# Namelist Guide for the GFDL Cloud Microphysics

## Shian-Jiann Lin and Linjiong Zhou

October 16, 2017

# 1 General

### mp\_time

Real: Time step of GFDL cloud microphysics (MP). If  $mp\_time$  isn't divisible by physics time step or is larger than physics time step, the actual MP time step becomes  $dt/NINT[dt/MIN(dt, mp\_time)]$ . The unit is s. 150 by default.

#### tice

Real: Freezing / melting temperature. The unit is K. 273.16 by default.

# fix\_negative

Logical: .true. to fix negative water species using nearby points. .false. as default.

### fast\_sat\_adj

Logical: .true. to adjust cloud water evaporation (cloud water  $\rightarrow$  water vapor), cloud water freezing (cloud water  $\rightarrow$  cloud ice), cloud ice deposition (water vapor  $\rightarrow$  cloud ice) when fast saturation adjustment is activated (**do\_sat\_adj** = .true. in **fv\_core\_nml** block). .true. by default.

## 2 Conversion Time Scale

#### tau\_v2l

Real: Time scale for condensation of water vapor to cloud water. Increasing / decreasing  $tau_v2l$  can decrease / boost condensation of water vapor to cloud water (water vapor  $\rightarrow$  cloud water). The unit is s. 150 by default.

### tau\_v2g

Real: Time scale for deposition of water vapor to graupel. Increasing / decreasing  $tau_v2g$  can decrease / boost deposition of water vapor to graupel (water vapor  $\rightarrow$  graupel). The unit is s. 21600 by default.

### tau\_l2v

Real: Time scale for evaporation of cloud water to water vapor. Increasing / decreasing tau\_l2v can

decrease / boost deposition of cloud water to water vapor (cloud water  $\rightarrow$  water vapor). The unit is s. 300 by default.

#### tau\_l2r

Real: Time scale for autoconversion of cloud water to rain. Increasing / decreasing  $tau_12r$  can decrease / boost autoconversion of cloud water to rain (cloud water  $\rightarrow$  rain). The unit is s. 900 by default.

## tau\_r2g

Real: Time scale for freezing of rain to graupel. Increasing / decreasing  $tau_r2g$  can decrease / boost freezing of rain to graupel (rain  $\rightarrow$  graupel). The unit is s. 900 by default.

#### $tau_i2s$

Real: Time scale for autoconversion of cloud ice to snow. Increasing / decreasing  $tau\_i2s$  can decrease / boost autoconversion of cloud ice to snow (cloud ice  $\rightarrow$  snow). The unit is s. 1000 by default.

#### tau\_imlt

Real: Time scale for cloud ice melting. Increasing / decreasing  $tau\_imlt$  can decrease / boost melting of cloud ice to cloud water or rain (cloud ice  $\rightarrow$  cloud water or rain). The unit is s. 600 by default.

#### tau\_smlt

Real: Time scale for snow melting. Increasing / decreasing tau\_smlt can decrease / boost melting of snow to cloud water or rain (snow  $\rightarrow$  cloud water or rain). The unit is s. 900 by default.

### $tau_g2v$

Real: Time scale for sublimation of graupel to water vapor. Increasing / decreasing  $tau_g2v$  can decrease / boost sublimation of graupel to water vapor (graupel  $\rightarrow$  water vapor). The unit is s. 900 by default.

#### tau\_g2r

Real: Time scale for graupel melting. Increasing / decreasing  $tau_g2r$  can decrease / boost melting of graupel to rain (graupel  $\rightarrow$  rain). The unit is s. 600 by default.

# 3 Subgrid Variability

#### dw\_land

Real: Base value for subgrid deviation / variability over land. 0.2 by default.

#### dw\_ocean

Real: Base value for subgrid deviation / variability over ocean. 0.1 by default.

### z\_slope\_liq

Logical: .true. to turn on vertically subgrid linear monotonic slope for autoconversion of cloud water to rain. .true. by default.

### z\_slope\_ice

Logical: .true. to turn on vertically subgrid linear monotonic slope for autoconversion of cloud ice to snow. .false. by default.

# 4 Fall Speed

#### const\_vi

Logical: .true. to use constant cloud ice fall speed. .false. by default.

#### const\_vs

Logical: .true. to use constant snow fall speed. .false. by default.

### $const_vg$

Logical: .true. to use constant graupel fall speed. .false. by default.

#### $const\_vr$

Logical: .true. to use constant rain fall speed. .false. by default.

#### vi\_fac

Real: Tunable factor for cloud ice fall or the constant cloud ice fall speed when **const\_vi** is .true.. The unit is 1. 1 by default.

#### vr\_fac

Real: Tunable factor for rain fall or the constant rain fall speed when  $\mathbf{const\_vr}$  is .true.. The unit is 1. 1 by default.

#### vs\_fac

Real: Tunable factor for snow fall or the constant snow fall speed when **const\_vs** is .true.. The unit is 1. 1 by default.

### vg\_fac

Real: Tunable factor for graupel fall or the constant graupel fall speed when **const\_vg** is .true.. The unit is 1. 1 by default.

