
VARIABLE RESOLUTION  
METHODS IN FV3 

Lucas Harris 

and the GFDL FV3 Team 

FV3 Summer School 

12 June 2018 



HIGH RESOLUTION MODELING: 
LIMITED AREA VS. GLOBAL MODELS 

• Stand-alone regional models are commonly used for mesoscale simulation and 

regional climate modeling. But boundary errors creep in after a few days. 

• Require potentially inconsistent BCs from a global model. 

• No feedback onto large-scale 

• Global models have no boundaries and are globally consistent,  

but global high resolution can be impractical 

• Solution: grid refinement of a global model! 

 



GRID REFINEMENT 

• FV3 supports both grid stretching and two-way grid nesting 

• Grids can be constructed on-the-fly within seconds.  

• Both techniques have strengths and weaknesses: 

Combining the two leads to the best results 



• The simple, easy way to achieve grid refinement 

• Smooth deformation! Requires no changes to the solver 

• No abrupt discontinuity. 

• Capable of extreme refinement (80x!!) for easy storm-scale 
simulations on a full-size earth 

• Requires a “compromise” tuning between coarse and fine 
regions. (A good scale-aware scheme can help here.) 

STRETCHED GRID 



SCHMIDT TRANSFORMATION 

• Smoothly deforms the cubed sphere into a “truncated pyramid”, with 

the high-resolution face at the top of the “pyramid” 

• Transformation is analytic. Easily implemented and quickly executed 

• The resulting pyramid can then be rotated to an arbitrary target point 

• Transformation does coarsen the  

opposing side of the sphere 

• Size of high-resolution region decreases 

with increasing stretching ratio 



STRETCHED GRID NAMELIST OPTIONS 

• do_Schmidt: enables Schmidt transformation for stretching and/or rotation. 

Other parameters ignored if this is not set. 

• stretch_fac: Stretching factor ( c ). Set to 1.0 if no stretching is desired 

• target_lat and target_lon:  Center (degrees) of the high-resolution stretched 

tile (tile 6).  

 

The same parameters used to create the grid in the preprocessing tools must be 

specified in the global grid’s namelist. 

 



TWO-WAY GRID NESTING 

• Simultaneous coupled, consistent global and regional solution. 

No waiting for a regional prediction! 

• Different grids permit different parameterizations and 

timesteps; doesn’t need a “compromise” for high-resolution 

region 

• Flexible! Great possibilities for combining nesting and 

stretching. 



GRID NESTING:  
BOUNDARY CONDITIONS 

• Strategy: fill halo (ghost) cells with boundary conditions 

Interior of solver needs no changes 

• All variables linearly interpolated in space into nested grid halo.  

Correct upwind BCs “baked in” by FV’s upstream-biased fluxes 

• BCs for all solution variables, as well as C-grid winds, and divergence 

• Nonhydrostatic solver requires nonhydrostatic pressure, computed using the 

semi-implicit solver—consistent with interior algorithm 



GRID NESTING:  
BOUNDARY CONDITIONS 

• Concurrent nesting: BCs extrapolated in time so nest and coarse grids can 

run simultaneously.  

• BCs stepped forward every acoustic timestep 

• New BC data updated at the nest interaction frequency, 

usually vertical remap frequency 

• Extrapolation is formally unstable but is not a problem in practice 

• Extrapolation is limited to ensure positivity for scalars  

• Two-time level extrapolation requires saving BCs across restarts to ensure 

run-to-run reproducibility 



GRID NESTING 
TOPOGRAPHY AND SMOOTHING 

• FV3 applies no additional diffusion or relaxation at the boundaries 

• Linear interpolation introduces some smoothing without creating new extrema 

• For consistency, halo topography is linearly interpolated from the coarse grid, 

the same way as the solution variables 

• Topography near the boundary is blended with the interpolated coarse-grid 

topography 



TWO-WAY INTERACTION 

• Two-way nesting: coarse grid solution periodically replaced (“updated”) by 

nested-grid solution where the grids coincide 

• Essential for small-to-large-scale interaction (e.g. hurricanes, gravity-wave drag, 

small-scale orographic/coastal processes) 

• Theory suggests two-way nesting yields a better nested-grid solution:  

Harris and Durran (2010),  T.T. Warner et al (1997) 



TWO-WAY 
INTERACTION 

• Averaging update consistent with FV 

discretization 

• For consistency, the initialized coarse-grid 

topography is updated from the nested-grid 

using the same algorithm 

• Cell average on scalars, including δz and w  

• In-line average for winds, to conserve 

vorticity 



MASS CONSERVATION AND  
TWO-WAY NESTING 

• Conservation usually requires flux BCs at the nested-grid boundary 

These are difficult to implement with the time-extrapolation BC 

• Our approach: Update everything except mass (δp) and tracers 

• Very simple! Works regardless of BC and grid alignment 

• Two-way nesting over-specifies coarse-grid solution  

Less updating, less over-specification 

 



