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Role of Land Surface Model and Requirements

 Land Surface Models (LSMs) provide surface flux boundary
conditions for heat, moisture, and momentum to the

atmosphere for NCEP weather and seasonal prediction systems.

 Land models close surface energy and water budgets.

« Land Model Requirements:
v Physics: appropriate to represent land surface processes (for relevant
time/spatial scales) and associated LSM parameters.
v  Atmospheric forcing: drive LSM.

v Land data sets: land use/land cover (vegetation type), soil type,
surface albedo, surface roughness, etc.

v Land initial states: compared to atmosphere, land states carry more
memory (especially deep soil moisture), similar to the role of SSTs and
ocean temperatures.

v Land Data Assimilation: some of the state quantities may be
assimilated, e.g. snow depth and cover, soil moisture.

v Land Data Assimilation System (LDAS): provide
optimal land initial states for NCEP prediction systems.
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Role of Land Surface Model

“"Famous” figure from Koster et al. (2004, Science) which has
become widely used to justify the role of land surface in weather
and climate.

Land-Atmosphere coupling “"hot spots” emerged in transition zones
between arid and humid climate regions.

Land Surface Model is critical in weather and climate prediction.

JJA Land-Atmosphere Coupling Strength, Averaged Across AGCMs
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Land Surface Energy and Water Budgets
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Role of Land Surface Model in FV3GFS
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Land Surface Model driven by the Atmospheric Model forcing
— Surface downward shortwave radiation
— Surface downward longwave radiation
— Precipitation (rain and snow)

— Surface pressure, air temperature, humidity, wind speed
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Role of Land Surface Model in FV3GFS
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Land Surface Model provides the Atmospheric Model

— Surface upward (reflected) shortwave radiation
(surface albedo, including snow effects)

— Surface latent heat flux and Evapotranspiration
— Surface sensible heat flux

— Surface upward longwave radiation
(skin temperature and surface emissivity)

— Surface momentum flux
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Land Surface Model Physics
Unified NCEP-NCAR Noah LSM

* Surface energy and water
budget equations

* 2-meters 4 soil layers soil
(10, 30, 60, 100 cm thick)
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Land Surface Model Physics
Unified NCEP-NCAR Noah LSM

e Surface momentum roughness
dependent on vegetation/
land-use type.

o Surface thermal roughness
dependent on green vegetation
fraction.

e Stomatal control dependent on
vegetation type, direct effect
on transpiration.

e Depth of show (show water
equivalent) for deep snow and
assumption of maximum snow
albedo is a function of
vegetation type.

e Heat transfer through
vegetation and the soil as
function of green vegetation
fraction (coverage) and leaf
area index (density).
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e Soil thermal and hydraulic processes dependent on soil type.
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Land Data Sets used in FV3GFS
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« Climatology: fixed/annual, monthly, weekly.
 Near real-time observations, e.g. GVF becoming a land state (DA).
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Land Initial States

Valid land states initial conditions are necessary for NWP and climate
models, and must be consistent with the land surface model used
in @ given NWP or climate model, i.e. from same LSM cycling/spin-
up with same land data sets.

Land Initial States for
FV3GFS/Noah
soil total moisture (4)
soil liquid moisture (4)
soil temperature (4)
surface skin temperature
snow water equivalent
snow depth
canopy water

Land IC given in the FV3GFS
sfc restart file.
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Soil Moisture Climatology

Soil moisture is highly dependent on soil and vegetation types.

Since soil and vegetation types are updated in FV3GFS,
soil moisture climatology is also updated for consistency.

GFS ZOBLER STYPE T1534

1: loamy sand om
3: lightclay
4: sandy loam
5: sandy clay
6: clay loam
|| 7:sandyclayloam
8: loam
. 9: glacial ice

1: sand

2: loamy sand
(

- 4l

5:silt

| 6: loam

7: sandy clay loam
| 8: silty clay loam |
9: clay loam
10: sandy clay
11: silty clay
12: clay
13: organic material
14: water
15: bedrock

16: other (land-ice)
i 17: playa

18: lava
19: white sand
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Soil Moisture Climatology

Monthly 4-layer soil moisture climatology of FV3GFS is
generated from a 30-year offline spin-up run of Noah LSM

with updated soil and vegetation types.
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Soil Parameters Refinement

Reduce bare soil resistance of top soil layer (0-10cm) to allow
more evaporation from the top layer, potentially dryer and cooler
top layer in the dry season, less impact on deep soil.

Soil Moisture differences | FV3 minus GFS | goj| Temperature differences
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NCEP Global Land Data Assimilation System (GLDAS)
Operational since 01 April 2011

®* Noah LSM runs in semi-coupled mode with Climate Data Assimilation
System version (CDASvV2); daily update provides initial land states to
operational Climate Forecast System version 2 (CFSv2).

® Forcing: CDASv2 atmospheric output, & “blended” precipitation, snow.

* Blended Precipitation: CPC satellite (heaviest weight in tropics);
CPC gauge (heaviest mid-latitudes); model CDASv2 (high latitude).

®* Snow: IMS cover & AFWA depth, cycled if within 0.5-2.0x “envelope”.

* 30+ year global land surface climatology.

®* Research/partners supported by the NOAA Climate Program Office,
Modeling, Analysis, Predictions, and Projections (MAPP) program.

