A More Detailed Description of GFDL's FMS Library

Weekly FV3GFS Technical Meeting 19 June, 2017

What is FMS

FMS Superstructure				
	User Code			
FMS Infrastructure				

Coupler Layer				
Model Component Layer				
Abstraction Layer				
Machine Layer				

Flexible Modeling System effort began in 1998, with GFDL's first distributed memory machine

Superstructure design allows the building of multiple models

Supports multiple dynamical cores, components (ocean, ice, land, etc) and atmospheric physics packages

Infrastructure comprised of common utilities needed by model components

Superstructure Layer

Consists of:

system driver flux exchange

ensemble manager component drivers

System driver performs init, integrate, and end phases

By default, all models run as ensembles

Abstracted types hold fluxes and properties to be exchanged between model components

Component drivers provide unified interfaces between system driver and user code

Infrastructure Layer

FMS Infrastructure

Abstraction Layer

Machine Layer

Two logical layers: machine & abstraction

Machine layer basic interface to parallelism and I/O: MPP

FMS is a high-level functional layer built upon MPP

Abstraction layer contains multiple "managers"

time manager

field manager

diagnostic manager

tracer manager

block manager

fms_io

and other utilities/APIs:

data override

exchange grid

constants

astronomy functions

interpolators

math functions (ffts, tri-di solver, etc)

MPP

Communication Layer - provides fundamental point-topoint and asynchronous, non-blocking communication

Domains Layer – handles decompositions and tracks which ranks are "connected" for halo updates, I/O, and nesting

I/O Layer - handles all file types including direct interface to NetCDF/HDF

Clocks - allow high-resolution timing of code segments

Miscellaneous - pelists, error handling, reductions, unit tests (functionality and performance), etc

MPP: pelists

Group of MPI-ranks all working on a specific task

Stored as a sorted, one-dimensional array

Lowest order MPI-rank is considered the "root-pe"

All pelists are a subset of the global pelist

Used to create an MPI group and unique communicator

An MPI-rank can belong to multiple pelists

MPP: Communication

Default is asynchronous and non-blocking: isend, irecv

Synchronization functions based on mpi_wait to ensure no outstanding messages on an MPI-rank

MPP functions to: send, recv, transmit, bcast, gather, scatter

Uses current active pelist or optional pelist argument

MPI tags to ensure proper message delivery

Functions based on collectives exist, for performance reasons their use is discouraged (exception *allreduce*)

All datatypes supported: real, integer, character, complex

MPP: Domains

Responsible for domain decomposition of:

tiled grids unstructured grids rectilinear grids tri-polar grids

Creates an internal data structure containing:

halo update communication mapping directional data orientation and rotations tile information

Domain data structure is unique to a halo width

Manages nested grid <-> coarse grid boundary updates

Domain updates via:

pre-defined groups message aggregation asynchronous (start/complete)

Gather decomposed data into a global field array: memory intensive not recommended

MPP: I/O

Abstracts the calls to NetCDF

Provides basic functionality used to build higher level abstraction layer known as *FMS_io*

Manages open/close of files and file units

Uses domains logic to create a special I/O domain that can be configured at runtime (see I/O Subset examples)

I/O domain can read from a single file

Automatically includes extra metadata buffer space

Can read "regions" of data to reduce memory bloat

ASCII files can be read by root-pe and broadcast

I/O Subset Example 1

1 x 1 io_subset

R/W		

I/O Subset Example 2

4 x 4 decomposition

4 x 4 io_subset

R/W	R/W	R/W	R/W
R/W	R/W	R/W	R/W
R/W	R/W	R/W	R/W
R/W	R/W	R/W	R/W

I/O Subset Example 3

4 x 4 decomposition

1 x 2 io_subset

MPP: Clocks

Uses wtime (default) or system_clock

Error checks to ensure begin/end pairs are matched

Defined with differing granularities: component, subcomponent, driver, module, routine, loop, infrastructure

Global summary output at end of run: min/max/avg

Per MPI-rank summary available

Verbosity of summary granularity is configurable

Clocks can be "sync'ed" - timer doesn't begin until all members of the pelist have checked in

MPP: Miscellaneous

Error handling

NOTE message to stdout by root-pe

WARNING NOTE by every member of pelist

FATAL WARNING plus program termination

Global sums

fast sum

- sum of local sums -> allreduce
- not reproducible across decompositions

bitwise exact

- Standard gather to root-pe -> in order sum -> bcast to pelist
- EFP sum convert to int -> mpp_fast_sum -> convert to real

Checksums

restart integrity checks global, pelist, or local aid in debugging

FMS_IO

Most of the IO is mediated through this layer

Wraps the mpp_io layer to extend basic functionality

Provides simplified data access

queries, open/close, reads/writes reduces need to fully express metadata for all variables IO subsets and mosaic (tile) transparent to user

Complete restart functionality

FMS_IO

Files expressed in basic format, "tilen" added by MPP layer based on domain information

Query, Set, and Nullify:

active domain

filename appendix (used for ensembles, nests, etc)

Query:

Global and variable attributes field size and name mosaic (tile) number and filename

read/write data using only filename, fieldname, data optionally specify time-level and/or region