#### vi\_max

Real: Maximum fall speed for cloud ice. The unit is m/s. 0.5 as default.

#### vs\_max

Real: Maximum fall speed for snow. The unit is m/s. 5.0 as default.

### vg\_max

Real: Maximum fall speed for graupel. The unit is m/s. 8.0 as default.

#### vr\_max

Real: Maximum fall speed for rain. The unit is m/s. 12.0 as default.

# 5 Conversion Threshold

# $ql_mlt$

Real: Maximum value of cloud water allowed from melted cloud ice (cloud ice  $\rightarrow$  cloud water or rain). Exceedance of which will become rain. Increasing / decreasing **ql\_mlt** can increase / decrease cloud water and decrease / increase rain. The unit is  $kgkg^{-1}$ .  $2.0 \times 10^{-3}$  by default.

#### qs\_mlt

Real: Maximum value of cloud water allowed from melted snow (snow  $\rightarrow$  cloud water or rain). Exceedance of which will become rain. Increasing / decreasing **qs\_mlt** can increase / decrease cloud water and decrease / increase rain. The unit is  $kgkg^{-1}$ .  $1.0 \times 10^{-6}$  by default.

### ql\_gen

Real: Maximum value for cloud water generated from condensation of water vapor (water vapor  $\rightarrow$  cloud water). Increasing / decreasing **ql\_gen** can increase / decrease cloud water. The unit is  $kgkg^{-1}$ .  $1.0 \times 10^{-3}$  by default.

### qi\_gen

Real: Maximum value of cloud ice generated from deposition of water vapor (water vapor  $\rightarrow$  cloud ice) or freezing (cloud water  $\rightarrow$  cloud ice). Increasing / decreasing **qi\_gen** can increase / decrease cloud ice. The unit is  $kgm^{-3}$ .  $1.82 \times 10^{-6}$  by default.

### $ql0_max$

Real: Threshold of cloud water to rain autoconversion (cloud water  $\rightarrow$  rain). Increasing / decreasing **ql0\_max** can increase / decrease rain and decrease / increase cloud water. The unit is  $kgkg^{-1}$ .  $2.0 \times 10^{-3}$  by default.

#### qi0\_max

Real: Maximum value of cloud ice generated from other sources like convection. Exceedance of which will become snow. Increasing / decreasing qi0\_max can increase / decrease cloud ice and decrease / increase snow. The unit is  $kgkg^{-1}$ .  $1.0 \times 10^{-4}$  by default.

#### qi0\_crt

Real: Threshold of cloud ice to snow autoconversion (cloud ice  $\rightarrow$  snow). Increasing / decreasing **qi0\_crt** can increase / decrease cloud ice and decrease / increase snow. The unit is  $kgm^{-3}$ .  $1.0 \times 10^{-4}$  by default.

#### qs0\_crt

Real: Threshold of snow to graupel autoconversion (snow  $\rightarrow$  graupel). Increasing / decreasing **qs0\_crt** can increase / decrease snow and decrease / increase graupel. The unit is  $kgm^{-3}$ .  $1.0 \times 10^{-3}$  by default.

#### qc\_crt

Real: Minimum value of cloud condensate to allow partial cloudiness. Partial cloud can only exist when total cloud condensate exceeds  $\mathbf{qc\_crt}$ . The unit is  $kgkg^{-1}$ .  $5.0 \times 10^{-8}$  by default.

### qi\_lim

Real: Cloud ice limiter to prevent large ice built up in cloud ice freezing (cloud water  $\rightarrow$  cloud ice) and

deposition (water vapor  $\rightarrow$  cloud ice). The unit is 1. 1 by default.

#### rh\_inc

Real: Relative humidity increment for complete evaporation of cloud water and cloud ice. The unit is 1. 0.25 by default.

### rh\_ins

Real: Relative humidity increment for minimum evaporation of rain. The unit is 1. 0.25 by default.

### rh\_inr

Real: Relative humidity increment for sublimation of snow. The unit is 1. 0.25 by default.

#### rthresh

Real: Critical cloud water radius for autoconversion (cloud water  $\rightarrow$  rain). Increasing / decreasing of **rthresh** makes the autoconversion harder / easier. The unit is mm.  $1.0 \times 10^{-5}$  by default.

# 6 Conversion Efficiency

#### c\_cracw

Real: Accretion efficiency of cloud water to rain (cloud water  $\rightarrow$  rain). Increasing / decreasing of **c\_cracw** can boost / decrease the accretion of cloud water to rain. The unit is 1. 0.9 by default.

#### c\_psaci

Real: Accretion efficiency of cloud ice to snow (cloud ice  $\rightarrow$  snow). Increasing / decreasing of **c\_psaci** can boost / decrease the accretion of cloud ice to snow. The unit is 1. 0.02 by default.

#### c\_pgacs

Real: Accretion efficiency of snow to graupel (snow  $\rightarrow$  graupel). Increasing / decreasing of **c\_pgacs** can boost / decrease the accretion of snow to graupel. The unit is 1.  $2.0 \times 10^{-3}$  by default.

