CHGRES FOR FV3

George Gayno
FV3GFS Technical Meeting
Dec 19, 2016

Background

- GFDL modified a previous version of 'global_chgres' for FV3.
- Move their modifications to the Q3FY17 version. Started from:
 - https://svnemc.ncep.noaa.gov/projects/gfs/branches/gfs_q3fy17
- My progress is being tracked in this ticket:
 - https://svnemc.ncep.noaa.gov/trac/fv3gfs/ticket/1
 - This is a new subversion project. If you can't view it, contact Fanglin Yang.
 - Please add your comments, suggestions, critiques to the ticket.
- Code updates being committed to this branch:
 - https://svnemc.ncep.noaa.gov/projects/fv3gfs/branches/chgres_fv3

Requirements

- Interpolate GFS atmospheric, surface and NSST restart files to the FV3 grid.
 - Atmospheric restart files in either SIGIO or NEMSIO format.
 - Surface restart files in either SFCIO or NEMSIO format.
 - NSST restart files in either NSTIO or NEMSIO format.
- Data on FV3 grid output in NetCDF format.
 - Each tile in its own file.
 - NSST output in NEMSIO format for now. Can change this once NSST is working in FV3 model.

Requirements

- CHGRES will provide a 'cold' start capability.
 - Should a 'warm' start be included?
- Will convert from GFS initial conditions on Gaussian grid to FV3 grid only.
 - Converting from one FV3 grid to another to be done by another to-be-written 'CHGRES' program.
 - As per Vijay's directive (see his Dec 5 slides).
- Remove any obsolete GFS related code.
 - Lots of opportunity for clean up and reorganization.

Some Details

- FV3 grid defined by the following 'fixed' files:
 - Cxxx_grid.tile#.nc contains lat/lon info.
 - Cxxx_oro_data.tile#.nc contains land mask, terrain and GWD fields.
 - Can these files be combined somehow?
 - Dusan recommends consistent variable names.
 - Can new static fields be added? Ex: soil type,
 vegetation type and albedo. Currently, the horizontal mapping is done "on the fly" by the 'sfcsub.f'
 component. But this is not very efficient.

- Much bigger project than I initially thought.
 - Quicker to write the entire code from scratch?
- Removed obsolete code that wrote the interpolated GFS data to NESMIO or the 'old' format.
- Removed reduced grid logic as FV3 tiles are square.

- Separate logical branches combined.
 - The surface/NSST file conversion used two similar branches based on whether the input file was NEMSIO or the 'old' format. These were combined.
- Obsolete routines and numerous unused variables removed.
- All routines that read/write data were moved to its own source file – read_write.f90.

- Moved all 'extra' routines from chgres.f to its own source file – chgres_utils.f
 - Only contains the driver now.
 - Extra routines include those for vertical interpolation, spectral/grid transforms, ozone, etc.
- The driver itself was reduced from 4600 to 1600 lines (includes comments).
 - Now, chgres.f can be viewed with the subversion trac page!

- Has been successfully tested using OPS and parallel data.
 - Can change number of vertical layers.
- I encourage folks to try my branch.

To Be Done

- Option to use climo ozone data not tested.
 - Some routines need to be converted from spectral to grid point.
 - Do we even need this option?
- Have not tried to change number of tracers.
- Have not tried FV3 nests.
- The global_chgres.sh script needs updating.
- New routines will need prologs and NCO approved error handling. Current prologs need updating.
- The program only creates one surface/NSST tile.
 Should a loop be added to process all tiles as with the atmospheric conversion?

QUESTIONS/COMMENTS