
FMS

NEMSfv3gfs Forecast System Training and Tutorial
12-14 June, 2018

FMS Superstructure Coupler Layer

Model Component Layer

Abstraction Layer

Machine Layer

User Code

FMS Infrastructure

What is FMS

Flexible Modeling System effort began in 1998, with GFDL’s first
distributed memory machine

Superstructure design allows the building of multiple models

Supports multiple dynamical cores, components (ocean, ice,
land, etc) and atmospheric physics packages

Infrastructure comprised of common utilities needed by model
components

2

Infrastructure Layer

Two logical layers: machine & abstraction

Machine layer basic interface to parallelism and I/O: MPP

FMS is a high-level functional layer built upon MPP

Abstraction layer contains multiple “managers”

and other utilities/APIs:

Abstraction Layer

Machine Layer
FMS Infrastructure

time manager
diagnostic manager
block manager

field manager
tracer manager
fms_io

data override
constants
interpolators

exchange grid
astronomy functions
math functions (ffts, tri-di solver, etc)

3

MPP

Communication Layer - provides fundamental point-to-
point and asynchronous, non-blocking communication

Domains Layer – handles decompositions and tracks
which ranks are “connected” for halo updates, I/O, and
nesting

I/O Layer - handles all file types including direct
interface to NetCDF/HDF

Clocks - allow high-resolution timing of code segments

Miscellaneous - pelists, error handling, reductions, unit
tests (functionality and performance), etc

4

5

MPP: pelists

Group of MPI-ranks all working on a specific task

Stored as a sorted, one-dimensional array

Lowest order MPI-rank is considered the “root-pe”1

All pelists are a subset of the global pelist

Used to create an MPI group and unique communicator

An MPI-rank can belong to multiple pelists

1 Exception: generic gather/scatter routines where root-pe can be “specified”

6

MPP: Communication
Default is asynchronous and non-blocking: isend, irecv

Synchronization functions based on mpi_wait to ensure
no outstanding messages on an MPI-rank

MPP functions to: send, recv, transmit, bcast, gather, scatter

Defaults to active pelist or specified via optional arg

MPI tags to ensure proper message delivery

Functions based on collectives exist, for performance
reasons their use is discouraged (exception allreduce)

All datatypes supported: real, integer, character, complex

7

MPP: Domains

Responsible for domain decomposition of:
tiled grids
unstructured grids
rectilinear grids
tri-polar grids

Creates an internal data structure containing:
halo update communication mapping
directional data orientation and rotations
tile information

Domain data structure is unique to a halo width

Manages nested grid <-> coarse grid boundary updates

8

MPP: Domains

Domain updates via:
pre-defined groups
message aggregation
asynchronous (start/complete)

Gather decomposed data into a global field array:
memory intensive
not recommended

9

MPP: I/O
Abstracts the calls to NetCDF

Provides basic functionality used to build higher level
abstraction layer known as FMS_io

Manages open/close of files and file units

Uses domains logic to create a special I/O domain that
can be configured at runtime (see I/O Subset examples)

I/O domain can read from a single file

Automatically includes extra metadata buffer space

Can read “regions” of data to reduce memory bloat

ASCII files can be read by root-pe and broadcast

I/O Subset Example 1

10

4 x 4 decomposition 1 x 1 io_subset

R/W

I/O Subset Example 2

11

4 x 4 decomposition 4 x 4 io_subset

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

I/O Subset Example 3

12

4 x 4 decomposition 1 x 2 io_subset

R/W

R/W

13

MPP: Clocks
Uses wtime (default) or system_clock

Error checks to ensure begin/end pairs are matched

Defined with differing granularities: component,
subcomponent, driver, module, routine, loop, infrastructure

Global summary output at end of run: min/max/avg

Per MPI-rank summary available

Verbosity of summary granularity is configurable

Clocks can be “sync’ed” - timer doesn’t begin until all
members of the pelist have checked in

