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ABSTRACT 

 

Operational forecasters face a plethora of challenges when making a forecast; they must 

consider multiple data sources ranging from radar and satellites to surface and upper air 

observations, to numerical weather prediction output. Forecasts must be done in a limited 

window of time, which adds an additional layer of difficulty to the task. These challenges are 

exacerbated by winter mixed precipitation events where slight differences in thermodynamic 

profiles or changes in terrain create different precipitation types across small areas. In addition to 

being difficult to forecast, mixed precipitation events can have large-scale impacts on our 

society.  

To aid forecasts for these events, the goal of this thesis is to take the multiple data sources 

used by forecasters and combine them together using machine learning to improve forecasting 

ability for mixed precipitation events. The expectation is that by employing a machine learning 

framework, forecasters will have more time to spend analyzing the most difficult portions of the 

forecast. 

In order to achieve this goal, Community Collaborative Rain, Hail and Snow Network 

(CoCoRaHS) daily observations from trained reporters between January 2017 to September 2020 

were used to identify precipitation events that included rain, snow, freezing rain, and sleet. The 

data associated with the timing of these mixed precipitation events were collected from the New 

York State Mesonet, National Weather Service upper air soundings, High-Resolution Rapid 

Refresh model (HRRR), and North American Mesoscale forecast model with a nested domain 

(NAMNEST). A random forest (RF) machine learning algorithm was trained and tested on cases 

identified from the CoCoRaHS reports that were matched with the meteorological datasets. 
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Internal testing identified the best combinations of meteorological variables and data sources to 

make operational forecasts with. 

An operational website was developed to display the products made with the output of 

the RF. The website was operational in real-time during the 2021-2022 winter season, and the 

RF was also run to create the same products for the 2020-2021 winter season. This was done to 

increase the sample size of the forecast guidance to do verification on. Verification was 

completed for the winters of 2020-2021 and 2021-2022 by using ASOS and mPING 

observations as ground truth. Results from the verification process gave a positive indication that 

certain products can provide accurate precipitation type forecasts to be employed in combination 

with analysis by an operational forecaster during winter mixed precipitation events. The 

operational products were expanded for the winter of 2022-2023, and the operational website 

currently has five operational forecasting tools, four of which provide probabilistic winter 

precipitation type forecasts for rain, freezing rain, sleet, and snow. 
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1. Introduction 

1.1. Motivation  

Winter weather hazards can hinder travel, utility operations, and day-to-day activities for 

individuals and businesses. Forecasting and communicating the impacts of winter storms, 

particularly on the East Coast of the United States, can be challenging due to complex terrain, 

continental–marine boundaries, and high-density population centers, which make accurate 

forecasts for these events essential (e.g., Ralph et al. 2005). Areas of mixed precipitation, defined 

here as freezing rain or sleet, embedded within larger storms or on their own, can enhance 

difficulties in forecasting, as different precipitation types can cause a wide range of hazards 

while potentially occurring in similar or adjacent meteorological environments. Differentiating 

between rain, freezing rain, sleet, and snow is essential to forecasting because of the unique 

hazards each one generates. In particular, freezing rain and heavy wet snow events can create 

extreme hazards that result in power failures (Theriault et al. 2022), damage to infrastructure 

(Changnon 2003), and significant travel issues, which are not often associated with sleet or cold 

rain events.  

In the United States between 1949–2000, catastrophic ice storm events (events with 

losses totaling over $1 million) generated $16.7 billion in losses; in particular, the Northeast 

United States had the greatest number of these events with 39, causing over $4 billion in damage 

(Changnon 2003). New York State alone experienced 31 of the 39 (79%) events, with five to 

seven freezing rain days per year (Changnon 2003). Along with ice storms, the Northeast United 

States is susceptible to significant snowstorms. Between 1980 and 2021, 19 billion-dollar winter 

storm disaster events affected the Northeast Climate Region (Consumer Price Index-adjusted); 

these events totaled $79.8 billion in estimated costs (NOAA NCEI 2022).  
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Because significant damage and economic losses occur during mixed-precipitation type 

storms, accurate forecasts of precipitation types are essential for decision making and planning 

for organizations including city councils, transportation departments, public utilities, schools and 

universities, and many others. Accurate forecasts of precipitation type and timing can assist with 

decisions such as whether to pre-treat roads and how to allocate snowplow and road salt 

operations to the assignment of repair crews to areas where significant power outages may occur. 

Because these weather hazards are destructive, costly, and impact high-level decision making 

(such as school closures), accurate mixed-precipitation forecasts are vital to protect lives and 

property. 

1.2. Precipitation Type Forecasting: Challenges and Methods 

Precipitation type forecasts are challenging because slight variations in thermodynamic 

profiles and surface conditions can result in significant changes to weather conditions and 

impacts. The typical vertical temperature profiles for rain, snow, freezing rain, and sleet (Fig. 

1.1) illustrate how slight differences in the vertical temperature profile can change the 

precipitation type. For example, minor changes in the depth of a near-surface freezing layer or an 

above freezing layer aloft can cause a change in precipitation type, such as rain to freezing rain 

or freezing rain to sleet. While each of the different environments for the precipitation types have 

a distinct profile, the environments can occur in close proximity and can be modified by 

background features in the environment like areas of complex terrain. When the different 

environments are close to each other spatially or the vertical profile resembles that of multiple 

precipitation types, the precipitation occurring at the surface can change quickly making 

forecasts challenging. These changes in precipitation type have implications on the potential 

impacts of a storm, which highlights the importance of accurate vertical thermodynamic profiles. 
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Fig. 1.1: Vertical temperature profiles for (a) rain, (b) snow, (c) freezing rain, and (d) sleet. Red 
(blue) shaded areas represent where the temperature is greater (less) than 0°C. The dotted 
horizontal gray lines represent intersection points between the profile and 0°C line. 

 

Over the years, many methods have been developed to identify precipitation types both 

through implicit and post-processing algorithms. Methods range from considering the properties 

of the temperature and humidity profiles to the composition of falling hydrometeors to the use of 

model microphysical parameterizations to explicitly forecast precipitation type (Reeves 2016). 

These different methods present various solutions to solving the challenges around winter 

precipitation type forecasting, especially as many of these methods are currently being used in 

operational forecasting settings. 

The Baldwin algorithms (Baldwin et al. 1994) are based on vertical profiles from both 

observed and numerical model soundings for select storms. There are two separate algorithms, 

Baldwin1 and Baldwin2, which only differ in the step for distinguishing snow and ice pellets 

(sleet in this thesis). Both methods first identify a precipitation generation layer and then 

calculate the area between the wet-bulb temperature profile and the 273K or 269K isotherms that 
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are below the precipitation layer. To decipher the precipitation type, the size of the areas is used 

to decide if melting aloft or refreezing is possible. Both these methods can diagnose four 

categories of precipitation: rain, freezing rain, ice pellets, and snow.  

The Ramer algorithm (Ramer 1993) is similar to the Baldwin algorithms in that it also 

uses observed and numerical model soundings as its basis dataset. Ramer is a statistically derived 

algorithm that uses a top-down method which follows a hydrometeor through the atmosphere 

from where it would be generated to the surface. To decide between precipitation types, the ice 

fraction of the hydrometeors in each layer is determined from the wet-bulb temperature and 

relative humidity. If the starting wet-bulb temperature is greater than 266.55K, it is assumed that 

the starting hydrometeor is liquid. As the hydrometeor is followed down through the atmosphere, 

the value of the ice fraction is used to determine rain, freezing rain, ice pellets, and snow. 

The Bourgoin algorithm (Bourgouin 2000) was created by using 173 observed soundings, 

which differentiates it from Ramer and Baldwin as those use model soundings. Bourgouin 

determines precipitation type by examining the observed temperature profile in comparison to 

the 0°C isotherm. If a profile does not cross the 0°C isotherm, then snow is identified because the 

hydrometeor is assumed to start as frozen; otherwise, the number of times the 0°C isotherm is 

crossed, as well as how long a hydrometeor spends on each side of 0°C isotherm, decides 

precipitation type. To determine precipitation, the area of the temperature on each side of the 0°C 

isotherm can be estimated by multiplying the mean temperature of a layer by the height of that 

layer. The area to the left (right) of the 0°C isotherm is labeled a negative (positive) area. Rain 

will have only one positive area identified since it only crosses the 0°C isotherm once. To 

determine freezing rain and ice pellets, the ratio of negative to positive area and the relative size 

of the two areas are used.  
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Schuur et al. (2012) (also known as National Severe Storms Laboratory, NSSL, 

algorithm) predicts precipitation type through examining the wet-bulb temperature below the 

precipitation generation layer. It uses four distinct sounding types in determining precipitation 

type through the wet-bulb temperature profile: 1) If the temperature profile is completely below 

the 0°C isotherm, snow will be diagnosed; 2) if the profile crosses the 0°C isotherm once, then 

either snow or rain will be predicted based on the height of the crossing point; 3) if the profile 

crosses the 0°C isotherm three times, ice pellets or freezing rain will be diagnosed; and, 4) if the 

profile crosses  the 0°C isotherm two times, ice pellets or freezing rain will be predicted. To 

determine between ice pellets and freezing rain in sounding types 3 and 4, the maximum wet-

bulb temperature aloft and the minimum wet-bulb temperature in the lowest layer that has 

temperatures below 0°C are examined.  

While these four precipitation type forecasting methods are post-processing numerical 

model profiles or for observed soundings, numerical models have their own separate 

precipitation type determination methods. Manikin (2005) describes the North American 

Mesoscale (NAM) Forecast System method for determining precipitation type. Before 2003, the 

NAM used Baldwin1 as its method to determine precipitation type. Forecasters indicated that 

there was a potential bias in this algorithm, so in 2003 the NAM moved to a mini-ensemble for 

predicting precipitation type. This mini-ensemble encompasses multiple precipitation type 

algorithms (Baldwin1, Baldwin2, Bourgouin, and Ramer) available to generate a consensus 

result. This method combines individual precipitation type methods to potentially eliminate 

biases.  

The High-Resolution Rapid Refresh (HRRR) model has also switched between different 

explicit precipitation forecasting schemes. Ikeda et al. (2013) presented potential biases 
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including a warm (cold) bias in surface temperature when mixed precipitation was observed and 

caused rain (snow) to be forecasted. This impacted the HRRR’s precipitation type algorithm 

(operational between January 2011 and late 2015), which was based on a logic table that made 

decisions using the snow to rain ratios and snow, graupel, and rain mixing ratios from the 

microphysics scheme as well as model surface temperature. An updated precipitation type 

scheme (Benjamin et al. 2016a) was developed in response to Ikeda et al. (2013). The new 

approach uses the cloud microphysics parameterizations and three-dimensional hydrometeor 

mixing ratios at the ground combined with a flowchart to determine precipitation type. This 

algorithm allows for the prediction of more than one precipitation type at a time.  

Even with all the available methods, it is still difficult to consistently produce accurate 

precipitation type predictions, especially when events include mixed-phase precipitation like 

freezing rain and sleet (Manikin 2005; Wandishin et al. 2005; Reeves et al. 2014; Ikeda et al. 

2017). Reeves et al. (2014) compared the forecasts of the Baldwin1, Baldwin2, Bourgouin, 

NSSL, and Ramer algorithms. Using Heidke skill scores (HSSs), Reeves et al. (2014) showed 

that snow and rain were well forecasted with all methods, but many methods struggle with mixed 

precipitation types (freezing rain and ice pellets). None of the algorithms had HSSs over 0.332 

for ice pellets, while only Ramer was above 0.5 in the freezing rain category. Reeves et al. 

(2014) also showed that the algorithms had a high level of detecting rain or snow, with 

probability of detection (POD) values ranging from 96.1% to 99.6% for rain and 86.7% to 94.9% 

for snow. For the mixed precipitation categories, the POD values were significantly lower. 