MASS CONSERVATION AND  
TWO-WAY NESTING 

• Our approach: Update everything except mass (δp) and tracers 

• Because δp is the vertical coordinate, we then need to remap the nested-grid 

data to the coarse grid’s vertical coordinate 

• Under development: “Renormalization-update” for tracers uses a layer-by-layer 

fixer to ensure tracer mass conservation 



TWO-WAY VS .  
ONE-WAY GRID 

NESTING 

• GFDL HiRAM climate model 

 

c90 (1°) and  

c90n3 (1° and 1/3°) 

CMAP DJF Observations 

1° uniform AMIP  

One-way 1/3° climo SST 

Two-way 1/3° AMIP 

mm/d 



NESTING IMPLEMENTATION 
IN FV3 

• The nested grid is an additional tile beyond the six for the 

cubed sphere. There can exist many nests or nests within 

nests. 

• Each nested grid has its own processor list and is 

integrated concurrently. This greatly aids load balancing 

between grids. 
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NESTED-GRID WORKFLOW 

• Nested grids can be generated online, although orography, land-surface 

information, and initial conditions have to be generated.  

• Standard NCEP tools allow offline generation of grid information and ICs 

• Each grid gets its own namelist.  Any runtime parameter can be customized for 

the individual grids 

• GFDL fregrid can perform conservative remapping of nested-grid output onto 

a regional regular latitude-longitude grid. It is also possible to use common 

software (Python, NCL, IDL, dbrowse, GrADS (?), etc) to plot the native 

nested grid. 

 



NESTING: NAMELIST OPTIONS 

• twowaynest: Enables two-way nesting 

• parent_tile: Number of tile on parent domain (if a cubed-sphere grid); set to 6 if 

using a stretched global grid 

• parent_grid_num: number of the parent grid; currently only 1 is supported.   

• refinement: Refinement ratio of nested grid. Can be any integer; 2–4 are best. 

• ioffset and joffset: Indices of the first (“southwest”) cell on the coarse grid that has 

a nested grid within it.  

• nestupdate: Chooses between several different options for two-way updating. Set 

to 7, which updates u, v, w, and T but not tracers. (Other options not supported.) 

 



NESTED GRID: NAMELIST OPTIONS 

• If nesting is used then nest_nml must be present and identical in the 

input.nml for every grid. 

• ngrids (sometimes called ntiles): Total number of grids. Currently limited to 2. 

• nest_pes: 1D array of the number of processors (MPI ranks) assigned to each 

grid, in order.  The sum must equal the total number of processors assigned to 

the entire atmosphere model. 

• p_split: number of times to call the nested-grid BCs and two-way interaction 

per physics call. If > 1, reduce k_split accordingly so the acoustic and 

remapping timesteps remain constant. 



CREATING A NESTED GRID 

In driver_grid.csh the nested grid is defined on the supergrid, the doubled grid 

used internally by the FMS exchange grid.  The current form of the stretched grid 

also rotates the cube so the that north and south are flipped. 

 



BEST PRACTICES FOR CHOOSING A 
SINGLE STATIC NESTED GRID 

• For a coarse cN grid and a refined-by-R nest: 

• Choose the size (npx_g2 – 1) x (npy_g2 – 1) of your nest.  This should be no more 

than R*(N – 2). 

• Select target_lat and target_lon to be the center of your nest. 

• You will choose your nest to be centered within the parent tile. This makes the 

selection of parameters easy. 

• After setting up the grid, make sure that your grid parameters in your 

runscript’s namelist matches those used to create the grid. 

• Coarse grid: target_lat, target_lon, stretch_fac (also needed for a stretched grid) 

• Nested grid: npx, npy, refinement, ioffset, joffset 

 



CENTERED NESTED GRID FORMULAS 

• Defining Nnx= (npx_g2 – 1)/R and Nny = (npy_g2 – 1): 

• ioffset = ( N – Nnx ) / 2 + 1 

• joffset = ( N – Nnx ) / 2 + 1 

• Supergrid parameters for driver_grid.csh :  

• istart_nest = ioffset * 2 – 1  

• jstart_nest = joffset * 2 – 1  

• iend_nest = istart_nest + Nnx * 2 – 1  

• jend_nest = jstart_nest + Nny * 2 – 1  

 



NESTING AND TOPOGRAPHY 

• The pre-processing currently does not support orographic filtering on the 

nested grid. However the on-line filtering during the initialization does work. 

• The simpler, older topographic filtering can be enabled by setting mountain = 

.true., n_zs_filter = 1, and nord_zs_filter = 4.  (The more comprehensive 

filtering available in the filter step is an experimental option.) 

• Be sure to disable these options if you want to restart the nested grid. 

• Nested and coarse grid orography are blended near the boundary of the nest. 

However steep orography along the nest boundary may lead to instability.  

Think carefully about the location of your nest boundary. 

 

 


