Comparison of GFS Forecasts with 32-bit and 64-bit Precision FV3 Dycore

Fanglin Yang

Weekly FV3GFS Technical Meeting 03/27/2017

Resolution, Physics Grid, and Run-time on Cray 10-d forecast, 6-hourly output, 3.75-minute time step C768, 13km, 3,538,944 points

Hydro/ non-hydro	precision	threads	nodes	CPU (min/ 10day)
Non-hydro	32-bit	2	64	89
Non-hydro	64-bit	2	64	137
Non-hydro	64-bit	2	144	69
Non-hydro	64-bit	4 Hyper-Thread	64	135
hydro	64-bit	2	64	95
hydro	64-bit	2	144	51

T1534 NEMS GFS (~13 km, 3072x1536), 61 nodes, 73 minutes

Purpose of this test:

- Running fv3gfs with 32-bit dycore is about 35% faster than with 64-bit dycore.
- Will forecast skills be adversely affected if 32-bit dycore is used?
- Physics is always run at 64-bit precision.

Two forecast experiments were carried out at C768 (~13km) resolution for Aug-Sep-Oct 2016. Both runs are L63 with model top at ~1.0 hPa.

SLP AC

Vector Wind RMSE

Worse near tropopause in SH and tropics

Temperature RMSE

Worse in the stratosphere in NH and TROP, and worse in SH in both stratosphere and troposphere.

CONUS Precipitation Scores

No impact

Hurricane Track

64BT 32BT 92 64

No impact

Summary 32-bit run against 64-bit run

- Lower HGT AC at 1000hPa and 500hPa in SH
- Lower SLP AC in both NH and SH
- Higher wind RMSE near SH and Tropical tropopause
- Larger temperature RMSE (colder) in the NH and tropical stratosphere, and SH stratosphere and troposphere.
- No impact on CONUS precipitation ETS and Bias scores
- No impact on hurricane track error scores.

Computing cost vs small gain of accuracy; probably need to run FV3GFS at different precision for different applications

11

Comparison of GFS Forecasts with 63 and 64 Model Vertical Layers

Pk=Ak+Bk*Ps

k	Ak	Bk	k	Ak	Bk
	428.434 318.266 221.958 137.790 64.247	.00000000 .00000000 .00000000 .00000000	60 61 62 63 64 65 66	428.434 318.266 221.958 137.790 64.247 10.000	.00000000 .00000000 .00000000 .00000000

63L FV3GFS

64L FV3GFS

Top integer layer is at ~1.0 hPa

Top integer layer is at ~0.37 hPa

Purpose of this test:

- Setting the FV3GFS model top close to the current operational GFS model top simplifies the transition of data assimilation from GSM to FV3 dycore.
- Test if the forecast quality is acceptable if the model top is pushed up from 0.64 (~51 km) to 0.1 hPa (~65 km) without any other changes in model configuration

- Two forecast experiments were carried out at C768 (~13km) resolution for Aug-Sep-Oct 2016, both with non-hydrostaitc and 32-bit dycore.
- For the 64L run, time step was reduced by 50% to keep the model from blowing up due to computational instability.
- Lucas Harris provided a set of tunable parameters that may allow larger time steps to be used. DA group (Catherine Thomas) is testing 64L FV3GFS with these parameters.

Zonal Mean Height and Temperature. 120-hr Fcst

64L run is warmer than L63 run in upper stratosphere, and better matches analysis

Zonal Mean U and V. 120-hr Fcst

64L has stronger stratospheric polar night jet

64L has better pole-to-pole transport

2m Above Ground Temperature [K] 00Z-Cyc 0(Aug2016-310ot2016 Mean (fi20 fi20 fi20 fi20) Fost-Hour Average

Surface Convective Avail Potential Energy [J/kg] 00Z-Cyc 01Aug2016-310ot2016 Mean (f120 f120 f120 f120 Fost-Hour Average

Atmos Column Total Cloud Cover [%] 00Z-Cyc 01Aug2016-310ct2016 Mean (f120 f120 f120) Fost-Hour Average

HGT AC

WIND RMSE

Extending model top significantly reduces wind RMSE in the stratosphere

Temperature RMSE

Extending model top significantly reduces temperature RMSE in the stratosphere

CONUS Precipitation Skill Scores – No Impact

Hurricane Track

No impact

Summary 63L run against 64L run

- Reduced wind and temperature RMSE in the upper stratosphere
- Stronger polar night jets, and improved meridional wind in the stratosphere
- No significant impact on HGT AC at 500hPa and 1000hPa
- No significant impact on SLP AC
- No impact on CONUS precipitation ETS and Bias scores
- No impact on hurricane track error scores.

Need more tests to make the model run stably with longer time step