14

MPP: Miscellaneous
Error handling

NOTE message to stdout by root-pe
WARNING NOTE by every member of pelist
FATAL WARNING plus program termination

Global sums
fast sum

• sum of local sums -> allreduce
• not reproducible across decompositions

bitwise exact
• Standard - gather to root-pe -> in order sum -> bcast to pelist
• EFP sum - convert to int -> mpp_fast_sum -> convert to real

Checksums
restart integrity checks
global, pelist, or local
aid in debugging

FMS_IO

Most of the IO is mediated through this layer

Wraps the mpp_io layer to extend basic functionality

Provides simplified data access
queries, open/close, reads/writes
reduces need to fully express metadata for all variables
IO subsets and mosaic (tile) transparent to user

Complete restart functionality

id_restart = register_restart_field(Tra_restart, fname_nd, 'u', Atm(n)%u, &
domain=fv_domain, mandatory=.true.)

call save_restart(Tra_restart, timestamp)

call restore_state(Tra_restart)

15

FMS_IO

Files expressed in basic format, “tilen” added by MPP
layer based on domain information

Query, Set, and Nullify:
active domain

filename appendix (used for ensembles, nests, etc)

Query:
Global and variable attributes
field size and name
mosaic (tile) number and filename

read/write data using only filename, fieldname, data
optionally specify time-level and/or region

16

Time Manager

Supports multiple calendars

YY.MM.DD.hh.mm.ss.ticks stored as an abstract type
ticks is a configurable fraction of a second (1000 => milliseconds)

Operators to perform “math” on the type

Query and Set the calendar, date, and time

Alarm to alert you when an interval has been reached

Function that returns seconds for a time interval – or
optionally days & seconds

julian
gregorian
30-day months

no-leap
no-calendar

17

Block Manager

x

y
z

Distributed computing can be abstracted away from scientists
and developers - OpenMP requires tight interaction

MPI-rank domains are further decomposed to aid with OpenMP
threading and populates a type

Stores extent for the MPI-rank domain
and for each block

Includes per-block translation from
MPI-rank domain to block (indexing)

Blocks expressed in packed (ix,k) or
rectilinear (ib,jb,k) format

Blocks are not required to be
uniform in size

18

Field/Tracer Manager

Reads in field descriptions from a flat file

Tracks fields by component and classification

APIs for
initialization of the field from metadata information
querying array location mapping from tracer “name”
querying generic attributes for specific purposes

Tracers can be added mid-run
diagnostic tracers no impact on solution (e.g. particle traces)

prognostic tracers may require equilibration or relaxation

19

20

"TRACER", "atmos_mod", "o3mr"
"longname", "ozone mixing ratio"
"units", "kg/kg"
"profile_type", "fixed", "surface_value=1.e30" /

”tracer", "atmos_mod", "Extinction"
"longname", "Extinction for band 4 centered at 1 micron”
"units", "1/m"
"tracer_type","diagnostic” /

"tracer_packages","ocean_mod","ocean_age_tracer"
names = global
horizontal-advection-scheme = mdfl_sweby
vertical-advection-scheme = mdfl_sweby
restart_file = ocean_age.res.nc
min_tracer_limit = 0.0 /

Field/Tracer Manager

Diagnostic Manager

Set of simple calls for parallel diagnostics on distributed
systems

Built on the parallel I/O interfaces from FMS_IO

Capable of multiple sampling and/or averaging intervals
specified at run-time

Ouput scalars up to 3D fields

Support for limited-area extents (regional)

Run-time specification of diagnostics controlled
through the diag_table file

21

22

Diagnostic Manager

fvGFS_20150801.18Z
2015 8 1 18 0 0

Output files
"grid_spec", -1, "months", 1, "days", "time”
"atmos_4xdaily", 6, "hours", 1, "days", "time"
"atmos_daily", 24, "hours", 1, "days", "time"
"atmos_static", -1, "hours", 1, "hours", "time”
files needed for NGGPS evaluation
"nggps3d_4xdaily", 6, "hours", 1, "days", "time”
"nggps2d", 0, "hours", 1, "hours", "time”