Values for predicting the combination of ice pellets and freezing rain ranged from 34.7% to 77% 

depending on the method. Biases in these algorithms leave forecasters with no clear preferred 

method. The Baldwin algorithms has biases toward predicting ice pellets, while Bourgouin is 
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limited by its use of the temperature profile, as opposed to the wet-bulb temperature profile, and 

its limited base dataset that derived the threshold for freezing rain and ice pellets. NSSL tends to 

favor a mix of ice pellets and freezing rain as opposed to either of them individually. Ramer is 

sensitive to the temperature threshold of 266.55K and experiments show the POD values change 

significantly if the threshold temperature is shifted (Reeves et al. 2014).  

Whereas Reeves et al. (2014) focused on evaluating precipitation type algorithms that are 

generally used to post-process observational or model-derived soundings, other studies have 

focused on how models evaluate precipitation types with different precipitation algorithms. 

Wandishin et al. (2005) evaluated five different precipitation type algorithms, including Ramer, 

Baldwin2, and Bourgouin, through different experiments with the Eta Model (precursor to 

NAM). They noted that none of the algorithms used were a consensus “best” algorithm as 

individual algorithms performed better in certain situations. An additional challenge when 

evaluating precipitation type algorithms in numerical models is the fact that the algorithm must 

be evaluated as well as the model accuracy of the local meteorological conditions verified. 

Temperature biases in the model can impact the forecast precipitation type (Ikeda et al. 2017).  

Precipitation type algorithms continue to be researched because there is still much room 

for improvement. Birk et al. (2021) revised the Bourgouin algorithm based on results from 

previous research evaluation (Reeves et al. 2014) and operational forecasting experiences. To 

improve upon Bourgouin, Birk et al. (2021) used a larger developmental dataset and wet-bulb 

temperature profiles in conjunction with allowing the algorithm to diagnose freezing 

precipitation from situations without ice nucleation. The output of this updated method allowed 

for probabilistic precipitation type forecasts and combinations of winter precipitation types. 

Their revised method improved upon the original Bourgouin method by 0.17 in critical success 
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index (CSI) and 0.17 in HSS. In addition, each of the individual precipitation type values for CSI 

and HSS increased compared to the original algorithm. They also stated that the probabilistic 

output helps to offset the non-inclusion of variables like precipitation rate or other hydrometeor 

characteristics.  

In summary, previous analyses of precipitation type forecasting methods resulted in 

important information about their accuracy and biases (e.g., Bourgouin 2000; Reeves et al. 2014; 

Reeves 2016; McCray et al. 2019; Birk et al. 2021; Ellis et al. 2022), but there is no consensus 

on which precipitation type identification method is the most accurate. This uncertainty presents 

an ongoing challenge as researchers and operational meteorologists attempt to accurately 

forecast precipitation type. 

1.3. Random Forest Applications in Operational Forecasts 

Machine learning (ML) tools are increasingly used in the earth sciences to examine 

complex problems. Atmospheric science is no exception, and these tools are being utilized to 

solve problems and process significant volumes of data that previously were too large for 

analysis systems to process. ML has recently been used in several critical atmospheric 

applications such as quantitative precipitation forecasts and forecasting of flooding events 

(Gagne et al. 2014; Herman and Schumacher 2018a,b; Erickson et al. 2019), hail and severe 

weather prediction (Gagne et al. 2017; Hill et al. 2020), and predicting visibility at airports 

(Herman and Schumacher 2016).  

One popular technique for ML applications are random forests (RFs) (Breiman 2001). 

RFs can assist with the challenges in operational weather forecasting as they have been shown to 

be successfully implemented in many of the applications listed above (McGovern et al. 2017, 
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2019). RF was selected as the ML method in this study because of its ability to handle large 

datasets (McGovern et al. 2017), the popularity of subjective (human-derived) decision trees in 

weather forecasting (McGovern et al. 2017), and the ease of explanation to end users, which is 

important when transitioning the algorithm to operations.  

Herman and Schumacher (2018a,b) described how a RF could successfully be used to 

predict extreme rainfall events across the continental United States (CONUS). Herman and 

Schumacher (2018a) focused on the development of a RF to predict extreme rainfall events over 

a 1- and 10-year average recurrence intervals (ARIs) two and three days in advance. They 

utilized 11 years of NOAA’s Second Generation Global Ensemble Forecast System Reforecast 

(GEFS/R) to train the RF. They also compared the RF directly to model output from GEFS/R 

and a logistic regression method that used the same data as the RF. When comparing the final 

model forecasts, they found that the RF algorithm performed significantly better than the raw 

GEFS/R model across all ARIs and forecast periods. In some cases, the forecast skill nearly 

doubled for the RF compared to the GEFS/R (Herman and Schumacher 2018a). Herman and 

Schumacher (2018b) examined the impact of the type of model that data was passed into in 

Herman and Schumacher (2018a). They used a RF, logistic regression, and raw GEFS/R as the 

three base models. Herman and Schumacher (2018b) also looked at the impact of reduced 

dimensionality by techniques such as principal component analysis (PCA). The results were 

important to understanding the impact of data and the base model when predicting extreme 

rainfall. Both the logistic regression and RF identified key variables that a forecaster would look 

for. This result can give forecasters confidence that these algorithms make physical sense. They 

also discussed how work to remove the “black box” around RF or other ML algorithms is 

important because it allows a forecaster to understand the potential limitations and pitfalls that 
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come with these algorithms. The work in Herman and Schumacher (2018a,b) was applied in the 

Weather Prediction Center’s Flash Flood and Intense Rainfall experiment (Erickson et al. 2019), 

which shows there is interest in putting ML algorithms into operational forecasters’ hands. 

Another successful implementation of a RF into operational weather forecasting used a 

RF to generate improvements of severe weather forecasts made by the Storm Prediction Center 

(SPC) (Hill et al. 2020). A similar setup to Herman and Schumacher (2018a,b) was implemented 

with 11 years of GEFS/R data used to train a RF-based ML algorithm to predict the same 

categorical outlooks that the SPC produces, including Day 1 probabilistic outlooks of tornadoes, 

significant tornadoes, hail, significant hail, wind, and significant wind, as well as Day 2 and 3 

total severe probabilities. This setup allowed for direct comparison with SPC forecasts in 

addition to examining how the forecaster and RF algorithm would work together. The RF was 

able to identify key features in the dataset that would be similar to what operational forecasters 

would look for while also pointing out relationships that were not as clear. The produced outlook 

forecasts had considerable skill by outperforming the SPC outlooks on Days 2 and 3; they 

underperformed slightly when compared to SPC outlooks on Day 1. The weighted blend of 

forecasts made using both SPC forecasts and the RF algorithm outperformed SPC-only outlooks 

on all products and at all lead times (Hill et al. 2020). This work proves that combining effective 

ML algorithms with operational forecasters can provide a boost to operational forecasts. 

While ML is becoming a more common weather forecasting tool and has been proven to 

be successful, one less studied application is highly-impactful winter weather events. 

Considering the difficulties associated with forecasting winter precipitation types as described in 

Section 1.2, the prospect of combining ML with the challenge of forecasting precipitation type 
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represents an exciting and potentially effective forecasting tool that could be integrated into the 

operational forecasting process.  

1.4. Research Objectives 

This thesis will examine the development of a RF-based winter precipitation type 

forecasting algorithm across New York state. Since winter precipitation type forecasting can 

create a number of challenges for forecasters, there is the opportunity to provide significant 

improvement to precipitation type forecasts based on previous implementation of RF algorithms. 

RFs also provide important information on feature importance which can give confidence to 

forecasters, as well as additional understanding on how the algorithm is functioning and making 

predictions. The key research goals for this thesis are: 

• Develop a RF that can accurately predict winter precipitation type across New York 

• Use the base RF structure developed to expand the RF’s input data sources to 
encompass both observational and model datasets 
 

• Create and maintain a suite of operational probabilistic winter precipitation type 
products available for forecasters across New York 
 

• Evaluate different RFs’ success at identifying winter precipitation types to convey 
potential strengths and limitations of the available product suite 
 

Chapter 2 describes the data and RF methodology for training and validation. Chapter 3 

explains the validation process of the RF through internal testing, which will be the basis for the 

operational RF forecast. Chapter 4 discusses challenges and hurdles faced during the transition 

from a research RF to an operational RF, suggests a flowchart to streamline the process, and 

outlines the necessary collaboration to develop a successful ML operation product. In addition, a 

framework for applying ML to operational forecasting that can be translated to other locations 
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and weather types will be detailed. Chapter 5 analyzes the effectiveness of the operational 

probabilistic forecasts over the winters of 2020–2021, 2021–2022 and for select individual 

events. Chapter 6 summarizes the overall findings from the thesis as well as present suggestions 

for future work and expansion of the current operation products being made. 
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2. Data and Random Forest Methodology 

2.1.  Data Collection and Processing 

2.1.1. Random Forest Datasets 

2.1.1.1. Training Dataset Case List 

To successfully create a RF, the basis for the training dataset needs to be determined first. 

While there is not a complete archive for winter mixed precipitation events, there are several 

options to use as ground truth observations in a training dataset. One option is data from 

Automated Surface Observing Systems (ASOS), which is logical because ASOS stations have 

present weather sensors to detect precipitation types and some stations are augmented by trained 

observers who can change precipitation type reports as necessary (NOAA 1998). ASOS 

locations are primarily at airports, which means they are not representative of the complex 

terrain in a given region. This lack of representation is an important consideration as complex 

terrain, including mountains and valleys, can modify conditions locally and alter precipitation 

type. In addition to terrain challenges, prior research has indicated that non-augmented stations 

can have biases in identifying precipitation types like sleet (Reeves 2016).  

Another option for ground truth observations is the Meteorological Phenomena 

Identification Near the Ground (mPING; Elmore et al. 2014) dataset. mPING reports are 

precipitation type observations submitted by anyone with the mobile app on their phone or tablet; 

this means the reports can cover a much wider area than ASOS stations. One downside to 

mPING is that reports are reliant on people having and correctly using the application, so reports 

may be more sporadic than desired. In addition, the observer making the report may not have a 

background in meteorological observations and, while there are online resources to help 
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observers make decisions on precipitation type, there is no guarantee it will be reported 

accurately.  

A third option for ground truth observations is the Community Collaborative Rain, Hail, 

and Snow Network (CoCoRaHS; Cifelli et al. 2005), which is a volunteer network of trained 

observers who report daily precipitation reports across the country. All volunteers are trained 

how to report and measure different precipitation types. While these daily reports generally do 

not record the exact timing of precipitation like mPING, the notes section of these reports are 

filled with information about the time and precipitation type. However, since not all observer 

notes are the same, only certain reports are useful to identify precipitation timing.  

While there are many potentially useful options to develop a training dataset, CoCoRaHS 

reports were chosen to identify cases for the training dataset because they use trained and 

consistent observers, have a large spatial distribution, and collect reports of all precipitation 

types across a variety of terrain. The training dataset development began with CoCoRaHS 

reports between January 2017 and September 2020 for four precipitation types: rain, freezing 

rain, sleet, and snow. Once all the reports were obtained, the notes section of the reports were 

individually reviewed and subjectively verified using New York State Mesonet (NYSM; Brotzge 

et al. 2020) standard station weather data, NEXRAD radars, and Weather Prediction Center 

surface analyses. The verification process ensured the meteorological conditions around the 

report location were commensurate with the reported observation.  

Since CoCoRaHS reports do not have a specific precipitation type reporting section, the 

notes section of the reports was used to identify and categorize cases. Precipitation type, timing, 

and uncertainty were recorded for each individual report. To classify the reports, a qualitative 

coding classification was performed using a scale from 1 to 4, with 1 being the most informative 
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reports and 4 being the least informative reports (see Table 2.1 for examples). Specific times 

were the most helpful for determining event timing and most reports that had specific times were 

classified as Category 1 reports. Other reports used terms and phrases that indicated timing with 

less certainty, including phrases like “around 9 PM” or “in the early morning”. These notes 

provided a moderate amount of confidence and were classified as Category 2 or 3 reports, 

depending on the event type and the meteorological information available. Reports that gave no 

information regarding timing or contained irrelevant information were classified as Category 4 

reports.  

