

Brian T. Horan, Kara Sulia, Chris Thorncroft, Nick Bassill, Carly Sutter, D. Aaron Evans

This work supported by NSF award #RISE-2019758 to the NSF AI institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES)

Motivation

- The NYSM cameras monitor static sites, which can be viewed on the NYSM site
- This is an intensive process which requires many work-hours and concentration
- This sentiment was shared by the NWS Albany
- Attempt to detect precipitation at the time it occurs

Problem

- How do we monitor the conditions more efficiently than just staring at a screen?
- Can we identify the onset/cessation of precipitation?
- Can we use this information to supplement sparsely observed areas?

Methodology

- Using Machine Learning (Convolutional Neural Network classifier), create an ML model that can classify images into the following categories:
 - Rain, Snow, Clear, Obstructed
- Want to make this ML model generalizable

Methodology (Cont.)

- In pre-processing, introduce trustworthiness in the dataset by using a technique called Inter-Coder reliability trials (Wirz et al., 2024).
 - This uses the quantitative content analysis (QCA) framework to label images across multiple labelers and sites.
 - When doing QCA, we create a codebook which allows any current or future labelers to follow a structured guide.

Final Intercoder Reliability trial

- Used 5 people to independently label a dataset of 30 images across the 4 classes
- Reach a Krippendorff's alpha of 0.926 (Krippendorff, 2007)

Number of Labelers	5
Number of Cases	30
Number of Decisions	150
Krippendorff's Alpha	0.926

Image: 20231007T150531_GFAL.jpg

Mesonet 2 meter Temperature (deg C): 18.4 Mesonet 5-minute accumulation (mm): 0.63 Mesonet wind speed (m/s): 1.22 ASOS Present Weather Code: M ASOS 2 meter Temperature (deg C): M ASOS 1-hour accumulation (mm): M ASOS sustained wind speed (m/s): M

Datasets

Station	Number of Images in Dataset
Glens Falls (GFAL)	2039
Elmira (ELMI)	2239
Stephentown (STEP)	3105
Buffalo (BUFF) - Future	1310
Cobleskill (COBL) - Future	1890
Queens (QUEE) – Future	0
Batavia (BATA) - Future	0
Gabriels (GABR) - Future	0
Penn Yan (PENN) - Future	0

Preparing the datasets

• Single Site Model

Training Data – GFAL – 80% of Data

Validation Data – GFAL – 20%

• Site-Specific Split

Training Data – GFAL – 100% of GFAL Data

Validation Data - ELMI – 100% of ELMI data

Combined Datasets

Training Data – GFAL and ELMI – 80% of Data

Validation Data – GFAL and ELMI – 20% of Data

Machine Learning Workflow

Machine Learning – Single Site

- Dataset: GFAL
- 400 Epochs
- Optimizer: SGD
- Learning Rate: 0.001
- Batch Size: 32

Evaluating the skill of the single site

Evaluating the skill of the single site

Evaluating the skill of the single site

Machine Learning – Site Specific

Split

Evaluating the Skill

True: Snow, Pred: Snow

True: Clear, Pred: Clear

True: Snow, Pred: Obstructed

Machine Learning – Combined

- Dataset: GFAL + ELMI Combined
 - 400 Epochs
- Optimizer: SGD
- Learning Rate: 0.001
- Batch Size: 128

Evaluating the skill

Technical Next

Stepsase the generalizability of the Machine Learning model

- Include XAI methods including KernelSHAP, GradCAM, etc. to add explainability to the ML model
- Investigate the ability of the ML model to predict on differenced images

Ultimate Goal

- Create a dashboard that stakeholders can use to monitor camera conditions
- Have an ML model which can generalize all 127 sites cameras with statistically significant accuracy.

Questions?

Please feel free to contact me!

bthoran@albany.edu

Hyperparameters

- L2 Regularization 0.01
- Momentum 0.99
- Batch Size -32
- Optimizer SGD
- Image Size 180,320,3
- Epochs 400
- Learning Rate 0.001

RISE Analysis of incorrect image