Time Manager

Supports multiple calendars

julian gregorian 30-day months no-leap no-calendar

YY.MM.DD.hh.mm.ss.ticks stored as an abstract type ticks is a configurable fraction of a second (1000 => milliseconds)

Operators to perform "math" on the type

Query and Set the calendar, date, and time

Alarm to alert you when an interval has been reached

Function that returns seconds for a time interval – or optionally days & seconds

Block Manager

Distributed computing can be abstracted away from scientists and developers - OpenMP requires tight interaction

MPI-rank domains are further decomposed to aid with OpenMP threading and populates a type

Stores extent for the MPI-rank domain and for each block

Includes per-block translation from MPI-rank domain to block (indexing)

Blocks expressed in packed (ix,k) or rectilinear (ib,jb,k) format

Blocks are not required to be uniform in size

Field/Tracer Manager

Reads in field descriptions from a flat file

```
"TRACER", "atmos_mod", "o3mr"
"longname", "ozone mixing ratio"
"units", "kg/kg"
"profile_type", "fixed", "surface_value=1.e30" /
```

Tracks fields by component and classification

APIs for

initialization of the field from metadata information querying array location mapping from tracer "name" querying generic attributes for specific purposes

Tracers can be added mid-run

diagnostic tracers no impact on solution (e.g. particle traces) prognostic tracers may require equilibration or relaxation

Diagnostic Manager

Set of simple calls for parallel diagnostics on distributed systems

Built on the parallel I/O interfaces from FMS_IO

Capable of multiple sampling and/or averaging intervals specified at run-time

Ouput scalars up to 3D fields

Support for limited-area extents (regional)

Run-time specification of diagnostics controlled through the *diag_table* file

Diagnostic Manager


```
fvGFS 20150801.18Z
2015 8 1 18 0 0
# Output files
"grid spec",
                      -1, "months", 1, "days", "time"
"atmos 4xdaily",
                 6, "hours", 1, "days", "time"
"atmos daily", 24, "hours", 1, "days", "time"
                   -1, "hours", 1, "hours", "time"
"atmos static",
# files needed for NGGPS evaluation
"nggps3d 4xdaily",
                       6, "hours", 1, "days", "time"
                       0, "hours", 1, "hours", "time"
"nggps2d",
# Output fields
"dynamics", "grid lon", "grid lon", "grid spec",
                                                   "all", .false., "none", 2
"dynamics", "grid_lat", "grid_lat", "grid_spec",
                                                "all", .false., "none", 2
"dynamics", "zsurf", "zsurf", "atmos static", "all", .false., "none", 2
"dynamics", "ps",
                       "SLP",
                                  "atmos_daily",
                                                   "all", .true., "none", 2
"dynamics", "ps",
                      "SLP", "atmos 4xdaily", "all", .true., "none", 2
"dynamics", "vort850", "vort850", "atmos 4xdaily", "all", .false., "none", 2
"dynamics", "pt",
                                "nggps3d 4xdaily", "all", .true.,"236.0, 295.0, -25.0, 49.5,-1,-1",2
                       "temp",
"gfs phys", "totprcp", "PRATEsfc", "nggps2d",
                                                "all", .false., "none", 2
```


Diagnostic Manager

Similar format to that used by restarts

Multi-entry variables in the *diag_table* require a single send_data call, diag_manager will manage all variations

send_data:

called every timestep (for time averaging and accumulating) alarms used to trigger output¹ optional index arguments for OpenMP/blocked data

Data Override

Similar capability to gcycle in GFS physics

Using information in the data_table, perform spatial and temporal interpolation to replace a prognostic field

```
# Ice overrides (Old Format)

"ICE", "sic_obs", "SIC", "INPUT/sst_ice_clim.nc", .FALSE., 0.01

"ICE", "sit_obs", "SIC", "INPUT/sst_ice_clim.nc", .FALSE., 1.06

"ICE", "sst_obs", "SST", "INPUT/sst_ice_clim.nc", .FALSE., 1.0

# Atmosphere overrides (New Format)

"ATM", "dust1_aerosol", "dust1", "INPUT/aerosol_month.nc", "none", 1.0

# Land overrides (New Format)

"LND", phot_co2, "co2", "INPUT/co2_data.nc", "bilinear", 1.0e-6
```

Overrides done on cyclical basis

```
call data_override ('ATM', 'u_obs', obs, Time, override=done) call data_override ('ATM', 'v_obs', obs, Time, override=done)
```


FMS: Miscellaneous

Astronomy:

astronomical variables and properties used mainly by shortwave radiation

Sat_vapor_pres:

initializes the lookup tables

given the relative humidity, calculates:

saturation vapor pressure

specific humidity

vapor mixing ratio

compute derivatives with respect to temperature of:

saturation vapor pressure

specific humidity

vapor mixing ratio

Exchange Grid

FMS <-> NEMS

Model Driver: template-based which evolves as components materialize

Infrastructure: a collection of enabling software in a library

NEMS layer: built at compile time based on configuration specification

Infrastructure: a collection of enabling libraries

