Namelist Guide for the GFDL Cloud Microphysics ## Shian-Jiann Lin and Linjiong Zhou October 16, 2017 # 1 General ### mp_time Real: Time step of GFDL cloud microphysics (MP). If mp_time isn't divisible by physics time step or is larger than physics time step, the actual MP time step becomes $dt/NINT[dt/MIN(dt, mp_time)]$. The unit is s. 150 by default. #### tice Real: Freezing / melting temperature. The unit is K. 273.16 by default. # fix_negative Logical: .true. to fix negative water species using nearby points. .false. as default. ### fast_sat_adj Logical: .true. to adjust cloud water evaporation (cloud water \rightarrow water vapor), cloud water freezing (cloud water \rightarrow cloud ice), cloud ice deposition (water vapor \rightarrow cloud ice) when fast saturation adjustment is activated (**do_sat_adj** = .true. in **fv_core_nml** block). .true. by default. ## 2 Conversion Time Scale #### tau_v2l Real: Time scale for condensation of water vapor to cloud water. Increasing / decreasing tau_v2l can decrease / boost condensation of water vapor to cloud water (water vapor \rightarrow cloud water). The unit is s. 150 by default. ### tau_v2g Real: Time scale for deposition of water vapor to graupel. Increasing / decreasing tau_v2g can decrease / boost deposition of water vapor to graupel (water vapor \rightarrow graupel). The unit is s. 21600 by default. ### tau_l2v Real: Time scale for evaporation of cloud water to water vapor. Increasing / decreasing tau_l2v can decrease / boost deposition of cloud water to water vapor (cloud water \rightarrow water vapor). The unit is s. 300 by default. #### tau_l2r Real: Time scale for autoconversion of cloud water to rain. Increasing / decreasing tau_12r can decrease / boost autoconversion of cloud water to rain (cloud water \rightarrow rain). The unit is s. 900 by default. ## tau_r2g Real: Time scale for freezing of rain to graupel. Increasing / decreasing tau_r2g can decrease / boost freezing of rain to graupel (rain \rightarrow graupel). The unit is s. 900 by default. #### tau_i2s Real: Time scale for autoconversion of cloud ice to snow. Increasing / decreasing tau_i2s can decrease / boost autoconversion of cloud ice to snow (cloud ice \rightarrow snow). The unit is s. 1000 by default. #### tau_imlt Real: Time scale for cloud ice melting. Increasing / decreasing tau_imlt can decrease / boost melting of cloud ice to cloud water or rain (cloud ice \rightarrow cloud water or rain). The unit is s. 600 by default. #### tau_smlt Real: Time scale for snow melting. Increasing / decreasing tau_smlt can decrease / boost melting of snow to cloud water or rain (snow \rightarrow cloud water or rain). The unit is s. 900 by default. ### tau_g2v Real: Time scale for sublimation of graupel to water vapor. Increasing / decreasing tau_g2v can decrease / boost sublimation of graupel to water vapor (graupel \rightarrow water vapor). The unit is s. 900 by default. #### tau_g2r Real: Time scale for graupel melting. Increasing / decreasing tau_g2r can decrease / boost melting of graupel to rain (graupel \rightarrow rain). The unit is s. 600 by default. # 3 Subgrid Variability #### dw_land Real: Base value for subgrid deviation / variability over land. 0.2 by default. #### dw_ocean Real: Base value for subgrid deviation / variability over ocean. 0.1 by default. ### z_slope_liq Logical: .true. to turn on vertically subgrid linear monotonic slope for autoconversion of cloud water to rain. .true. by default. ### z_slope_ice Logical: .true. to turn on vertically subgrid linear monotonic slope for autoconversion of cloud ice to snow. .false. by default. # 4 Fall Speed #### const_vi Logical: .true. to use constant cloud ice fall speed. .false. by default. #### const_vs Logical: .true. to use constant snow fall speed. .false. by default. ### $const_vg$ Logical: .true. to use constant graupel fall speed. .false. by default. #### $const_vr$ Logical: .true. to use constant rain fall speed. .false. by default. #### vi_fac Real: Tunable factor for cloud ice fall or the constant cloud ice fall speed when **const_vi** is .true.. The unit is 1. 1 by default. #### vr_fac Real: Tunable factor for rain fall or the constant rain fall speed when $\mathbf{const_vr}$ is .true.. The unit is 1. 1 by default. #### vs_fac Real: Tunable factor for snow fall or the constant snow fall speed when **const_vs** is .true.. The unit is 1. 