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What is needed to produce a snowfall forecast?
Quantitative precipitation 

forecast (QPF)

Precipitation type identification

Snow-to-liquid ratio (SLR)

Issues
• QPF biases exist and vary among models; precipitation type depends on many physical processes; no 

widely accepted SLR methodology

• CONUS-wide validation of snowfall and SLR forecasts has yet to be implemented

NWS (2005)
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Operational SLR forecast methods

The COMET Program (2023)

850 – 700 mb thickness

Cobb and Waldstreicher (2005)

• Uses a neural network 
to predict SLR based 
on soundings from 28 
sites

• Uses vertical 
velocity and 
temperature in 
“cloudy” regions 
to predict SLR

MaxTAloft

Roebber et al. (2003)

• Relationship between 
850 - 700 mb 
thickness to predict 
SLR

• Maximum temperature 
between 2000 ft AGL 
and 400 hPa

Caveat: Some methods were developed for 
certain regions and may yield skewed results
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Goal: 
Develop and verify a new SLR prediction method using 

machine learning methods and a CONUS-wide 
snowfall observation network

Train a random forest algorithm to predict SLR and 
compare results with existing SLR methods
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CoCoRAHS Observing Network

•921 unique sites across the CONUS; 24-h observing periods
•Only included sites where observers manually measure snowfall (no weighing 
gauges or tipping buckets)
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Random forest algorithm development

• Random forest (RF): Aggregates 
predictions from an ensemble of decision 
trees to make a deterministic prediction

• Trained with ERA5 0.25° Reanalysis and 
CoCoRAHS site 24-h SLR observations; 
60/40 train/validate split

• Training period: December 2000 to April 
2022

• Testing period: November 2022 to April 
2024 (testing performed on the HRRR)

Input features

Breiman (2001); Hersbach et al. (2020) 6

Most predictors were chosen based on results from previous studies [Roebber et 
al. (2003); Cobb and Waldstreicher (2005); Alcott and Steenburgh (2010)]

Variable Levels
Temperature 300, 600, 900, 1200, 1500, 1800, 2100, 2400 m above 

ground level
Wind speed 300, 600, 900, 1200, 1500, 1800, 2100, 2400 m above 

ground level
Relative humidity 300, 600, 900, 1200, 1500, 1800, 2100, 2400 m above 

ground level
Latitude N/A

Longitude N/A

Elevation N/A



Northeast CONUS 
Snow Climates 

• Eight CONUS snow climates defined using
• National Operational Hydrologic 

Remote Sensing Center (NOHRSC) 
Snow Analysis

• Baxter et al. (2005) SLR Climatology

• Initially used k-means clustering

• Test SLR method performance within each 
snow climate



Northeast CONUS SLR method performance

• ERA5, CONUS-wide trained model applied to the HRRR from November 2022 to April 
2024

• RF performs best across the northeast CONUS



Northeast CONUS Snow Climate Performance

• RF exhibits lowest MAE for 
all snow climates; MaxTAloft 
highest

• All methods are least 
accurate for lake-effect 
events

• Modest spread in 
predictability for each climate

Higher values indicate degraded performance



March 13 – 15, 2023 Nor’easter Case Study 

NWS (2023)

NWS (2023)

NWS (2023)

• Widespread snowfall totals > 12 inches, locally 30+ 
inches 

• Began as rain/wintry mix in valleys/mountains, 
transitioned to a heavy, wet snow by midday March 14

• Orographic enhancement over Greens, Berkshires, 
Adirondacks, Catskills



Case Study Verification: 24-h SLRs

RF exhibits 
lowest bias, 
MAE

Thickness 
exhibits 
highest bias, 
MAE

Each method generally overforecasted 
SLRs along interior locations

24-h forecast period ending 2023-03-15 1200 UTC



Case Study Verification: 24-h QSF

RF exhibits 
lowest MAE, 
bias

Highest QSF bias errors concentrated 
close to coast

24-h forecast period ending 2023-03-15 1200 UTC

Other methods exhibit larger MAE, bias



Conclusions
• A random forest SLR algorithm trained on CONUS-wide snowfall observations was 

developed and tested against operational SLR methods in different snow climates

• The RF outperforms operational SLR methods across the northeastern U.S., especially 
along coastal and interior northeast CONUS areas

• The RF performs reasonably for a high snow / SWE event, highlighting its accuracy 
during high-impact winter storms



Future work

• Understand which environments (i.e., marginal temperature environments, high or low 
QPF, etc.) lead to accurate or poor SLR forecasts

• Further verify snowfall amounts across longer time scales

• Add in results from the Roebber et al. (2003) SLR prediction method


