

Surface Energy Balance Across the 18-site New York Mesonet Flux Network

Anna Glodzik, Scott Miller, Sarah Lu, Jason Covert, *Atmospheric Sciences Research Center, University at Albany (UAlbany)* Andrew Newman, Mike Ek, Kathryn Newman, *National Center for Atmospheric Research (NCAR)*

Helin Wei, National Oceanic and Atmospheric Administration (NOAA)

Funded by NOAA Joint Technology Transfer Initiative (JTTI) – Collaborative project between UAIbany and NCAR

New York State Mesonet Flux Network

- The New York State Mesonet (NYSM) Flux Network consists of 18 sites across New York that have been measuring surface energy balance components since 2018
- Radiation components, turbulent fluxes (containing onboard calculated quality control scores), and ground heat flux
- Currently 100+ site years of 30-minute flux data

Flux Sites

- 18 eddy covariance stations
- Net radiometer: incoming and outgoing shortwave and longwave radiation
- Ground heat flux
- Turbulent fluxes: momentum, sensible and latent heat, and carbon dioxide
- Turbulence sensors measure at 10 Hz

Chazy Flux Site

Advanced Coupling Evaluation Metrics in METplus for UFS Land Surface Models

Project Objectives:

- 1. Combine NYSM standard site data with flux data and include quality control parameters
- 2. Advance land-atmosphere coupling evaluation metrics within METplus¹ framework using NYSM observations
- 3. Demonstrate new capabilities by evaluating high-resolution forecast model output, experimental version of the Unified Forecast System (UFS)

	Site Name	ID	Site Description	Notes
*	Belleville	BELL	Grass/ Crop field	Profiler
	Brooklyn	BKLN	Urban	NYC
	Burt	BURT	Vineyard/ Crop field	
	Chazy	CHAZ	Crop field	Profiler
	Claryville	CLAR	Pasture	Snow
	Fredonia	FRED	Vineyard	
	Ontario	ONTA	Orchard	
	Owego	OWEG	Grassy field	Profiler
	Penn Yan	PENN	Crop field	
	Queens	QUEE	Urban	NYC, Profiler
	Redfield	REDF	Grassy field	Snow
	Red Hook	REDH	Grass/ Orchard	Profiler
	Schuylerville	SCHU	Grassy field	Canal
	Southold	SOUT	Vineyard	
*	Staten Island	STAT	Suburban	NYC, Profiler
	Voorheesville	VOOR	Orchard	Profiler
	Warsaw	WARS	Crops	Wind Farm
	Whitehall	WHIT	Grassy field	Canal

Data & Quality Control

- 30-minute fluxes computed in real time on Campbell CR6 datalogger using EZFlux software and transferred back to NYSM servers
- For each 30 minute flux, a QC flag is included in the final dataset
- Despiking
 - Applied to radiation components and fluxes
 - Flag values that are outside of a variable specific threshold and deviate more than 3.5 standard deviations from the mean

30-minute Fluxes (6 years, Voorheesville)

Diurnal Energy Budget (Voorheesville)

$$R_{n}-G \stackrel{?}{=} H_{s}+H_{L}$$

Residual = (R_{n}-G) - (H_{s}+H_{L})

- Residual is the amount of energy not accounted for in the energy budget equation when closure is not 100%
- Higher residual values in warmer months... but a larger radio of residual to total radiation in the winter

Annual Midday Energy Balance Closure

Energy budget closure = $(H_s + H_L)/(R_n - G)^* 100$

- Each boxplot represents the 15 non-urban sites
- Calculated the average energy budget closure during peak radiation hours at each site each year (approx 10am-2pm)
- Slight decreasing trend
- *Note*: does not include ground storage between surface and 6 cm

Driving Factors

Residual = $(\mathbf{R}_n - \mathbf{G}) - (\mathbf{H}_s + \mathbf{H}_L)$

- Net radiation is generally increasing slightly over time
 - Same trend shown in near by NEON flux site in Harvard Forest (~85 miles from Albany)
- Ground heat flux trending downwards... What is causing this?
- Both of these changes increase the residual

Midday Energy Balance Closure

- Highest and most consistent energy budget closure across all sites in the summer
- Low closure in the winter
 - Fluxes and net radiation components are all smaller
 - Snow and ice adds complexity to calculating heat exchange
 - Fewer readings due to sites being conditionally powered down from less solar power

Bowen Ratio Flux Adjustment

Motivation: LSMs assume a fully closed energy budget, while this is rarely seen in reality, so we manipulate the turbulent energy (H_s and H_L) to create 100% energy budget closure

- 1. Calculate the median Bowen Ratio over a specific time frame
 - Weekly or daily
- 2. Use that Bowen Ratio to split up the residual energy between the latent and sensible heat fluxes for readings within that time frame
- 3. Energy budget is closed!

Average LE adjustment: **+7.8 W/m^2** Average H adjustment: **+4.1 W/m^2**

Conclusions

- NYSM Flux Network provides a unique opportunity to evaluate models with 100+ site years of data across the 18 sites in total
- The network as a whole has shown an average of **62.2%** energy budget closure since its beginning in 2018 and findings these are consistent with other flux networks
 - Spring: **63.1%**
 - Summer: **73.7%**
 - Autumn: 62.4%
 - Winter: **42.9%**
- Additional quality control of the flux data builds upon quality control scores calculated by the datalogger using the onboarded manufacturer algorithm
- Flux adjustments to close the energy budget are beneficial for comparisons and verification of LSM models

Future Work

- Comparisons with coupled model runs (single column model, high resolution)
- Combine model output with NYSM data to create METplus suite metrics
- Develop near real time model evaluation capabilities

Thank you!

Questions?

NOAA Weather Program Office FY22 JTTI Award number: NA22OAR4590181 Email: aglodzik@albany.edu