Output fields
"dynamics", "grid_lon", "grid_lon", "grid_spec", "all", .false., "none", 2
"dynamics", "grid_lat", "grid_lat", "grid_spec", "all", .false., "none", 2
"dynamics”, "zsurf", "zsurf", "atmos_static", "all", .false., "none", 2
"dynamics", "ps", ”SLP", "atmos_daily", "all", .true., "none", 2
"dynamics", "ps", ”SLP", "atmos_4xdaily", "all", .true., "none", 2
"dynamics", "vort850", "vort850", "atmos_4xdaily", "all", .false., "none", 2
"dynamics", ”pt", ”temp", ”nggps3d_4xdaily”, "all", .true.,"236.0, 295.0, -25.0, 49.5,-1,-1”,2
"gfs_phys", "totprcp”, "PRATEsfc”, "nggps2d", "all", .false., "none", 2

Diagnostic Manager

Similar format to that used by restarts

id_swdn(1,i) = register_diag_field (mod_name, 'swdn_200hPa_clr', &
axes(1:2), Time, 'clear sky SW flux down at 200 hPa', &
'watts/m2', missing_value=missing_value)

used = send_data (id_swdn, swdn, Time)

used = send_data (id_swdb, swdn, Time, rmask=Grd%tmask, &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)

23

Multi-entry variables in the diag_table require a single
send_data call, diag_manager will manage all variations

send_data:
called every timestep (for time averaging and accumulating)

alarms used to trigger output1

optional index arguments for OpenMP/blocked data

1 data sent to NetCDF-managed buffers - actual flush of data controlled separately

Data Override

Similar capability to gcycle in GFS physics

Using information in the data_table, perform spatial
and temporal interpolation to replace a prognostic field

Overrides done on cyclical basis

call data_override (‘ATM’, ‘u_obs’, obs, Time, override=done)
call data_override (‘ATM’, ‘v_obs’, obs, Time, override=done)

Ice overrides (Old Format)
“ICE”, “sic_obs”, “SIC”, “INPUT/sst_ice_clim.nc”, .FALSE., 0.01
“ICE”, “sit_obs”, “SIC”, “INPUT/sst_ice_clim.nc”, .FALSE., 1.06
“ICE”, “sst_obs”, “SST”, “INPUT/sst_ice_clim.nc”, .FALSE., 1.0

Atmosphere overrides (New Format)
“ATM”, “dust1_aerosol”, “dust1”, “INPUT/aerosol_month.nc”, “none”, 1.0

Land overrides (New Format)
“LND”, phot_co2, “co2”, “INPUT/co2_data.nc”, “bilinear”, 1.0e-6

24

FMS: Miscellaneous

Astronomy:
astronomical variables and properties
used mainly by shortwave radiation

Sat_vapor_pres:
initializes the lookup tables
given the relative humidity, calculates:

saturation vapor pressure
specific humidity
vapor mixing ratio

compute derivatives with respect to temperature of:
saturation vapor pressure
specific humidity
vapor mixing ratio

25

Debugging/Troubleshooting

Various “restriction” tests
dycore only

physics only – single column mode on full domain

no dycore or physics – tests the framework

zero time run – tests initialization and termination

Checksums
find first instance of change in field between two runs

MPP_EFP_SUM is_nan check

FV3: range_warn=.T. (warning when data outside a given range)

fv3_debug = .T. (copious amounts of output)

print_freq=-1 (max/min/avg)

26

FMS available on GitHub in the NOAA-GFDL domain:

https://github.com/NOAA-GFDL/FMS

Latest release is warsaw_201803

Downloading

27

https://github.com/NOAA-GFDL/FMS