Classification 

Category 
CoCoRaHS Report Notes 

1 

• 10 min. snow flurry 8:20 a.m. yesterday. Freezing rain began around 7 p.m. 

Dusting snow around 9:30 p.m. Raining at obs. time - 32 degrees. Ice on 

tree branches but no wind or storm damage. Hard to estimate snow fall 

depth. 

• 27F and sleet at obs time. Little hard pellets, accumulation recorded under 

new snowfall. It's not clear when this started - during the night. 

2 

• Some sleet just before observation. Intermittent showers only. 

• 20F at obs time. Precip started as freezing rain and sleet about 3 pm then 

changed to snow. 

• Light snow began at 2pm and sleet began to mix in at 5pm to all sleet by 

6pm to all rain by 7pm. 

3 
• Sleet on and off overnight but only a trace on the ground 

• Mixed precipitation event, with snow mixing with sleet during the day. 

Temperatures rose in the evening, with snow changing to rain for several 

hours. 
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4 

• A combination of sleet, freezing rain and rain. 47 degrees this morning! 

• Measured 1.48 inches of rain before the change over to snow. There was 

some sleet and freezing rain in my collector, but could not get a proper 

measurement of that. Included in snow measurement. 

• Yesterday was a mostly grey day no precipitation. Temps were around the 

freezing point. Right now is cloudy with very little wind and warmer temps 

… Have not seen the crows yet - they usually are flying overhead by this 

time. I did see a rabbit this morning right before dawn and I heard a 

chickadee and saw a squirrel in a tree at 8 am. Wind advisory for tonight-

trash day is tomorrow :( 

Table 2.1. Examples of CoCoRaHS reports and the qualitative scoring used to categorize their 
usefulness for this study. Category 1 reports included specific information about time of 
precipitation while Category 4 reports included no information about the time of precipitation. 

 

To ensure the CoCoRaHS reports covered all of New York, the rain and snow reports 

were sorted by nearest NYSM site, and only those cases classified as Category 1 reports were 

kept due to the significantly larger volume of CoCoRaHS reports for rain and snow compared to 

freezing rain and sleet. The final training dataset includes 2617 viable training dataset cases: 750 

rain, 750 snow, 619 sleet, and 498 freezing rain.  

Once the final training dataset cases were selected, those cases need to be matched with 

meteorological data that would be used in the RF. This process is described more in section 2.2. 

The main data sources used to match with the training dataset cases were NYSM standard site 

data for surface observations, in-situ radiosonde data, NAM BUFKIT (BUFfalo toolKIT; 

Mahoney and Niziol 1997) profiles, and HRRR (High-Resolution Rapid Refresh; Benjamin et al. 

2016b) model data. 
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2.1.1.2. New York State Mesonet (NYSM) 

Surface observations in this study come from the NYSM (Brotzge et al. 2020), a high-

quality network of weather stations installed in New York State between 2015 and 2018. The 

network consists of 126 “standard” sites (used for this analysis) as well as a variety of 

specialized sub-networks including profiler, flux, and snow networks. Standard sites are evenly 

distributed throughout the state and measure temperature at two heights, relative humidity, 

redundant wind speed and direction measurements, snow depth, irradiance, precipitation, soil 

temperature and moisture at three depths, and surface pressure. Each site is also equipped with a 

camera. Data are collected, archived, and disseminated every five minutes and undergo a series 

of automatic and manual quality control procedures. A dedicated team of field technicians 

perform regular maintenance on all sites to ensure data quality. Table 2.2 details the variables 

from the NYSM that are used in the surface variable dataset. 

NYSM 5-min data NYSM Hourly Variables 

• 2-m temperature 

• 2-m relative humidity 

• Surface pressure 

• Solar irradiance 

• Precipitation (5-min 
total, daily total, 
intensity) 

• 10-m average wind speed 
and direction from sonic 
anemometer 

• 2-m temperature (minimum, maximum, 
average) 

• Relative humidity (minimum, maximum, 
average) 

• Station pressure (minimum, maximum, 
average) 

• Solar irradiance and total solar irradiance 

• Precipitation (hourly total, daily total, 
intensity) 

• 10-m average wind speed and direction from 
sonic anemometer 

Table 2.2. Variables from each NYSM dataset used in the RF. 
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2.1.1.3. Vertical Profile Datasets 

Complete profiles of the lower and middle troposphere are crucial for making 

precipitation type predictions. On the observational side, in-situ radiosonde data was used to 

complement the NYSM standard site data. Radiosonde data was collected from four sites in or 

near New York State at 0000 and 1200 UTC daily (Albany, Buffalo, and Upton in NY, and 

Maniwaki, QC). CoCoRaHS reports were matched to the nearest and most recent radiosonde 

launch (i.e., if a CoCoRaHS report was at 0600 UTC, the report would be matched to the 0000 

UTC launch). 

As described in Mahoney and Niziol (1997), BUFKIT profiles were used to create a 

dataset of forecast vertical profiles. The NAM nested domain (NAMNEST) was selected for 

these profiles as it offered the highest resolution of the available models that have BUFKIT 

archives throughout the period of study. The NAMNEST is a 3-km grid spacing (4-km prior to 

March 2017, representing up to two months of CoCoRaHS reports) nested domain of the larger 

12-km NAM. The model is initialized every six hours with hourly model output and 60 vertical 

levels, with 27 levels in the lowest 3 km starting at 20 m. The BUFKIT program generates 

vertical profiles from model forecast data that have the same data structure as radiosondes. The 

CoCoRaHS reports were matched to the most recent NAMNEST profile, so a report at 1000 

UTC would be matched to forecast hour 4 from the 0600 UTC NAMNEST simulation.  
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Raw Variables (C1) 
Original Calculated 

Variables (C2) 

New Calculated Variables 

(C3) 

• Temperature  
• Pressure  
• Dew point  
• Wind speed and 
direction  
• Geopotential 
height  
• Wet bulb 
temperature 
• Relative 
humidity  

• Temperature difference 
between standard pressure 
levels 
• Precipitable water 
vapor difference between 
standard pressure levels 
• Wind speed and 
direction difference 
between standard pressure 
levels 
• Critical thickness (sea 
level –850 hPa and sea 
level–500 hPa)  

• Max wet bulb 
Temperature 925–700 hPa  
• Positive and negative 
areas and ratio of positive to 
negative (Bourgouin 2000)  
• Critical thickness- (850–
700 hPa and 700–500 hPa)  
• Mean relative humidity 
sea level–500 hPa  
• Dew point depression  
• Mean temperature- (sea 
level–850 hPa and sea level–
700 hPa)  
• Minimum temperature 
sea level–850 hPa  
• Maximum temperature 
850–700 hPa  

Table 2.3. Variables used in the RF from the NAMNEST and in-situ radiosonde vertical profile 
datasets. Raw Variables (C1) are at standard pressure levels including the surface, 925, 850, 700, 
and 500 hPa). All calculated variables (C2, C3) were found between standard pressure levels 
unless otherwise noted. 
 

The NYSM, in-situ radiosondes, and NAMNEST datasets used in the RF combine raw 

variables with calculated variables based on the raw data available from in-situ radiosonde data 

or model output. NYSM data was supplemented with derived sea-level pressure using existing 

NYSM data and metadata. For radiosonde and NAMNEST profiles, numerous variables were 

calculated to give additional information, including wet-bulb temperature, precipitable water 

vapor, and calculations of raw variables between standard pressure levels. Table 2.3 details all 

the variables used in the vertical profile datasets (in-situ radiosondes and NAMNEST profiles).   

As described in Benjamin et al. (2016b), the HRRR is a 3-km grid spacing forecast model 

that is initialized every hour with hourly model output and 51 vertical levels. While BUFKIT 
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profiles are available for the HRRR, they do not exist for the entirety of the training dataset 

cases. Instead, information about the lower and middle troposphere from HRRR was collected on 

a 40-km grid across New York, which generates greater than three times more vertical profiles 

for New York (107 HRRR vertical soundings vs 32 NAMNEST soundings). Since the HRRR is 

initialized every hour, CoCoRaHS reports were matched to the most recent HRRR run: a report 

at 1000 UTC would be matched to forecast hour 1 from the 0900 UTC HRRR simulation.  

HRRR pressure files were used to match with the training dataset cases as well. These 

pressure files contain variables at every pressure level from 1000 hPa to 50 hPa in 25-hPa 

increments. In addition to the variables at pressure levels, other variables, including ones located 

at the surface, sub surface, and upper atmosphere, were available. Table 2.4 displays the different 

vertical data combinations for the HRRR. 
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All HRRR Variables (H1) 
Reduced HRRR Variables 

(H2) 

Simplified HRRR 

Variables (H3) 

• Temperature  
• Dew point  
• Wind speed and 

direction (u, v 
components, and 
magnitude and direction) 

• Vertical velocity 
• Geopotential height  
• Wet bulb temperature 
• Relative humidity 
• 2-m temperature 
• 2-m potential 

temperature 
• 2-m wet bulb 

temperature 
• 2-m dewpoint 
• 10-m wind speed and 

direction (u, v 
components, and 
magnitude and direction) 

• Max wet bulb 
Temperature 925–700 
hPa  

• Critical thickness (975 
hPa–850 hPa, 975 hPa–
700 hPa and 850 hPa–
700 hPa)  

• Temperature difference 
between standard 
pressure levels 

• Precipitable water 
vapor difference between 
standard pressure levels 

• Wind speed and 
direction difference 
between standard 
pressure levels 

• Mean relative humidity 
sea level–700 hPa  

• Dew point 
depression between 
standard pressure levels 

• Temperature  
• Dew point  
• Wind speed and 

direction  
• Vertical velocity 
• Geopotential height  
• Wet bulb 

temperature 
• Relative humidity 
• 2-m temperature 
• 2-m potential 

temperature 
• 2-m wet bulb 

temperature 
• 2-m dewpoint 
• 10-m wind speed 

and direction 
• Max wet bulb 

Temperature 925–
700 hPa  

• Critical thickness 
(975 hPa–850 hPa, 
975 hPa–700 hPa 
and 850 hPa–700 
hPa)  

• Temperature 
difference between 
standard pressure 
levels 

• Precipitable water 
vapor difference 
between standard 
pressure levels 

• Wind speed and 
direction difference 
between standard 
pressure levels 

• Mean relative 
humidity sea level–
700 hPa  

• Dew point 
depression between 

• Temperature  
• Dew point  
• Wind speed and 

direction  
• Vertical velocity 
• Geopotential 

height  
• Wet bulb 

temperature 
• Relative humidity 
• 2-m temperature 
• 2-m potential 

temperature 
• 2-m wet bulb 

temperature 
• 2-m dewpoint 
• 10-m wind speed 

and direction 
• Max wet bulb 

temperature 925–
700 hPa  

• Critical thickness 
(975 hPa–850 hPa, 
975 hPa–700 hPa 
and 850 hPa–700 
hPa)  

• Mean relative 
humidity sea 
level–700 hPa  

• Dew point 
depression 
between standard 
pressure levels 

• Mean 
temperature- (sea 
level–850 hPa and 
sea level–700 
hPa)  

• Minimum 
temperature sea 
level–850 hPa  
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• Mean temperature (sea 
level–850 hPa and sea 
level–700 hPa)  

• Minimum temperature 
sea level–850 hPa  

• Maximum temperature 
850–700 hPa  

• Pressure at highest 
freezing level 

• Height at highest 
freezing level 

• RH at highest freezing 
level 

• Pressure at 0°C isotherm 
• Height at 0°C isotherm 
• RH at 0°C isotherm 
• Precipitable water vapor 

in entire atmospheric 
column 

standard pressure 
levels 

• Mean temperature 
(sea level–850 hPa 
and sea level–700 
hPa)  

• Minimum 
temperature sea 
level–850 hPa  

• Maximum 
temperature 850–
700 hPa  

• Height at highest 
freezing level 

• RH at highest 
freezing level 

• Height at 0°C 
Isotherm 

• RH at 0°C isotherm 
• Precipitable water 

vapor in entire 
atmospheric column 

• Maximum 
temperature 850–
700 hPa  

• Pressure at highest 
freezing level 

• Height at highest 
freezing level 

• RH at highest 
freezing level 

• Pressure at 0°C 
isotherm 

• Height at 0°C 
isotherm 

• RH at 0°C 
isotherm 

• Precipitable water 
vapor in entire 
atmospheric 
column 

Table 2.4. Variables used in the RF from the HRRR vertical profile datasets. Variables are at all 
pressure levels between 975 and 700 hPa unless otherwise noted. The number of variables in 
Simplified HRRR Variables (H3) is significantly reduced compared to the other two columns (H1, 
H2) because the italicized variables are only kept at 700, 850, 925, 950, and 975 hPa. 

