D Ensemble-Var run at C192 (~52 KM)
* 80-member ensemble
e 20-days of cycling for January 2016.



pressure (hPa)

Control vs SPPT/SHUM
(left innovation stats, right spread difference)

Wind spread difference

RMS O-F (2016010500-2016012500)
SPPT+SHUM - nostoch

All Insitu V: Global

All Insitu T: Global All Insitu RH: Global
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pressure (hPa)

SPPT/SHUM vs SPPT/SHUM/SKEB
(left innov stats, right spread difference)

RMS O-F (2016010500-2016012500) Wind spread difference
SPPT+SHUM+SKEB — SPPT+SHUM
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Small positive impact on wind stats adding SKEB to SPPT/SHUM
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Medium range forecasts

e 20-member ensemble at C192

* Initialized with spectral GFS initial conditions for 7 cases in August
2014.

e 5-day forecasts verified again ECMWF operational analysis



5-day forecast Zonal Wind RMS error — Spread

zonal average from 1 month of forecasts: August 2014

RMS error: ensemble
mean error with respect
to verifying analyses

Spread: standard
deviation among
ensemble members

Pressure

GFS ensemble, no treatment for model error “baseline”
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Impact of stochastic physics at day-5

Zonal Wind Error and Spread

Fv3 SPPT Fv3 SPPT
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* The three stochastic
parameterizations all result in an
increase in spread, and a slight ’
reduction in ensemble mean error. - - "‘
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Surface quantities are still under-

spreag,

Northern Hemisphere 850hPa Temp.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20130601 — 20130731

RMSE(solid) and SPREAD(dash)
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T2M

Northern Hemisphere 2 Meter Temp.
Ensemble Mean RMSE and Ensemble SPREAD
Average For 20130601 — 20130731
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SdUIIace
Perturbations

* There are errors associated with the lower boundary
conditions

* Errors associated with land surface model and initial
conditions (not addressed here)

e Methods

e Perturb surface momentum roughness length

(Z0),thermal roughness length (zt) and soil hydraulic
condiictivity (SHC) and leat greg inde)c(thAl)
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Differences compared to spectral GFS

* SKEB is formulated differently in FV3GFS compared to the spectral
version of the model

» Spectral GFS used the vorticity gradient as an the dissipation estimate
and the dissipation was smoothed spectrally

* FV3GFS directly provides the numerical dissipation associated with
diffusion. This dissipation term is smooth on the model’s cubed
sphere grid.



New dissipation estlimate iIn oAEDb (maps at
850hPA)

* Much less horizontal smoothing is applied in FV3 (12 passes of laplacian
smoother).

* GSM used T12 spectral filter.

* Generation of vertical correlations in random patterns in FV3 modified,
computational cost reduced.
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New dissipation estimate in SKEB

 GSM used spectrally smoothed vorticity gradient.

* FV3 directly calculates the loss of kinetic energy at each time-step
due to momentum diffusion.

* Estimates are different near tropopause, especially in the tropics.
FV3

GFS
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Summary

* The current stochastic physics schemes that are operational in the
GDAS first guess ensemble are available in FV3GFS.

* In addition, new land surface perturbations are also available.

e Overall, the overall effect from the stochastic physics in the new
model is consistent with the spectral GFS.

e Caution: Although SPPT has been developed with a potential coupled
model in mind, mass and energy conservation have not been
rigorously tested (e.g. surfuace fluxes may not be consisted with
heating of atmosphere).

Thank you
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