#### c\_paut

Real: Autoconversion efficiency of cloud water to rain (cloud water  $\rightarrow$  rain). Increasing / decreasing of **c\_paut** can boost / decrease the autoconversion of cloud water to rain. The unit is 1. 0.55 by default.

## sat\_adj0

Real: Adjust factor for condensation of water vapor to cloud water (water vapor  $\rightarrow$  cloud water) and deposition of water vapor to cloud ice (water vapor  $\rightarrow$  cloud ice). The unit is 1. 0.9 by default.

# 7 Cloud Fraction

#### do\_qa

Logical: .true. to activate inline cloud fraction diagnosis in fast saturation adjustment. .false. to activate inline cloud fraction diagnosis in major cloud microphysics. .true. as default.

#### rad\_rain

Logical: .true. to consider rain in cloud fraction calculation. .true. by default.

#### rad\_snow

Logical: .true. to consider snow in cloud fraction calculation. .true. by default.

# $rad\_graupel$

Logical: .true. to consider graupel in cloud fraction calculation. .true. by default.

### cld\_min

Real: Minimum cloud fraction. If total cloud condensate exceeds  $1 \times 10^{-6} kgkg^{-1}$ , cloud fraction cannot be less than **cld\_min**. The unit is 1. 0.05 by default.

## 8 Sedimentation

#### use\_ppm

Logical: .true. to use PPM fall scheme. .false. to use time-implicit monotonic fall scheme. .false. by default.

### mono\_prof

Logical: .true. to turn on terminal fall with monotonic PPM scheme. This is used together with  $use\_ppm = .true.$  .true. by default.

# do\_sedi\_heat

Logical: .true. to turn on heat transport during sedimentation. .true. by default.

#### sedi\_transport

Logical: .true. to turn on horizontal momentum transport during sedimentation. .true. by default.

#### do\_sedi\_w

Logical: .true. to turn on vertical motion transport during sedimentation. .false. by default. [Not supported in GFS phsycis]

### 9 CCN

#### prog\_ccn

Logical: .true. to activate prognostic CCN. .false. by default. [Not supported in GFS phsycis]

#### $use\_ccn$

Logical: .true. to compute prescribed CCN. It should be .true. when **prog\_ccn** is .false.. .true. by default.

### $ccn_l$

Real: Base CCN over land. Increasing / decreasing ccn\_l can on the one hand boost / decrease the autoconversion of cloud water to rain (cloud water  $\rightarrow$  rain), on the other hand make the autoconversion harder / easier. The unit is  $cm^{-3}$ . 270 by default.

#### ccn\_o

Real: Base CCN over ocean. Increasing / decreasing ccn\_o can on the one hand boost / decrease the autoconversion of cloud water to rain (cloud water  $\rightarrow$  rain), on the other hand make the autoconversion harder / easier. The unit is  $cm^{-3}$ . 90 by default.

# 10 Options

#### icloud\_f

Integer: Flag (0, 1, or 2) for cloud fraction diagnostic scheme. See the "GFDL Cloud Microphysics" document for more detail. Generally, from 0 to 2, cloud fraction increases. 0 by default.

### irain\_f

Integer: Flag (0 or 1) for cloud water autoconversion to rain scheme. 0: with subgrid variability; 1: no subgrid variability. 0 by default.

# 11 Others

### alin

Real: Parameter a in Lin et al., (1983). Constant in empirical formula for  $U_R$ . Increasing / decreasing alin can boost / decrease accretion of cloud water by rain (cloud water  $\rightarrow$  rain) and rain evaporation (rain  $\rightarrow$  water vapor). The unit is  $cm^{1-b}s^{-1}$ . 842 by default. This value follows Hong and Lim (2006).

# clin

Real: Parameter c in Lin et al., (1983). Constant in empirical formula for  $U_S$ . Increase / decreasing **clin** can boost / decrease accretion of cloud water by snow (cloud water  $\rightarrow$  snow), accretion of cloud ice by snow (cloud ice  $\rightarrow$  snow), snow sublimation and deposition (snow  $\leftrightarrow$  water vapor), and snow melting (snow  $\rightarrow$  cloud water or rain). The unit is  $cm^{1-d}s^{-1}$ . 4.8 by default.

#### $t_{-min}$

Real: Temperature threshold for instant deposition. Deposit all water vapor to cloud ice (water vapor  $\rightarrow$  cloud ice) when temperature is lower than  $\mathbf{t}$ \_min. The unit is K. 178 by default.

### $t_sub$

Real: Temperature threshold for sublimation. Cloud ice, snow or graupel stops / starts sublimation (cloud ice  $\rightarrow$  water vapor, snow  $\rightarrow$  water vapor, graupel  $\rightarrow$  water vapor) when temperature is lower / higher than  $\mathbf{t\_sub}$ . The unit is K. 184 by default.

## mp\_print

Logical: .true. to turn on GFDL cloud microphysics debugging print out. .false. by default. [Not supported in GFS phsycis]

# $de\_ice$

Logical: .true. to convert excessive cloud ice to snow to prevent ice over-built from other sources like convection scheme. .false. by default. [Not supported in GFS phsycis]

For more detail of the namelist, please refer to the document "GFDL Cloud Microphysics".