2.1.2. Verification Datasets 

To verify the results of the RF output, a similar argument to Section 2.1.1.1. can be made. 

ASOS, mPING, and CoCoRaHS reports are potential options to use as ground truth for 

verification because they all give precipitation type reports with the associated timing. One 

difference between verification and training dataset development is that more reports across a 

variety of locations will give more confidence to the verification results. Another consideration is 

how other studies have verified winter precipitation forecasts because, if the same verification 

report sources are used, comparison can be made between studies and forecasting methods. For 

these reasons, ASOS and mPING reports were used to verify the RF. Combined, they provide 
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good spatial coverage with a high enough volume to produce multiple reports from across areas 

of interest during precipitation events. 

2.2.  Random Forest Development and Configuration 

RFs are a type of supervised ML consisting of an ensemble of individual decision trees 

trained on an example set of data. The RF is then given a separate, testing dataset and each tree 

votes for the most popular class based on the predictors it was given (Breiman 2001; McGovern 

et al. 2017). The relative frequencies of the votes in the ensemble of decision trees create the 

probabilistic forecasts for each class being predicted by the RF (Herman and Schumacher 

2018a). A higher number of trees in the RF increases the diversity of the decision trees because 

of the different combinations of data used to train and make predictions (McGovern et al. 2017; 

Hill et al. 2020).  

Looking at the internal process for one decision tree in the RF, the trained decision tree 

processes the testing data by making decisions at nodes (points where the testing data is 

compared to the training data for a specific variable) and, once split, the separated testing data 

feeds into different branches that go to another node. This process occurs continuously until the 

testing data has been totally separated into individual classes or there are too few cases left to 

split (Hill et al. 2020). At this point, a vote is made for the most popular class by the tree. In the 

case of the different winter precipitation types, the RF is attempting to isolate the four classes of 

precipitation (rain, freezing rain, sleet, and snow) in the testing data.   

Once all the observed and simulated data was collected, processed, and matched with the 

CoCoRaHS reports, the reports and associated data were combined to create different, unique 

data combinations with four distinct datasets: NYSM and upper-air data, NAMNEST vertical 

profiles, HRRR vertical profiles, and a NYSM surface observation with HRRR vertical profiles. 
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These combinations were tested in the RF to determine what would be the final training data for 

the operational RF.  

The RF was then configured using a significant hyperparameter tuning process (the 

process of determining the optimal combination of parameters that control how the RF is 

structured), with cross validation to thoroughly test the setup. Initial testing used 500 decisions 

trees and kept the default RF options from the python scikit-learn package (Version 1.1.2, 

Pedregosa et al. 2011). Once the best datasets were selected, through an examination of which 

had the best internal statistics (accuracy and F1 scores), the hyperparameter tuning process was 

complete. A random grid search with 10-fold cross validation was conducted with 150 iterations, 

which was done across a wide range of values for all the parameters. The process was run five 

times to get multiple grid outputs; since there were a range of results, a full grid search with 10-

fold cross validation was completed over the narrower range of options from the random search. 

The result from that search is the parameter configuration that was used in the full RF (Table 

2.5).   

Parameter Value 

Number of decision trees (N) 650 

Minimum number of samples to split at a node 

(min_samples_split) 
10 

Minimum number of samples to be at a leaf node 

(min_samples_leaf) 
1 

Number of features to consider for best split 

(max_features) 
‘log2’ 

Maximum depth of a decision tree (max_depth) 25 

Bootstrap samples (bootstrap) ‘True’ 

Table 2.5. Random forest parameter configuration determined from the hyperparameter tuning 
process.  
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2.3.  Random Forest Evaluation Methodology 

2.3.1. Evaluation of Internal Training Datasets  

After conducting the random grid and full grid searches, a full internal testing of the RF 

was performed on the training dataset to evaluate the RF performance with winter precipitation 

type classification of past events. This testing included a random split of the original training 

dataset into subsets creating a training dataset (75% of original training dataset) and a testing 

dataset (25% of original training dataset). Since the number of CoCoRaHS reports were not 

equal, these datasets were split such that the proportion of each type of precipitation report was 

equal in both datasets. This internal testing considered four key metrics: accuracy, precision, 

recall, and F1 Score (Fig. 2.1). Accuracy indicated the overall number of correct predictions out 

of the total predictions of the RF; precision was the number of correct predictions divided by the 

number of total predictions for that precipitation type; recall was how often the correct prediction 

occurs in the RF; and F1 Score was the combination of precision and recall and represents how 

well the RF is predicting that precipitation type. Section 3 focuses on accuracy and F1 Scores 

because they represent the overall RF success and how well individual precipitation types were 

predicted. These metrics were calculated for each run of the RF and the numbers described later 

were averaged over 50 independent RF runs.   
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Fig. 2.1. RF evaluation metrics and a sample confusion matrix for sleet and freezing rain with the 
prediction of sleet set as the true positive. Evaluation metrics can be calculated from the case 
distribution in the confusion matrix, which shows the proportions of correct and incorrect 
predictions.  

 

Confusion matrices were used to evaluate the outcomes from the RF predictions (Figs. 

2.1). The diagonal from the upper-left to the bottom-right corner of a confusion matrix indicates 

the correct predictions for each precipitation type (between 0 and 1, with 1 equal to 100%). The 

off-diagonal values are important when evaluating the RF as they can elucidate the scenarios 

when the RF made incorrect predictions, thereby allowing for corrections and necessary changes 

to the RF.   

Chapter 3 will highlight which features (data variables) were most important in the 

running and decision-making of the RF. To determine feature importance, the method of 

impurity importance as described in Breiman (2001) and McGovern et al. (2019) was used. 

Importance is determined using this method by how well a decision at a node isolates the known 

training cases in the RF. In the example of winter precipitation types, the more a decision at a 

node splits one precipitation type out from the rest, the more important it is as a feature. 

Examining the feature importance can play a large role in understanding the decision-making 

process of the RF.  
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2.3.2. Evaluation of Operational Forecasts 

To evaluate the operational forecasts made by the RF, forecasts from 1 November to 31 

March were compared to ASOS and mPING reports at each of the valid forecast times. The 

ASOS and mPING reports were compared to the nearest RF forecast location, so long as there 

was a RF forecast point within 40-km of the observation. Only the NYSM and upper-air, NYSM 

and upper-air reduced (described in Section 4.2.1), and NAMNEST products were available to 

be evaluated for the winters of 2020 k–2021 and 2021–2022, as the HRRR, and HRRR and 

NYSM, products were only developed in time for the winter of 2022–2023.  

To match the ASOS and mPING reports with the RF forecast, the valid time of each 

individual forecast issued by the RF was used to determine the reports for comparison. Because 

ASOS sites report precipitation from present weather sensors at a variety of time scales, 

generally at either 1- or 5-minintervals, only ASOS reports at the valid forecast were used to 

verify RF forecasts. ASOS present weather sensors have a variety of codes for the weather that is 

occurring. These codes were simplified and matched to fit the four categories for which the RF 

makes predictions. If there were multiple types of precipitation occurring, the report was 

duplicated; therefore, only one precipitation type would be associated with each type of report. 

mPING reports went through a similar selection process as the ASOS reports, but there 

are some important differences. mPING reports were selected by locating all reports that were 30 

min before or after the valid forecast time. For a forecast valid at 1000 UTC, mPING reports 

from 0930 to 1030 UTC were used to verify the RF output. This window is due to there being no 

mandatory reporting window for mPING reports, unlike ASOS and helped to collect more 

reports at the valid forecast time while still giving an accurate depiction of what precipitation 

was occurring. mPING reports also can contain multiple types of precipitation occurring at the 
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same time; these reports were also duplicated, so only one precipitation type would be associated 

with each type of report. 

After the reports were matched for each valid forecast time, maps and confusion matrices 

were made to display the comparison between the ASOS and mPING observations, and the 

random forest predictions (Figs. 2.2 and 2.3). The maps allow forecasters to see in which areas 

the RF did the best and worst. The confusion matrices illustrate numerically where the correct 

and incorrect predictions end up. Since the confusion matrices are also broken down by 

verification report, any potential bias in the observations can be examined. The confusion 

matrices for individual forecasts can be combined to make event or whole winter season 

confusion matrices.  

It is important to note that the forecast guidance must be evaluated both deterministically 

and probabilistically. Deterministic evaluation, e.g., did the RF make the correct precipitation 

type forecast, can be done by skill scores and confusion matrices. Probabilistic evaluation, e.g., 

what do the RF output probabilities mean for forecasters’ confidence in the forecast guidance, 

can be done by the comparing observations to the nearest RF output probability. Chapter 5 will 

discuss this in more detail as well as the successes and issues with the NYSM and upper-air, 

NYSM and upper-air reduced, and NAMNEST forecast products both over the past two winters 

and for specific case studies. 
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Fig. 2.2. Map of RF forecast from the 1800 UTC NAMNEST model run at forecast hour five on 3 
February 2022 with mPING (triangles) and ASOS (stars) observations overlayed. Each forecast 
point and observation are color coded (color key underneath plot).  
 

 
Fig. 2.3. Confusion matrix evaluating the RF forecast from the 1800 UTC NAMNEST model run 
at forecast hour five on 3 February 2022. The matrices are split up by observation data source 
(ASOS or mPING) as well as having a total matrix (ASOS+mPING). Darker red colors indicate 
more reports in that box.  
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3. Random Forest Internal Evaluation 

3.1. NYSM and Upper-air  

Internal testing of the RF is an integral step to evaluate the impact of the different 

combinations of input data and variables (features) available to train the RF, which can be done 

by making predictions based on the subset of testing data that was not included when training the 

RF. Starting with the NYSM and upper-air data, all combinations of data were considered to 

identify which variables would be most effective, including testing different combinations of 

variables such as only raw data variables, taken directly from the observations or radiosondes, or 

only calculated variables, calculated from the raw observations or radiosonde data (Table 2.3 and 

Fig. 3.1). In evaluating training datasets, it was important to not only consider overall accuracy 

(denoted by the black circles), but the individual F1 scores for different precipitation types 

because high accuracies in certain categories can mask other low accuracies. Fig. 3.1 shows that 

the overall accuracy and F1 scores changed when considering different combinations of data, 

which points to the importance of the dataset in the RF algorithm. The most accurate data 

combination overall was the NYSM 5-min and hourly data combined with observed soundings 

(Table 3.1 and Figure 3.1). This combination aligned with the highest F1 scores for the mixed 

precipitation categories of sleet and freezing rain. While F1 scores around 55% and 65% are not 

ideal (a higher F1 score indicates that the RF is identifying a majority of the training cases 

correctly), these values were nevertheless promising. The F1 scores were especially encouraging 

considering the challenge of forecasting mixed precipitation as noted by the range of POD values 

from Reeves et al. (2014), with the caveat that these values represented different metrics for 

evaluating the datasets.  
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Dataset Description  Abbreviations  

NWS Buffalo, Albany, and Upton radiosondes   Original Soundings  

NWS Buffalo, Albany, and Upton and Maniwaki, 
Quebec radiosondes  Updated Soundings  

