
VARIABLE RESOLUTION
METHODS IN FV3

Lucas Harris

and the GFDL FV3 Team

FV3 Summer School

12 June 2018

HIGH RESOLUTION MODELING:
LIMITED AREA VS. GLOBAL MODELS

• Stand-alone regional models are commonly used for mesoscale simulation and

regional climate modeling. But boundary errors creep in after a few days.

• Require potentially inconsistent BCs from a global model.

• No feedback onto large-scale

• Global models have no boundaries and are globally consistent,

but global high resolution can be impractical

• Solution: grid refinement of a global model!

GRID REFINEMENT

• FV3 supports both grid stretching and two-way grid nesting

• Grids can be constructed on-the-fly within seconds.

• Both techniques have strengths and weaknesses:

Combining the two leads to the best results

• The simple, easy way to achieve grid refinement

• Smooth deformation! Requires no changes to the solver

• No abrupt discontinuity.

• Capable of extreme refinement (80x!!) for easy storm-scale
simulations on a full-size earth

• Requires a “compromise” tuning between coarse and fine
regions. (A good scale-aware scheme can help here.)

STRETCHED GRID

SCHMIDT TRANSFORMATION

• Smoothly deforms the cubed sphere into a “truncated pyramid”, with

the high-resolution face at the top of the “pyramid”

• Transformation is analytic. Easily implemented and quickly executed

• The resulting pyramid can then be rotated to an arbitrary target point

• Transformation does coarsen the

opposing side of the sphere

• Size of high-resolution region decreases

with increasing stretching ratio

STRETCHED GRID NAMELIST OPTIONS

• do_Schmidt: enables Schmidt transformation for stretching and/or rotation.

Other parameters ignored if this is not set.

• stretch_fac: Stretching factor (c). Set to 1.0 if no stretching is desired

• target_lat and target_lon: Center (degrees) of the high-resolution stretched

tile (tile 6).

The same parameters used to create the grid in the preprocessing tools must be

specified in the global grid’s namelist.

TWO-WAY GRID NESTING

• Simultaneous coupled, consistent global and regional solution.

No waiting for a regional prediction!

• Different grids permit different parameterizations and

timesteps; doesn’t need a “compromise” for high-resolution

region

• Flexible! Great possibilities for combining nesting and

stretching.

GRID NESTING:
BOUNDARY CONDITIONS

• Strategy: fill halo (ghost) cells with boundary conditions

Interior of solver needs no changes

• All variables linearly interpolated in space into nested grid halo.

Correct upwind BCs “baked in” by FV’s upstream-biased fluxes

• BCs for all solution variables, as well as C-grid winds, and divergence

• Nonhydrostatic solver requires nonhydrostatic pressure, computed using the

semi-implicit solver—consistent with interior algorithm

GRID NESTING:
BOUNDARY CONDITIONS

• Concurrent nesting: BCs extrapolated in time so nest and coarse grids can

run simultaneously.

• BCs stepped forward every acoustic timestep

• New BC data updated at the nest interaction frequency,

usually vertical remap frequency

• Extrapolation is formally unstable but is not a problem in practice

• Extrapolation is limited to ensure positivity for scalars

• Two-time level extrapolation requires saving BCs across restarts to ensure

run-to-run reproducibility

GRID NESTING
TOPOGRAPHY AND SMOOTHING

• FV3 applies no additional diffusion or relaxation at the boundaries

• Linear interpolation introduces some smoothing without creating new extrema

• For consistency, halo topography is linearly interpolated from the coarse grid,

the same way as the solution variables

• Topography near the boundary is blended with the interpolated coarse-grid

topography

TWO-WAY INTERACTION

• Two-way nesting: coarse grid solution periodically replaced (“updated”) by

nested-grid solution where the grids coincide

• Essential for small-to-large-scale interaction (e.g. hurricanes, gravity-wave drag,

small-scale orographic/coastal processes)

• Theory suggests two-way nesting yields a better nested-grid solution:

Harris and Durran (2010), T.T. Warner et al (1997)

TWO-WAY
INTERACTION

• Averaging update consistent with FV

discretization

• For consistency, the initialized coarse-grid

topography is updated from the nested-grid

using the same algorithm

• Cell average on scalars, including δz and w

• In-line average for winds, to conserve

vorticity

MASS CONSERVATION AND
TWO-WAY NESTING

• Conservation usually requires flux BCs at the nested-grid boundary

These are difficult to implement with the time-extrapolation BC

• Our approach: Update everything except mass (δp) and tracers

• Very simple! Works regardless of BC and grid alignment

• Two-way nesting over-specifies coarse-grid solution

Less updating, less over-specification

MASS CONSERVATION AND
TWO-WAY NESTING

• Our approach: Update everything except mass (δp) and tracers

• Because δp is the vertical coordinate, we then need to remap the nested-grid

data to the coarse grid’s vertical coordinate

• Under development: “Renormalization-update” for tracers uses a layer-by-layer

fixer to ensure tracer mass conservation

TWO-WAY VS .
ONE-WAY GRID

NESTING

• GFDL HiRAM climate model

c90 (1°) and

c90n3 (1° and 1/3°)

CMAP DJF Observations

1° uniform AMIP

One-way 1/3° climo SST

Two-way 1/3° AMIP

mm/d

NESTING IMPLEMENTATION
IN FV3

• The nested grid is an additional tile beyond the six for the

cubed sphere. There can exist many nests or nests within

nests.