1 by default. ### vg_fac Real: Tunable factor for graupel fall or the constant graupel fall speed when **const_vg** is .true.. The unit is 1. 1 by default. #### vi_max Real: Maximum fall speed for cloud ice. The unit is m/s. 0.5 as default. #### vs_max Real: Maximum fall speed for snow. The unit is m/s. 5.0 as default. ### vg_max Real: Maximum fall speed for graupel. The unit is m/s. 8.0 as default. #### vr_max Real: Maximum fall speed for rain. The unit is m/s. 12.0 as default. # 5 Conversion Threshold # ql_mlt Real: Maximum value of cloud water allowed from melted cloud ice (cloud ice \rightarrow cloud water or rain). Exceedance of which will become rain. Increasing / decreasing **ql_mlt** can increase / decrease cloud water and decrease / increase rain. The unit is $kgkg^{-1}$. 2.0×10^{-3} by default. #### qs_mlt Real: Maximum value of cloud water allowed from melted snow (snow \rightarrow cloud water or rain). Exceedance of which will become rain. Increasing / decreasing **qs_mlt** can increase / decrease cloud water and decrease / increase rain. The unit is $kgkg^{-1}$. 1.0×10^{-6} by default. ### ql_gen Real: Maximum value for cloud water generated from condensation of water vapor (water vapor \rightarrow cloud water). Increasing / decreasing **ql_gen** can increase / decrease cloud water. The unit is $kgkg^{-1}$. 1.0×10^{-3} by default. ### qi_gen Real: Maximum value of cloud ice generated from deposition of water vapor (water vapor \rightarrow cloud ice) or freezing (cloud water \rightarrow cloud ice). Increasing / decreasing **qi_gen** can increase / decrease cloud ice. The unit is kgm^{-3} . 1.82×10^{-6} by default. ### $ql0_max$ Real: Threshold of cloud water to rain autoconversion (cloud water \rightarrow rain). Increasing / decreasing **ql0_max** can increase / decrease rain and decrease / increase cloud water. The unit is $kgkg^{-1}$. 2.0×10^{-3} by default. #### qi0_max Real: Maximum value of cloud ice generated from other sources like convection. Exceedance of which will become snow. Increasing / decreasing qi0_max can increase / decrease cloud ice and decrease / increase snow. The unit is $kgkg^{-1}$. 1.0×10^{-4} by default. #### qi0_crt Real: Threshold of cloud ice to snow autoconversion (cloud ice \rightarrow snow). Increasing / decreasing **qi0_crt** can increase / decrease cloud ice and decrease / increase snow. The unit is kgm^{-3} . 1.0×10^{-4} by default. #### qs0_crt Real: Threshold of snow to graupel autoconversion (snow \rightarrow graupel). Increasing / decreasing **qs0_crt** can increase / decrease snow and decrease / increase graupel. The unit is kgm^{-3} . 1.0×10^{-3} by default. #### qc_crt Real: Minimum value of cloud condensate to allow partial cloudiness. Partial cloud can only exist when total cloud condensate exceeds $\mathbf{qc_crt}$. The unit is $kgkg^{-1}$. 5.0×10^{-8} by default. ### qi_lim Real: Cloud ice limiter to prevent large ice built up in cloud ice freezing (cloud water \rightarrow cloud ice) and deposition (water vapor \rightarrow cloud ice). The unit is 1. 1 by default. #### rh_inc Real: Relative humidity increment for complete evaporation of cloud water and cloud ice. The unit is 1. 0.25 by default. ### rh_ins Real: Relative humidity increment for minimum evaporation of rain. The unit is 1. 0.25 by default. ### rh_inr Real: Relative humidity increment for sublimation of snow. The unit is 1. 0.25 by default. #### rthresh Real: Critical cloud water radius for autoconversion (cloud water \rightarrow rain). Increasing / decreasing of **rthresh** makes the autoconversion harder / easier. The unit is mm. 1.0×10^{-5} by default. # 6 Conversion Efficiency #### c_cracw Real: Accretion efficiency of cloud water to rain (cloud water \rightarrow rain). Increasing / decreasing of **c_cracw** can boost / decrease the accretion of cloud water to rain. The unit is 1. 0.9 by default. #### c_psaci Real: Accretion efficiency of cloud ice to snow (cloud ice \rightarrow snow). Increasing / decreasing of **c_psaci** can boost / decrease the accretion of cloud ice to snow. The unit is 1. 0.02 by default. #### c_pgacs Real: Accretion efficiency of snow to graupel (snow \rightarrow graupel). Increasing / decreasing of **c_pgacs** can boost / decrease the accretion of snow to graupel. The unit is 1. 2.0×10^{-3} by default. #### c_paut Real: Autoconversion efficiency of cloud water to rain (cloud water \rightarrow rain). Increasing / decreasing of **c_paut** can boost / decrease the autoconversion of cloud water to rain. The unit is 1. 