NYSM hourly-averaged surface variables with raw 
and original calculated variables from original 

soundings (Table 2.3 C1,C2) 
HAVG_RCO  

NYSM hourly-averaged surface variables with raw 
from original soundings (Table 2.3 C1) HAVG_RO  

NYSM hourly-averaged surface variables with 
original calculated variables from original 

soundings (Table 2.3 C2) 
HAVG_CO  

NYSM 5-min surface observations with raw and 
original calculated variables from original 

soundings (Table 2.3 C1,C2) 
OBS5_RCO  

NYSM 5-min surface observations with raw 
variables from original soundings (Table 2.3 C1) OBS5_RO  

NYSM 5-min surface observations with original 
calculated variables from original soundings (Table 

2.3 C2) 
OBS5_CO  

All NYSM surface data with raw and original 
calculated variables from original soundings (Table 

2.3 C1,C2) 
ALL_RCO  

All NYSM surface data with raw variables from 
original soundings (Table 2.3 C1) ALL_RO  

All NYSM surface data with original calculated 
variables from original soundings (Table 2.3 C2) ALL_CO  

NAMNEST soundings with raw and original 
calculated variables (Table 2.3 C1,C2) NAM_RCO  

NAMNEST soundings with raw variables (Table 
2.3 C1) NAM_RO  

NAMNEST soundings with original calculated 
variables (Table 2.3 C2) NAM_CO  

NAMNEST soundings with raw and all calculated 
variables (Table 2.3 C1,C2,C3) NAM_RCN  

NAMNEST soundings with raw variables (Table 
2.3 C1) NAM_RN  
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NAMNEST soundings with all calculated variables 
(Table 2.3 C2,C3) NAM_CN  

All NYSM surface data with raw and all calculated 
variables from updated soundings (Table 2.3 

C1,C2,C3) 
ALL_RCN  

All NYSM surface data with raw variables from 
updated soundings (Table 2.3 C1) ALL_RN  

All NYSM surface data with all calculated 
variables from updated soundings (Table 2.3 

C2,C3) 
ALL_CN  

All NYSM surface data with raw and all calculated 
variables from NAMNEST soundings (Table 2.3 

C1,C2,C3) 
ALL_NAM_RCN  

All NYSM surface data with raw variables from 
NAMNEST soundings (Table 2.3 C1) ALL_NAM_RN  

All NYSM surface data with all calculated 
variables from NAMNEST soundings (Table 2.3 

C2,C3) 
ALL_NAM_CN  

Table 3.1. Description of random forest dataset and abbreviations. Descriptions indicate dataset 
(NYSM and NAMNEST), sounding location (original, updated, NAMNEST) and type of sounding 
variables (raw (C1) and calculated, original (C2), and new (C3)). Sounding variables are described 
in Table 2.3 and NYSM variables are described in Table 2.2. 
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Fig. 3.1. Accuracy and F1 scores for different combinations of NYSM and upper-air data. The 
dataset abbreviations are in Table 3.1. Dashed lines represent divisions between different datasets. 
The left third represents the dataset built from hourly NYSM and upper-air data. The middle third 
represents the dataset built from 5-min NYSM and upper-air data. The right third represents the 
dataset built from hourly and 5-min NYSM, and upper-air data. The black circles represent the 
overall accuracy of the RF. The colored shapes correspond to the F1 scores of the different 
precipitation types (purple hexagons for sleet, red diamonds for freezing rain, green squares for 
rain, and blue triangles for snow). 

Fig. 3.2 shows the confusion matrix from a test run of the RF with the ALL_RO training 

data (Table 3.1), one of the highest performing RF runs of the NYSM and upper-air data. The F1 

scores from Fig. 3.1 were very similar to the fraction of correct predictions for sleet (0.55 

correct) and freezing rain (0.65 correct) in Fig. 3.2. An interesting feature of these RF runs was 

that the algorithm’s values of correct predictions for snow (0.92) and rain (0.87) events were 

similar to the combined confusion matrix value when predicting a mixed precipitation type (sleet 

or freezing rain) for a true freezing rain or sleet event (0.87 for freezing rain and 0.78 for sleet, 
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respectively). This result suggested the RF can more easily recognize three major types of 

precipitation: rain, mixed precipitation, and snow. 

 

Fig. 3.2. Confusion matrix of values averaged over 50 independent RF runs for the ALL_RO 
NYSM and upper-air dataset (Table 3.1).  

3.2. NAMNEST 

A similar method of evaluation was followed for the NAMNEST dataset. There was no 

model-derived precipitation type in the training dataset, so the RF created a precipitation type 

from meteorological variables only. Two combinations of NAMNEST data were generated: the 

original datasets were the first attempt to pull model data to predict the winter mixed 

precipitation events and the new datasets were an attempt to improve the original dataset, which 

only contained the variables in Table 2.3 C1 and C2, by adding new calculated variables, found 

in Table 2.3 C3 to the original dataset. The new datasets were a clear improvement over the 

original datasets with a roughly 5% jump in overall accuracy (Fig. 3.3), which reinforced the 

premise that different variable combinations in the dataset can impact the RF. Additionally, the 

F1 scores for all four types of precipitation increased for runs utilizing the new datasets. Several 
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of the new calculated variables appeared in the top 10 features from runs of the NAM_RCN 

dataset (Fig. 3.4): positive area (defined as the area between the 0°C isotherm and environmental 

temperature in a vertical temperature profile; Bourgouin 2000), maximum wet-bulb temperature 

between 925–700 hPa, minimum temperature between the surface and 850 hPa, average 

temperature between the surface and 850 hPa, and maximum temperature between 850 hPa and 

700 hPa. This result verified that the new calculated variables (Table 2.3 C3) that were added led 

to the difference in the higher scores that were seen. 

 

Fig. 3.3. Accuracy and F1 scores for different combinations of NAMNEST data. The dataset 
abbreviations are in Table 3.1. Dashed lines represent divisions between different datasets. The 
left half represents the dataset built from NAMNEST data with the raw and original calculated 
variables (Table 2.3 C1 and C2). The right half represents the dataset built from NAMNEST data 
with the raw and original calculated variables plus the new calculated variables (Table 2.3 C1, C2, 
and C3). 
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Fig. 3.4. Top 10 most important variables from RF runs of new NAM_RCN dataset. The values 
of importance have been averaged over 50 runs. The higher the value the more important the 
variable. 

From a meteorological perspective, these new calculated variables tended to better 

quantify how temperature varied between mandatory pressure levels and more clearly captured 

the vertical temperature profile in the lowest part of the atmosphere. These variables were 

selected specifically because they have been identified in the literature (Ramer 1993; Baldwin et 

al. 1994; Bourgouin 2000; Manikin 2005; Benjamin et al. 2016a) as important in determining 

mixed precipitation type, and their usefulness was seen by an increase in F1 scores for sleet and 

freezing rain (Fig. 3.3). While improvement was made by incorporating variables that gave a 

better sense of the entire vertical temperature profile, there were challenges with using different 

datasets for vertical temperature profiles. One challenge with radiosonde and NAMNEST 

profiles was that the pressure levels were not consistent throughout due to no two soundings ever 

being the same, which made it difficult to get values at consistent locations aside from 

mandatory pressure levels.  
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Since the new calculated variables (Table 2.3 C3) were successful in improving the 

NAMNEST RF, those same variables were added into the original NYSM and radiosonde 

datasets to see if the same improvement would occur. Fig. 3.5 compares the best three original 

NYSM runs (left third) to NYSM runs with the new calculated variables added into the datasets 

(middle third). Additionally, combining the NYSM 5-min and hourly variables with the 

NAMNEST profiles (right third) was tested to determine whether increasing the spatial density 

of vertical profiles would improve the RF. The new calculated variables added to the NYSM and 

upper-air profiles caused a slight decrease in overall accuracy. In particular, the sleet and 

freezing rain F1 scores decreased by 6–8% and 3–4%, respectively. This decrease was likely 

associated with the new calculated variables adding conflict in the decision-making process of 

the RF leading to incorrect predictions. Conflicting decisions occur because the new calculated 

variables in the dataset may end up creating decisions that are at odds with each other about how 

to split the dataset. Without the new calculated variables, these decisions were previously in 

agreement with each other.   
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Fig. 3.5. Accuracy and F1 scores for different combinations of NYSM, NAMNEST, and upper-air 
data. The dataset abbreviations are in Table 3.1. Dashed lines represent divisions between different 
datasets. The left third represents the dataset built from hourly and 5-min NYSM and upper-air 
data with raw and original calculated variables (Table 2.3 C1 and C2). The middle third represents 
the dataset built from hourly and 5-min NYSM and upper-air data with raw and original calculated 
variables plus the new calculated variables (Table 2.3 C1, C2, and C3). The right third represents 
the dataset built from hourly and 5-min NYSM and NAMNEST data raw and original calculated 
variables plus the new calculated variables (Table 2.3 C1, C2, and C3). 

 

 When testing whether increased spatial resolution of the vertical profiles would increase 

accuracy, one would expect the RF to do better because more vertical sampling points of the 

atmosphere should create more representative data. This was not the case, however, with the 

NYSM and NAMNEST datasets. The decrease connected to these results was most likely 

because there was an overlap in the variables in the combined datasets. Also, the surface data 

could conflict or not be meteorologically consistent with the NAMNEST data due to the 

geographical locations of the datapoints. Pairing surface data from a location at significantly 
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higher elevation than a NAMNEST profile site can cause a discrepancy. While these results 

showed a decrease in performance, it prompted a response to conduct future experimentation 

with different combinations of the NYSM and NAMNEST profile data to find the best possible 

combination. This point was a key takeaway from the process of testing the RF and determining 

the best possible dataset because each type and combination of data needs to be treated 

differently. 

3.3. HRRR 

Similar to the NYSM and upper-air (Section 3.1) and NAMNEST (Section 3.2), the 

matched training dataset cases with the HRRR vertical profile data was put through internal 

testing to select the best training dataset. Along the same lines as the NAMNEST, there was no 

model-derived precipitation type in the training dataset, which limited the variables to be 

meteorological only. Since the HRRR products were develop after the NAMNEST and NYSM 

and upper-air products had been operational and had verification done on them, the HRRR 

dataset evaluation did not focus on changing the composition of raw and calculated variables. 

Instead, the focus was on selecting the best combination of variables possible now that more 

information was available because the HRRR data had consistent pressure levels, meaning that 

there were significantly more variables available in the HRRR than in the NAMNEST.  

The left half of Fig. 3.6 shows the three different HRRR datasets that were built and their 

accuracy and F1 scores. The three datasets decreased in total number of variables from left to 

right; this decrease in total variables was accompanied by a general increase across accuracy and 

F1 scores. While this may seem counter intuitive because more data should mean more 

information about what is occurring, one thing that can impact the success of a RF is the 

relatedness of its variables. If there are similar variables that capture the same information, 
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overlaps in the dataset can occur that can add conflict to the RF’s decision-making process. 

Essentially, the extra variables create extra noise in the random forest; hence, the simplified 

dataset, HRRR_simp, was most effective due to no overlapping variables and having a total 

number of variables more similar to the NAMNEST datasets. One way to reduce the number of 

variables in a dataset is by doing PCA, as mentioned in Section 1.3. This process reduces the 

number of variables in the dataset by identifying relationships between variables; one downside 

to PCA is that the set of reduced variables was not as intuitive to understand as the non-reduced 

set of variables. Thus, this technique was not applied to the data used in the random forest. 