Precipitation

IMS cover

Snow

AF Snow analysis with gc(inches)
5

Surface gauge AFWA depth
Jesse Meng, NCEP/EMC
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Model Testing and Verification
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Land Surface Model and land-related issues

Low-level biases in winds, temperature, and humidity are
influenced in part by the land surface via biases in surface fluxes
exchanged with the atmospheric model (radiation,
precipitation, etc).

Improving the proper partition of surface energy budget between
sensible, latent, soil heat fluxes and outgoing longwave
radiation in FV3GFS/Noah requires:

« Improve atmospheric forcing for the land model, especially
precipitation and downward radiation; enhanced downscaling
techniques.

Data assimilation of near-realtime snow, soil moisture, GVF.
Improve snow physics (multi-layers, melt/freeze, densification).
Improve vegetation parameters to calculate transpiration.
Near-realtime vegetation greenness to improve Bowen ratio.
Improve specification and representation of surface heterogeneity.
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Summary

Noah Land Surface Model and land data sets are updated
and coupled to FV3GFS to enhance the representation of
land processes and land-atmosphere coupling, toward
improving NCEP operational predictions.

Further developments for NCEP Land Surface Model and
Land Data Assimilation Systems in fully-coupled

Earth System Model and Data Assimilation
(atmosphere-ocean-land-ice-waves-aerosols)

with connections between Weather and Climate, Hydrology,
Ecosystems and Biogeochemical cycles (carbon), and

Air Quality, models and communities, e.g., community
model development of FV3GFS.
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Land Data Assimilation development

« Use NASA Land Information System (LIS) to serve as a global Land
Data Assimilation System (LDAS) for testing both GLDAS, NLDAS.

LIS EnKF-based Land Data Assimilation tool used to assimilate:

« Snow depth (SNODEP) from AFWA and Snow cover area (SCA)
from operational NESDIS Interactive Multi-sensor Snow and Ice
Mapping System (IMS).

- Soil moisture from the NESDIS global Soil Moisture Operational
Product System (SMOPS).

GFS/CFS Land Data Assimilation
W»
12z 182 00Z 122 182 Development
con inilli’!ll f“‘“'“i ¢] nitial Jiarui Dong, Weizhong Zheng, Jesse Meng (NCEP/EMC)
Christa Peters-Lidard, Sujay Kumar (NASA/GSFC
ke NASA e ( )
== 1 | Land 1. Build NCEP’s FV3GFS/LDAS by incorporating
L_"ft;fmaﬁon the NASA Land Information System (LIS)
ystem 0 ’
into NCEP’s FV3GFS.
(LIS) _ .
2. Offline tests of the existing EnKF-based land
- g | data assimilation capabilities in LIS driven by
o b ot ol the operational GFS.
) m ' 3. Coupled land data assimilation tests and
- oW Icz LaND ‘ evaluation against the operational system.
CMAP precip  SMOPS Soil Moisture IMS snow cover AFWA SNODEP
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®

FV3GFS/GLDAS Initial States
Testing and Verification
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FV3GFS/GLDAS Initial States
Testing and Verification
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Model Physics Improvement: Noah-MP

Noah-MP is an extended version of the

Noah LSM with enhanced multi-physics ™

options to address shortcomings in Noah.

« Canopy radiative transfer with shading
geometry.

« Separate vegetation canopy.

 Dynamic vegetation.

« Ball-Berry canopy resistance.

« Multi-layer snowpack.

Carbon Allocation Respiration

- Snow albedo treatment. cm| O |dhein

« New snow cover algorithm. To |
. Snowpack liquid water retention. 212 002s- 00 LA Y
« New frozen soil scheme. A0} 0.1 - (srowh- © oo 10,y "
 Interaction with groundwater/aquifer. ArCAxCE) N
Main contributors: Zong-Liang Yang (UT-Austin); Guo-Yue o4 1((”) T
Niu (U. Arizona); Fei Chen, Mukul Tewari, Mike Barlage, oom o ol

Kevin Manning (NCAR); Mike Ek (UCAR),; Dev Niyogi _
(Purdue U.); Xubin Zeng (U. Arizona), EMC Land Team G T(4) l |

Noah-MP references: Niu et al., 2011, Yang et al., 2011. JGR
Noah-MP development via CPO/MAPP e
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Model Improvement: Freshwater Lakes

Thousands of lakes on scale of 1-4km not resolved by SST
analysis -> greatly influence surface fluxes; explicit vs subgrid.

Freshwater lake “FLake” model (Dmitrii Mironov, DWD).

- Two-layer. | Lake modelling
- Atmospheric forcing one-way driven

* solar
inputs. ‘ C redeon
/Z/

- Temperature &

Z
energy budget.
- Mixed-layer and
thermocline. o p & §
- Snow-ice module Albedo s
- Specified depth/ f, ":.";T':”f.’:.jﬁ.
turbidity. wrbuent &

transfers

- Used in COSMO,
HIRLAM, NAM

(regional), and global
ECMWF, CMC, UKMO.

I :
, I molecular heat

!

I
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Model Improvement: River Routing

Atmospheric |
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Hurricane Irene and
Tropical Storm Lee,
20 August - 17
September 2011

Superstorm Sandy,
29 October - 04
November 2012

Colorado Front Range
Flooding, September
2013

Collaboration with
National Water Center
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