0.55 by default. ## sat_adj0 Real: Adjust factor for condensation of water vapor to cloud water (water vapor \rightarrow cloud water) and deposition of water vapor to cloud ice (water vapor \rightarrow cloud ice). The unit is 1. 0.9 by default. # 7 Cloud Fraction #### do_qa Logical: .true. to activate inline cloud fraction diagnosis in fast saturation adjustment. .false. to activate inline cloud fraction diagnosis in major cloud microphysics. .true. as default. #### rad_rain Logical: .true. to consider rain in cloud fraction calculation. .true. by default. #### rad_snow Logical: .true. to consider snow in cloud fraction calculation. .true. by default. # $rad_graupel$ Logical: .true. to consider graupel in cloud fraction calculation. .true. by default. ### cld_min Real: Minimum cloud fraction. If total cloud condensate exceeds $1 \times 10^{-6} kgkg^{-1}$, cloud fraction cannot be less than **cld_min**. The unit is 1. 0.05 by default. ## 8 Sedimentation #### use_ppm Logical: .true. to use PPM fall scheme. .false. to use time-implicit monotonic fall scheme. .false. by default. ### mono_prof Logical: .true. to turn on terminal fall with monotonic PPM scheme. This is used together with $use_ppm = .true.$.true. by default. # do_sedi_heat Logical: .true. to turn on heat transport during sedimentation. .true. by default. #### sedi_transport Logical: .true. to turn on horizontal momentum transport during sedimentation. .true. by default. #### do_sedi_w Logical: .true. to turn on vertical motion transport during sedimentation. .false. by default. [Not supported in GFS phsycis] ### 9 CCN #### prog_ccn Logical: .true. to activate prognostic CCN. .false. by default. [Not supported in GFS phsycis] #### use_ccn Logical: .true. to compute prescribed CCN. It should be .true. when **prog_ccn** is .false.. .true. by default. ### ccn_l Real: Base CCN over land. Increasing / decreasing ccn_l can on the one hand boost / decrease the autoconversion of cloud water to rain (cloud water \rightarrow rain), on the other hand make the autoconversion harder / easier. The unit is cm^{-3} . 270 by default. #### ccn_o Real: Base CCN over ocean. Increasing / decreasing ccn_o can on the one hand boost / decrease the autoconversion of cloud water to rain (cloud water \rightarrow rain), on the other hand make the autoconversion harder / easier. The unit is cm^{-3} . 90 by default. # 10 Options #### icloud_f Integer: Flag (0, 1, or 2) for cloud fraction diagnostic scheme. See the "GFDL Cloud Microphysics" document for more detail. Generally, from 0 to 2, cloud fraction increases. 0 by default. ### irain_f Integer: Flag (0 or 1) for cloud water autoconversion to rain scheme. 0: with subgrid variability; 1: no subgrid variability. 0 by default. # 11 Others ### alin Real: Parameter a in Lin et al., (1983). Constant in empirical formula for U_R . Increasing / decreasing alin can boost / decrease accretion of cloud water by rain (cloud water \rightarrow rain) and rain evaporation (rain \rightarrow water vapor). The unit is $cm^{1-b}s^{-1}$. 842 by default. This value follows Hong and Lim (2006). # clin Real: Parameter c in Lin et al., (1983). Constant in empirical formula for U_S . Increase / decreasing **clin** can boost / decrease accretion of cloud water by snow (cloud water \rightarrow snow), accretion of cloud ice by snow (cloud ice \rightarrow snow), snow sublimation and deposition (snow \leftrightarrow water vapor), and snow melting (snow \rightarrow cloud water or rain). The unit is $cm^{1-d}s^{-1}$. 4.8 by default. #### t_{-min} Real: Temperature threshold for instant deposition. Deposit all water vapor to cloud ice (water vapor \rightarrow cloud ice) when temperature is lower than \mathbf{t} _min. The unit is K. 178 by default. ### t_sub Real: Temperature threshold for sublimation. Cloud ice, snow or graupel stops / starts sublimation (cloud ice \rightarrow water vapor, snow \rightarrow water vapor, graupel \rightarrow water vapor) when temperature is lower / higher than $\mathbf{t_sub}$. The unit is K. 184 by default. ## mp_print Logical: .true. to turn on GFDL cloud microphysics debugging print out. .false. by default. [Not supported in GFS phsycis] # de_ice Logical: .true. to convert excessive cloud ice to snow to prevent ice over-built from other sources like convection scheme. .false. by default. [Not supported in GFS phsycis] For more detail of the namelist, please refer to the document "GFDL Cloud Microphysics".