 

Fig. 3.6. Accuracy and F1 scores for different combinations of HRRR and 5-min NYSM data. The 
HRRR dataset abbreviations are in Table 2.4. Dashed lines represent divisions between different 
datasets. The left half represents the dataset built from only HRRR data (Table 2.4 H1, H2, and 
H3). The right half represents the dataset built from HRRR data (Table 2.4 H1, H2, and H3) and 
5-minute NYSM data. 
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The right half of Fig. 3.6 shows the same three combinations of HRRR datasets to the 

left, except they have been combined with surface observations in the form of 5-min NYSM 

data. The NYSM data has replaced all surface information (2-m and 10-m variables) from the 

HRRR.  While there was no definitive pattern as compared to the left half of Fig. 3.6, there was 

still interesting differences between the datasets on the right half. The dataset that was selected as 

the final training dataset was HRRR_NYSM_red; this was because the accuracy was the highest, 

just higher than HRRR_NYSM_simp, and its F1 scores for freezing rain and sleet were the best 

pair. It would be remiss to not note that the F1 score for freezing rain in the HRRR_NYSM_simp 

dataset was higher, but the sleet F1 score was lower. It was important to not sacrifice the F1 

score of sleet for slight improvements in freezing rain considering how difficult they both are to 

forecast. In working with the HRRR data, there was an increase in the amount of information 

that the RF was exposed to. This increase in information caused for increased understanding of 

what information was helpful and harmful to the RF besides that data sources need to be treated 

independently from each other. 
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4. Research to Operations Framework and Transition 

Developing a functioning ML algorithm is an intensive process and can be time 

consuming to properly configure and test. Once configured and tested, it is straightforward to test 

on datasets that already exist. The challenge occurs when trying to apply the algorithm as a real-

time tool to make forecasts. Transitioning this algorithm from research to operations was a 

multistep process with potential issues associated with real-time processing of incoming data 

from various sources, formatting the datasets, and runtime issues. This section describes the 

transition of this research-oriented ML algorithm to an operational setting as well as the 

operational products available to forecasters. 

4.1. Operational Framework and Challenges 

The path for transitioning this RF from research to operations is represented in the flow 

chart in Fig. 4.1. Chapters 2 and 3 detailed the process of preparing and testing the training 

dataset until the best dataset was determined (Fig. 4.1, steps 1–4). The next step in the transition 

to an operational RF was creating the testing dataset. Since the process of collecting CoCoRaHS 

reports as training cases was qualitative, they did not make sense to use in real-time due to the 

quality control needed and their limited spatial distribution. As an alternative, a 20-km grid of 

New York State was generated to create synthetic locations for which predictions of precipitation 

type can be generated. These points were matched with NYSM, upper-air, NAMNEST, and 

HRRR profile locations using the same process as the CoCoRaHS reports (Fig. 4.1, step 5; Fig. 

4.2). Each time the RF was run to make a prediction, the incoming data was compiled, cleaned to 

make sure there is no missing data, and prepared to conform to the training dataset used in the 

RF. The processing of the incoming data was an essential step because the RF will not run if the 

incoming dataset did not match the training dataset or there were missing values.  (Fig. 4.1, step 
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6). If reliable data sources were not available, it was difficult to produce consistent forecast 

guidance for end users. For example, if radiosondes were not launched or if other data sources 

were not uploaded with consistency, it can be difficult to process and make a complete prediction 

in a specific window of time. This lack of data may occur from computer/power outage issues or 

more significant issues like helium shortages for radiosondes (e.g., NOAA NWS 2022a). Once 

the incoming data in the testing dataset matched the training dataset (Fig. 4.1, step 7), the RF can 

be run. The outputs of the RF were probabilistic predictions of each precipitation type at each 

location in the testing dataset and can be processed to create maps, graphics, or tables to be 

displayed in an operational setting (Fig. 4.1, steps 8–9).  

 

Fig. 4.1. Flowchart of the methodology to create an operational RF for predicting winter mixed 
precipitation types. This flowchart can be generalized for other ML algorithms and meteorological 
events. 
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Fig. 4.2. Map of New York displaying locations of NYSM (orange circles) and NAMNEST profile 
sites (blue triangles). The gray squares denote 20-km grid spacing of the RF prediction locations.  

4.2. Operational Forecasting Tool 

4.2.1. Product Development 

One important issue that occurred throughout the development of the RF was the 

continual reminder that the RF output had to be displayed in an effective manner. This process 

was not just to limit how numbers were displayed on a map but was expanded to what products 

were being made and when can be made based on the data sources available. These 
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considerations were impactful because if a product takes 1 hour or more to be made, but is meant 

to be a nowcasting tool, it limits the usefulness of the tool. This subsection will focus on the 

product development timeline for all products available on the operational website. 

The initial two groups of datasets that were the focus of the RF development were the 

NYSM and upper air, and the NAMNEST. This allowed the RF to be implemented on 

observational datasets that could be used for nowcasting and a model-based dataset that could 

allow precipitation forecasts to be made in the future. When the products for an operational 

website were being developed, it was key that the products being made for both the NYSM and 

upper air, and the NAMNEST, could be used for other datasets as well. Because of this, six base 

products were developed that include probabilities for precipitation types as well as radar or 

model reflectivity overlayed. The base six products are described in more detail in section 4.2.2. 

Going into the of winter 2021–2022, the available products included nowcasts by the NYSM and 

upper air data, and forecasts by the NAMNEST data, which made predictions for 10 forecast 

hours, including forecast hour 0, thereby giving operational forecasters up to 5 hours of lead time 

since operational forecasts became available in forecast hour 4.  

During the winter of 2021–2022, the focus was on how well the NYSM and upper air, 

and NAMNEST, RF models forecast precipitation type and what were the next plausible 

combinations or data sources that should be implemented. No active verification occurred during 

this period, but both RF models’ operational products were put through the eye test to determine 

reasonableness of the probabilities and precipitation types that were being displayed. One issue 

discovered was that the NYSM and upper-air RF model had an unrealistically large number of 

sleet predictions (discussed more in Chapter 5). This issue was so prevalent a mid-winter 

assessment occurred to determine how this RF model could be improved. After examining the 
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key variables in the dataset, it was clear that the temperature range of the radiosondes was not as 

representative as it should be due to issues in the spatial and temporal resolution of the data. The 

spatial resolution at which the radiosondes were being used to make predictions was identified as 

being too large. For example, the NWS Albany radiosonde was being used from the Canadian 

border, throughout the entirety of the Adirondacks, and as far south as Poughkeepsie and 

Newburgh. Temporally, the radiosondes were being used for about 12 hours, so by the end of 

this period the radiosonde profile may not accurately depict the current vertical profile. This 

prompted the development of the NYSM and upper-air reduced RF model. The NYSM and 

upper-air reduced RF model used the same data sources as the original NYSM and upper-air, 

except it only combines 5-min NYSM surface data with the upper-air radiosondes. In addition, 

the area in which predictions were being made was limited spatially to within a 100-km radius of 

the launch site and temporally to within 4 h of launch time (0000 UTC to 0400 UTC or 1200 

UTC to 1600 UTC). The results of the NYSM and upper-air reduced RF model will be discussed 

in Chapter 5. 

In preparation for the winter of 2022–2023, focus was on what new data sources and 

upgrades could be incorporated into the operational website. For new data sources, the HRRR 

was added into the operational website because the spatial resolution of the HRRR was 

significantly better compared to the NAMNEST (Fig 4.3). This attempt to increase the spatial 

resolution came from the results of the NAMNEST (see Chapter 5) over the previous two 

winters and feedback from NWS Albany. The HRRR contains 107 vertical sounding locations, 

evenly spaced throughout New York on a 40-km grid, compared to the NAMNEST which has 32 

vertical sounding locations unevenly distributed throughout New York. Based on results in 

Chapter 3, a combination of HRRR and NYSM data produced enough confidence in internal 
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testing to develop a HRRR and NYSM product. While other combinations of model and 

observational datasets were tested internally, this product was the first operational tool that 

combined NYSM surface observations with model vertical profiles. In addition to the new RF 

models available for the winter of 2022–2023, the NAMNEST RF model showed skill at 

predicting precipitation type with 5 h of lead time (Chapter 5 has more discussion on this topic). 

To upgrade the HRRR and NAMNEST RF models, they will now forecast out to 12 hours of 

lead time. This expansion will give forecasters more lead time on challenging precipitation type 

forecasts. 

 
Fig. 4.3. Map of New York displaying locations of NAMNEST (blue triangles) and HRRR profile 
sites (red circles).  
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In addition to all the RF models displayed on the operational website, a new model–

observation comparison product will be available for the winter of 2022–2023. This product 

(Fig. 4.4) displays the 2-m temperature difference for either, or both, the NAMNEST and HRRR 

compared to the NYSM 5-min 2-m temperature. Since 2-m temperature is very important to 

precipitation type forecasts and the RF models, this product was developed to show which model 

is most representative of current conditions. This comparison can help forecasters increase their 

confidence in RF model forecasts. Section 4.2.2 provides a summary of all available products, 

latency times, and the timing when each product was made for the current website configuration. 
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Fig. 4.4. Map of New York displaying observations of 2-m temperature from the NYSM (green), 
HRRR, and NAMNEST.  a) Compares HRRR to NYSM, b) compares NANMNEST to NYSM, 
and c) compares both NAMNEST and HRRR to NYSM. 
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4.2.2. Operational Website and Archive 

The probabilities from the RF runs are located on an operational website: 

http://www.atmos.albany.edu/student/filipiak/op/. The website displays multiple RF products 

being made in real-time throughout the 2022–2023 winter season. The full lineup of products 

includes RF models for the NYSM and upper-air reduced, NAMNEST, HRRR, HRRR and 

NYSM datasets, as well as the model–observation comparison product. The latency on the 

NYSM and upper-air reduced product is under 10 min and is made with the forecast valid at 30 

min past each hour for each of the hours available (0000 UTC, 0100 UTC, 0200 UTC, 0300 

UTC, 1200 UTC, 1300 UTC, 1400 UTC, and 1500 UTC). The latency for the NAMNEST 

product updated with each new model run is about one hour for a 17-h forecast period including 

forecast hour 0. The NAMNEST is available 4 h, including time to run RF, after model 

initialization time (0000 UTC, 0600 UTC, 1200 UTC, 1800 UTC).  The latency for the HRRR 

product updated with each new model run is about one hour for a 16-h forecast period including 

forecast hour 0. The HRRR is available 3 h, including time to run RF, after model initialization 

time (0000 UTC, 0300 UTC, 0600 UTC, 0900 UTC, 1200 UTC, 1500 UTC, 1800 UTC, 2100 

UTC).  The latency for the HRRR and NYSM product is under 10 min and is available every 

hour 7 min past each hour. The latency for the model observation comparison product is under 1 

min and is available every hour 38 minutes past each hour. 

The products display the probabilities of the different types of precipitation, if 

precipitation is occurring. Even when there is no precipitation occurring, the RF products are 

being made, and they can be used to understand the current atmospheric conditions. The products 

available that display the RF output include the probabilities of the four main precipitation types 

(rain, Fig. 4.5a; freezing rain, Fig. 4.5b; sleet, Fig. 4.5c; snow, Fig. 4.5d), an all-mixed 
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precipitation (with the addition of sleet and freezing rain probabilities; Fig. 4.5e), and a dominant 

precipitation type (shows color coded probabilities to display highest value at each location; Fig. 

4.6). This last plot type (Fig. 4.6) is made with the assumption that the product will mostly be 

used during periods of active weather. The variety of products available allows for end users to 

have multiple views of which winter weather hazards are present or being forecast. In addition, 

the probabilistic nature of the RF allows for end users to have a sense of confidence in forecast 

precipitation type. 
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Fig. 4.5: Forecast probabilities (black text) of a) rain, b) freezing rain, c) sleet, d) snow, and e) 
mixed precipitation (freezing rain + sleet) from the 0000 UTC NAMNEST model run at forecast 
hour four on 4 February 2022 with NAMNEST composite reflectivity (dBZ, shaded).  
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Fig. 4.6: Forecast probabilities of the dominant precipitation type at each location (colored text, 
color key underneath plot) from the 0000 UTC NAMNEST model run at forecast hour four on 4 
February 2022 with NAMNEST composite reflectivity (dBZ, shaded).  

 

In addition to the operational website, a public archive was developed to allow end users 

to view products for previous dates at their own convenience. This archive updates every 4 h and 

contains archived forecast and verification products for NYSM and upper-air, NYSM and upper-

air reduced, and NAMNEST from the winters of 2020–2021 and 2021–2022. This archive will 
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be updated in real time for the winter of 2022–2023 where all forecast guidance products 

(NYSM and upper-air, NYSM and upper-air reduced, NAMNEST, HRRR, HRRR and NYSM, 

and model observation comparison) will be available. This will allow forecasters to see previous 

runs of any of the RF models they want for any winter dates. 