• Each nested grid has its own processor list and is

integrated concurrently. This greatly aids load balancing

between grids.

fv_dynamics()

FV3 solver

dyn_core()

Lagrangian dynamics

fv_tracer2d()

Sub-cycled tracer transport

OpenMP on k

Lagrangian_to_Eulerian()

Vertical Remapping

(i,k) OpenMP on j

c_sw(), etc.

C-grid solver

d_sw()

Forward Lagrangian dyn.

OpenMP on k

update_dz_d()

Forward δz evaluation

OpenMP on k

one_grad_p()/nh_p_grad()

Backwards horizontal PGF

OpenMP on k

riem_solver()

Backwards vertical PGF,

sound wave processes

(i,k) OpenMP on j

[physics]

fv_update_phys()

Consistent field update

dt_atmos
k_split

“remapping” loop

n_split

“acoustic” loop

Twoway_update()

OpenMP on k

fv_dynamics()

FV3 solver

dyn_core()

Lagrangian dynamics

fv_tracer2d()

Sub-cycled tracer transport

OpenMP on k

Lagrangian_to_Eulerian()

Vertical Remapping

(i,k) OpenMP on j

c_sw(), etc.

C-grid solver

d_sw()

Forward Lagrangian dyn.

OpenMP on k

update_dz_d()

Forward δz evaluation

OpenMP on k

one_grad_p()/nh_p_grad()

Backwards horizontal PGF

OpenMP on k

riem_solver()

Backwards vertical PGF,

sound wave processes

(i,k) OpenMP on j

[physics]

fv_update_phys()

Consistent field update

dt_atmos
k_split

“remapping” loop

n_split

“acoustic” loop

setup_nested_grid_BCs()

or setup_regional_BCs()

OpenMP on k

NESTED-GRID WORKFLOW

• Nested grids can be generated online, although orography, land-surface

information, and initial conditions have to be generated.

• Standard NCEP tools allow offline generation of grid information and ICs

• Each grid gets its own namelist. Any runtime parameter can be customized for

the individual grids

• GFDL fregrid can perform conservative remapping of nested-grid output onto

a regional regular latitude-longitude grid. It is also possible to use common

software (Python, NCL, IDL, dbrowse, GrADS (?), etc) to plot the native

nested grid.

NESTING: NAMELIST OPTIONS

• twowaynest: Enables two-way nesting

• parent_tile: Number of tile on parent domain (if a cubed-sphere grid); set to 6 if

using a stretched global grid

• parent_grid_num: number of the parent grid; currently only 1 is supported.

• refinement: Refinement ratio of nested grid. Can be any integer; 2–4 are best.

• ioffset and joffset: Indices of the first (“southwest”) cell on the coarse grid that has

a nested grid within it.

• nestupdate: Chooses between several different options for two-way updating. Set

to 7, which updates u, v, w, and T but not tracers. (Other options not supported.)

NESTED GRID: NAMELIST OPTIONS

• If nesting is used then nest_nml must be present and identical in the

input.nml for every grid.

• ngrids (sometimes called ntiles): Total number of grids. Currently limited to 2.

• nest_pes: 1D array of the number of processors (MPI ranks) assigned to each

grid, in order. The sum must equal the total number of processors assigned to

the entire atmosphere model.

• p_split: number of times to call the nested-grid BCs and two-way interaction

per physics call. If > 1, reduce k_split accordingly so the acoustic and

remapping timesteps remain constant.

CREATING A NESTED GRID

In driver_grid.csh the nested grid is defined on the supergrid, the doubled grid

used internally by the FMS exchange grid. The current form of the stretched grid

also rotates the cube so the that north and south are flipped.

BEST PRACTICES FOR CHOOSING A
SINGLE STATIC NESTED GRID

• For a coarse cN grid and a refined-by-R nest:

• Choose the size (npx_g2 – 1) x (npy_g2 – 1) of your nest. This should be no more

than R*(N – 2).

• Select target_lat and target_lon to be the center of your nest.

• You will choose your nest to be centered within the parent tile. This makes the

selection of parameters easy.

• After setting up the grid, make sure that your grid parameters in your

runscript’s namelist matches those used to create the grid.

• Coarse grid: target_lat, target_lon, stretch_fac (also needed for a stretched grid)

• Nested grid: npx, npy, refinement, ioffset, joffset

CENTERED NESTED GRID FORMULAS

• Defining Nnx= (npx_g2 – 1)/R and Nny = (npy_g2 – 1):

• ioffset = (N – Nnx) / 2 + 1

• joffset = (N – Nnx) / 2 + 1

• Supergrid parameters for driver_grid.csh :

• istart_nest = ioffset * 2 – 1

• jstart_nest = joffset * 2 – 1

• iend_nest = istart_nest + Nnx * 2 – 1

• jend_nest = jstart_nest + Nny * 2 – 1

NESTING AND TOPOGRAPHY

• The pre-processing currently does not support orographic filtering on the

nested grid. However the on-line filtering during the initialization does work.

• The simpler, older topographic filtering can be enabled by setting mountain =

.true., n_zs_filter = 1, and nord_zs_filter = 4. (The more comprehensive

filtering available in the filter step is an experimental option.)

• Be sure to disable these options if you want to restart the nested grid.

• Nested and coarse grid orography are blended near the boundary of the nest.

However steep orography along the nest boundary may lead to instability.

Think carefully about the location of your nest boundary.