 

4.3. Partnership with NWS Albany 

Key to the operational component of this thesis were the interactions and feedback from 

NWS Albany. As a part of the development of this operational website and RF models, NWS 

Albany focal points, operational forecasters for NWS Albany, were collaborators across all areas 

the project and provided feedback and recommendations, assisted with collecting feedback, and 

helped with testing the operational products. Discussions on what type of ground truth 

observations would be best to base the RF models on led to the selection of the CoCoRaHS 

reports. NWS Albany focal points also helped in making recommendations of data combinations 

and variables they wanted included. This collaboration came to fruition via products like the 

HRRR and NYSM product, and trying to increase the spatial resolution of the RF model data. At 

the same time, NWS Albany was influential in the operational component of the project. They 

were extremely helpful in making suggestions for how the products could be displayed in a tool 

that fit into their forecasting framework. Not only did they provided suggestions on the how 

operational products could be designed to make the most sense to a forecaster viewing a product, 

but they helped collect feedback from forecasters on what could be improved with the website 

and its products.  

Lastly, NWS Albany focal points helped by evaluating the product in real time and 

asking questions as to why certain results were seen. This occurred mostly during the winter of 
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2021–2022. This collaboration helped to make the product better and easier for forecasters to 

understand. The operational website was mentioned in an area forecast discussion (AFD) that 

was issued at 9:34 PM EST on 3 February2022, during a highly-impactful winter storm that had 

a large area of mixed precipitation. The AFD read: 

Based on reports from spotters, social media and data from the NY State Mesonet, and 
experimental precipitation type CSTAR output, sleet and freezing rain occurring to the 
Johnstown/Amsterdam area and even near the Herkimer sawtooth. Some slight 
reductions in the snow forecasts out there and a light increase in the ice forecasts from the 
Capital Region east and south. (e.g., NOAA NWS 2022b) 
 

This AFD illustrates how the operational tool was valuable for forecasters to utilize and consider 

the output from the RF model. 
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5. Verification of Random Forest Forecast Guidance 

5.1. Winters of 2020–2021 and 2021–2022 

Section 2.3.2 described in detail how verification of operational RF forecasts would 

occur. This section will focus on how the RF performed over a period of two winters (2020–

2021 and 2021–2022), both deterministically and probabilistically. To perform the analysis of 

the two winters, RF forecasts made from 1 November to 31 March of each year were evaluated 

with the results from each forecast being combined to create evaluation metrics. Only 

verification for the NYSM and upper air, NYSM and upper-air reduced, and NAMNEST will 

appear here as the HRRR, and HRRR and NYSM, products were developed to start in the winter 

of 2022–2023.  

First, an evaluation from a deterministic perspective will be provided. Fig. 5.1 displays 

the confusion matrix for the entire two-winter period for each of the three products. As 

mentioned in Section 4.2.1, the NYSM and upper-air forecasts produced a large number of sleet 

predictions in the winter of 2021–2022. This over forecast of sleet led to the development of the 

NYSM and upper-air reduced product. The confusion matrix for the NYSM and upper-air 

product (Fig. 5.1a) indicates there is a majority fraction of sleet prediction in each observed 

precipitation type. While 93.4% of sleet cases were accurately predicted for the NYSM and 

upper-air product, this was most likely a by-product of all predictions being sleet predictions. 

There were 20,256 sleet predictions over the two-winter period compared to 970 rain, 328 

freezing rain, and 8,864 snow predictions. This result clearly indicates that the training dataset, 

while sufficient in internal testing, was not effective at making precipitation type determinations 

in an operational setting. 
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Fig. 5.1. Confusion matrices for NYSM and upper air (5.1a), NYSM and upper-air reduced (5.1b), 
and NAMNEST (5.1c). The numbers show the percentage of observations that occur in each of 
the boxes for the two-winter evaluation period. Darker red boxes indicate a higher percentage of 
observations in that box. 

The NYSM and upper-air reduced product, developed to replace the original NYSM and 

upper-air product, did show significant improvement in its ability to forecast different 

precipitation types (Fig. 5.1b). The diagonal from top left to bottom right (diagonal of correct 

forecasts) had the highest percentages in each row. Snow and rain were well forecast with correct 

prediction percentages above 80% and 70%, respectively. Freezing rain was predicted corrected 

over 50% of the time, mostly being confused with rain predictions when incorrectly forecasted 

(24% of the time). Sleet observations were not well forecasted (about 37% correct); incorrect 

sleet forecasts were generally split evenly across the other precipitation types. These results 

indicate that while the NYSM and upper-air reduced product is an improvement, data used in the 

training dataset did not have much distinction between sleep and the other precipitation types. 

The NAMNEST forecast guidance was the most successful of all three products. Overall 

correct forecasts for rain and snow were lower than the NYSM and upper-air reduced product by 

a couple percentage points to 68.5% and 78.8%, but the mixed precipitation forecasts (freezing 

rain and sleet) increased in their accuracy. Freezing rain observations were correctly predicted 
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71.1% over the two winters and sleet observations were correctly predicted 41% of the time. 

While correct sleet forecasts were still significantly less likely than any of the other precipitation 

types, by nearly 30% on average, the NAMNEST was still the most successful prediction of sleet 

of the three products. Another interesting result is that of the sleet observations, the highest 

incorrect forecast prediction was freezing rain, occurring in 76.8% of the observed sleet cases. 

This result is not surprising because of the difficultly in deciphering between freezing rain and 

sleet, but it also gives confidence in that the RF is making realistic predictions.  

One of the other important things to consider with the deterministic verification is how 

the NAMNEST forecasts made predictions because they can help forecasters be more confident, 

particularly at times further away from model initialization time. Fig. 5.2 shows the confusion 

matrices for both the NAMNEST analysis (Fig. 5.2a) and forecast periods (Fig. 5.2b). These 

confusion matrices looked very similar to each other and the overall confusion matrix for the 

two-year period. A slight drop was seen in overall accuracy (diagonal from top left to bottom 

right) from the analysis to the forecast periods, as expected, but only by a handful of percentage 

points. 
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Fig. 5.2. Confusion matrices for NAMNEST separated by forecasting period:(a) is the matrix for 
forecast hours 0–3 (the analysis) and (b) is forecast hours 4–9 (the forecasts). The numbers show 
the percentage of observations that occur in each of the boxes for the two-winter evaluation period. 
Darker red boxes indicated a higher percentage of observations in that box. 

Along with comparing the analysis and forecast periods for the NAMNEST, it was 

important to examine the forecast period specifically to see if forecast skill dropped off 

significantly with increased lead time. The confusions matrices for NAMNEST by lead time is 

shown in Fig. 5.3. Generally, all the confusion matrices had a similar appearance. Rain and snow 

correct forecast percentages were fairly consistent through all six of the lead time periods and 

only vary by 2–3 percent in either direction. Freezing rain and sleet both experienced a steadier 

decrease across the time periods, dropping by about 10% on average from the nowcast (0 h lead 

time). 
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Fig. 5.3. Confusion matrices for NAMNEST separated by hours of lead time. Forecast hour four 
is defined as zero hours of lead time since that is when the NAMNEST product is available on the 
website. The numbers show the percentage of observations that occur in each of the boxes for the 
two-winter evaluation period. Darker red boxes indicated a higher percentage of observations in 
that box. 

Along with verifying RF forecast guidance in a deterministic sense, it was imperative to 

also verify probabilistically because understanding what the displayed probabilities mean is 

important to forecasters and for understanding how to better frame the RF guidance in the 

context of operational forecasts. Figs. 5.4–5.6 display the observed frequencies for the 

probability distribution for each of the winter precipitation types correct and incorrect predictions 

across the two-winter period. In addition, these figures show the percentage of correct 

predictions in each probability bin, located at top of each bar. This information is important 

because, ideally, the percent of correct predictions should match the probability bin. The pattern 

that should appear is that higher predicted probabilities should equal more correct predictions. 

Examining this part of the RF guidance will allow for better understanding of what the 

probabilities mean and for ways to correct the guidance to be more representative. 
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Fig. 5.4. Observed frequencies for the probability distribution of both correct and incorrect 
predictions of NYSM and upper-air RF product for all precipitation types. N value is number of 
predictions for each type of precipitation in the two-winter observing period. The number on the 
top of the frequency bars represents the percentage of correct predictions in each bin.  
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Fig. 5.5. Same as in Fig. 5.4, but for NYSM and upper-air reduced RF product. 

 
Fig. 5.6. Same as in Fig. 5.4, but for NAMNEST RF product. 
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Examining the probability distribution for the NYSM and upper-air product (Fig. 5.4), 

trends that were visible in the confusion matrix appear here as well. There is a narrow 

distribution of probabilities which is not ideal in an operational forecast tool. In addition, the 

ideal trend of increased probability indicating more likelihood of occurrence did not appear for 

all precipitation types: it is true for rain and snow, but not the mixed precipitation types. This 

distribution of predictions and the limited range of probabilities reinforced that developing the 

NYSM and upper-air reduced product was a good decision.  

There was a significant difference between the NYSM and upper-air reduced product 

(Fig. 5.5) and the original NYSM and upper-air product (Fig. 5.4). The probability distribution 

for the NYSM and upper-air reduced product was much broader and what a probabilistic forecast 

distribution should, ideally, look like. The distribution had a larger range than in Fig. 5.4 and it 

matched with a more realistic distribution of RF forecasts for each precipitation types. For the 

most part, the ideal trend of increased forecast probability leading to increased likelihood of 

occurrence held true: only freezing rain was unreliable in this sense. Interestingly, the 

distribution of probabilities for the non-mixed precipitation types was much larger than the 

mixed precipitation types. While this may be due to limited sample size, it could, more 

importantly, point to the fact that the mixed precipitation types are harder to predict, so there was 

less of a consensus with these types of precipitation. 

The NAMNEST product (Fig. 5.6) was more similar to the NYSM and upper-air reduced 

distribution (Fig. 5.5) than the original NYSM and upper-air distribution (Fig. 5.4). The 

distribution across the four precipitation types was realistic and had a wide range of values. The 

ideal distribution theory was generally true here as in Fig. 5.5, where three of four precipitation 

types followed the theory, with sleet being the outlier. One interesting finding with the rain and 
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snow distributions was that once the probabilities get up to 70 or 80%, the accuracy of correct 

predictions was generally at or higher than the RF output probability. This result was important 

to convey to forecasters, so that they are aware of what the RF probabilities actually mean. A 

similar point can be made for the freezing rain distribution as well freezing rain probabilities 

were maximized in the 70–75% probability bin and the percentage of correct predictions 

indicated that 89% of cases verified. This fact is important to convey because the percentages 

displayed must give an accurate representation of the likelihood of occurrence to the forecasters 

using the product. By communicating this upgrade in likelihood to forecasters, the RF product 

can be used more effectively. 

5.2. Case Studies 

5.2.1. 15–16 February 2021 

The winter storm of 15–16 February 2021 produced significant sleet and freezing rain 

across much of NY state. The storm formed on 15 February associated with a deep trough across 

the western and central US (Fig. 5.7a,b). During that time, there was a narrow area with a strong 

850-hPa temperature gradient in western and central NY (Fig. 5.8a,b). This area of enhanced 

temperature gradient was just on the colder side of 0°C. At the surface, high pressure was present 

across NY state (Fig. 5.9a–c).  

At 0000 UTC 16 February, a strong jet had developed in Ontario and Quebec (Fig. 5.7c) 

bringing strong upper-level southwesterly winds across southern Ontario and Quebec as well as 

the Northeast United States, including NY. Warm air advection was occurring at lower levels 

(850 hPa) across central and eastern NY (Fig. 5.8c). Temperatures at this level were slightly 

above freezing to just below freezing indicating the potential for a profile conducive to mixed 
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precipitation. After 0000 UTC, the main precipitation shield entered NY. During the period of 

the heaviest precipitation (0300 to 1200 UTC), an interesting surface set up existed. At 0600 

UTC, a double surface low was pushing closer to NY with one low located inland at the 

intersection of Ohio, Pennsylvania, and West Virginia, and the other low off the Delmarva coast 

(Fig. 5.9d). The surface low location and previous path, from the Gulf of Mexico, had a classic 

Miller type A nor’easter storm setup. By 0900 UTC, the double surface low was slightly more 

inland with the interior low at the intersection of Ohio, Pennsylvania, and New York, and the 

coastal low located over Virginia (Fig. 5.9e). This setup coincided with most of the precipitation 

being located in the eastern half of NY. By 1200 UTC, most of the precipitation had exited NY. 

At upper levels, most of the country was engulfed in a deep trough and winds were out the south 

or southwest in NY (Fig. 5.7d). At lower levels, there was significant warm air aloft with the 

upper air analysis at 850 hPa indicating 7°C at Albany as well as winds out the south or 

southwest (Fig. 5.8d). At the surface, the interior low was located over the Southern Tier, while 

the other low was over central New Jersey (Fig. 5.9f). This pattern created a double warm front 

setup in NY with temperatures generally above freezing across the state.  
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Fig. 5.7. Storm Prediction Center 300-hPa analysis at a) 0000 UTC 15 February, b) 1200 UTC 
15February, c) 0000 UTC 16 February, and d) 1200 UTC16 February 16 2021. 
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Fig. 5.8. Same as Fig. 5.7, except for 850 hPa. 
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Fig. 5.9. Weather Prediction Center surface analysis at a) 0600 UTC 15 February, b) 1200 UTC 
15 February, c) 1800 UTC15 February, d) 0600 UTC 16 February, e) 0900 UTC16 February, and 
f) 1200 UTC16 February 2021. 

Looking at the NWS local storm reports (LSRs) from the storm (Fig. 5.10), the heaviest 

snowfall tended to be in western NY around Buffalo. There was an area of transitioning 
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precipitation type across the Southern Tier and south-central NY where most of the sleet reports 

occurred. Freezing rain was mostly in eastern NY and the Hudson Valley area, likely due to the 

warm air advection with the south/southwesterly winds; however, there were other freezing rain 

reports scattered across the state, including a significant freezing rain report in Oswego, near 

Syracuse, of over 4.1 in of flat ice. In the Hudson Valley and Capital District Areas, flat ice totals 

were between 0.5 and 0.75 in. 

 
Fig. 5.10. NWS LSR map of wintry precipitation types in NY for 15–16 February2021. The marker 
size varies according to the magnitude of the precipitation reported. 

In examining how the RF forecast guidance did deterministically, there are some similar 

trends to the results of the verification for the two full winters (Section 5.1). The original NYSM 
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and upper-air forecasts continued to issue mostly sleet predictions with a handful of other 

precipitation types mixed in (Fig. 5.11a). The NYSM and upper-air reduced forecasts were much 

more accurate. While most of the freezing rain and snow reports (83.33% and 69.70%) were 

predicted correctly (Fig. 5.11b), the RF struggled with both sleet and rain during this event. For 

both of these precipitation types, about half of the predictions were for freezing rain (50% and 

44.44%). It was worth noting that the second highest predicted precipitation type for snow 

reports was also freezing rain. This result indicates that the NYSM and upper-air reduced 

guidance may have overpredicted freezing rain during this event. The NAMNEST RF forecasts 

were very similar to the NYSM and upper-air reduced guidance: it did well in correctly 

predicting 73.39% of freezing rain and 72.70% of snow reports (Fig. 5.11c), but it also struggled 

with accurately predicting rain and sleet, being biased towards freezing rain even more so than 

the NYSM and upper-air reduced guidance.  

 
Fig. 5.11. Same as Fig. 5.1 except for 15–16 February 2021. 

Examining the NAMNEST RF forecast guidance further, locations of interest were 

identified based on the NWS LSRs. These locations of interest were determined by locating the 

NWS LSRs with the largest magnitude of precipitation for each of the freezing rain, sleet, and 

snow reports. The first site examined was the unique freezing rain report of 4.1 in of flat ice in 

Oswego, NY. The probability timeseries for that location (Fig. 5.12a) did not indicate much 
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freezing rain or mixed precipitation. Prior to 0600 UTC 16 February, snow was the likeliest 

precipitation type to occur. From 0600 UTC to 0900 UTC, freezing rain and sleet had similar 

probabilities. By the end of this period, when most of the precipitation was in eastern NY away 

from Oswego, the freezing rain probabilities started to increase and became dominant. This 

increase occurred until 1600 UTC when rain briefly became dominant and, eventually, snow 

returned as the dominant precipitation once the precipitation was well clear of the region. The RF 

output did not corroborate the magnitude of freezing rain seen in Oswego due to it only 

appearing as dominant for a short period of time.  

The second site examined was Hornell, NY in the Southern Tier where 1.3 in of sleet fell 

during the event. The probability timeseries for Hornell did indicate the potential for mixed 

precipitation. Prior to 0000 UTC 16 February, snow was the dominant probability for 

precipitation type. Starting at 0000 UTC, mixed precipitation types became dominant. From 

0000 to 0400 UTC, freezing rain and sleet were both close to each other in terms of probabilities, 

and they switched back and forth between being dominant. After 0400 UTC, freezing rain 

became the dominant precipitation type until precipitation had moved well out of Hornell. It is 

not possible to clearly determine if the dominant precipitation output from the RF makes sense 

with the observed sleet totals. However, the RF was able to identify that the environment was 

conducive for mixed precipitation. In addition, Hornell was a significant distance, over 20 mi, 

from the nearest NAMNEST profile site used to generate probabilities; the NAMNEST site is 

also about 1,000 ft higher in elevation than Hornell, which could impact the vertical profile and 

final results. 

The final site examined was in Batavia, NY, where 13 in of snow fell during the event. 

The probability timeseries for Batavia (Fig. 5.12c) looked very representative of the precipitation 
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that occurred. Snow was the dominant precipitation predicted by the NAMNEST RF for the 

entirety of the event. Only around 0900 UTC the probability of sleet did get close to the 

probability of snow. Since snow was dominant for so long, it is possible to conclude that the RF 

output matched well with the precipitation observed in Batavia. Overall, the RF output from the 

NYSM and upper-air reduced, and NAMNEST, models did a good job at representing freezing 

rain and snow forecasts, while under forecasting rain and sleet. Generally, freezing rain was over 

predicted leading to misses in the forecast for the rain and sleet observations. 
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Fig. 5.12. Timeseries of RF probabilities at locations of interest during 15–16 February 15-16. 
NWS LSRs with the highest reported magnitude of each precipitation type were selected as the 
locations of interest:(a) Oswego, NY, (b) Hornell, NY, and (c) Batavia, NY 
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5.2.2. 9–10 January 2022  

The 9–10 January winter storm had two distinct phases: on 9 January, a frontal system 

associated with precipitation passed through NY, and on 10 January, a prolonged lake-effect 

snow event developed across NY. At 0000 UTC 9 January, a trough–ridge pattern existed across 

the US. The jet was located over the upper Midwest and was associated with an upper-level low 

over central Canada (Fig. 5.13a). At lower levels, winds were from the southwest over NY with 

temperatures at 850 hPa in ranging from right above 0°C to near -10°C (Fig. 5.14a). There was 

light precipitation across western NY.  

Approaching 1200 UTC, the first round of light precipitation moved through most of NY 

with a second round starting in western NY. At upper levels, the winds had strengthened across 

the Northeast and became a bit more southwesterly (Fig. 5.13b). At lower levels, the 

southwesterly winds had strengthened and the temperatures across NY were split, below freezing 

in western NY and above freezing in eastern NY (Fig. 5.14b). This setup of warm air advection, 

as well as the temperature gradient in NY, was favorable for mixed precipitation, particularly in 

eastern NY. At the surface, there was a warm front across northern NY, and southern Quebec 

and Ontario (Fig. 5.15a). The cold front associated with a low-pressure system in Hudson Bay 

stretched down through Michigan all the way to Texas. By 1800 UTC, most of the main 

precipitation had moved through NY leaving only lake effect precipitation across Lake Erie and 

Lake Ontario. At the surface, winds off the lake were from the southwest, which was very 

conducive for lake-effect precipitation (Fig. 5.15b). 

Between 1800 UTC 9 February and 0000 UTC 10 January, non lake-effect precipitation 

was sparse across upstate NY. Some storms developed in the lower Hudson Valley and over 
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Long Island after 2000 UTC. At 0000 UTC, a strong upper-level jet developed over southern 

Ontario and Quebec with winds over NY increasing in strength (Fig. 5.13c). The winds at lower 

levels became more westerly and the temperatures outside New York City were below freezing 

at 850 hPa (Fig. 5.14c). The surface cold front split NY from Plattsburgh to Binghamton and a 

secondary cold front was located across the border in southern Canada (Fig. 5.15c). Starting at 

0300 UTC, light lake-effect precipitation developed off of Lake Ontario and, by 0900 UTC, a 

very narrow lake-effect band stretched from Lake Ontario to the Capital District. At that time, 

both cold fronts had cleared through NY and the winds in western and central NY were westerly 

(Fig. 5.15d). Upper-air analysis at 1200 UTC 10 January showed the strong jet directly overly 

eastern NY (Fig. 5.13d) and cold westerly winds at lower levels (Fig. 5.14d). 
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Fig. 5.13. Storm Prediction Center 300-hPa upper-air analysis at a) 0000 UTC 9 January, b) 1200 
UTC 9 January, c) 0000 UTC 10 January, and d) 1200 UTC 10 January 2022. 

 



   
 

   
 

77 

 
Fig. 5.14. Same as Fig. 5.13 except at 850 hPa. 
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Fig. 5.15. Weather Prediction Center surface analysis at a) 1200 UTC 9 January, b) 1800 UTC 9 
January, c) 0000 UTC 10 January, and d) 0900 UTC 10 January 2022. 

The 9–10 January event had two distinct phases across NY, clearly shown in the NWS 

LSRs. The map of LSRs (Fig. 5.16) shows a larger area of small to moderate snow and freezing 

rain totals across south central NY and the Hudson Valley regions, mostly from the first phase of 

the event on 9 January. There was also a narrow band of larger snow reports across upstate NY 

and the Mohawk River Valley, which came from the lake-effect event on 10 January. The 

environmental setup was conducive to freezing rain across eastern NY with warm air aloft and 

sub-freezing surface temperatures (Fig. 5.17) and the LSRs corroborated this, as many of the 

highest totals of freezing rain were located in central NY and Hudson Valley. Freezing rain totals 

across the Capital District area were generally above 0.25 in of flat ice, and Central NY flat ice 

totals were mostly between 0.1 and 0.25 in. The region of large snow totals from the lake-effect 
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precipitation accumulated up to 30 in. Snow totals in general were between 5 and 20 in across 

much of the impacted area.  

 

 
Fig. 5.16. Same as Fig. 5.10, but for 9–10 January 2022. 
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Fig. 5.17. Albany Sounding at 1200 UTC 9 January 2022. Solid red line is temperature. Solid green 
line is dewpoint. Dashed black line is 0°C Isotherm.  

Looking at the how the RF did deterministically, the original NYSM and upper-air 

forecasts did better than expected with there being a relatively diverse set of predictions (Fig. 

5.18a). It predicted the freezing rain and snow observations with over 50% accuracy, and rain 

observations were correctly predicted 32.46% of the time. These numbers were not great, but it 

much better than only sleet predictions, which was seen in the 2021 case study (Section 5.2.1). 

As for the NYSM and upper-air reduced forecast, it was near perfect for this event. Apart from 

the sleet observations, all other precipitation types were predicted with greater than 87% 
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accuracy, and rain and freezing rain were over 93% accurate (Fig. 5.18b). The NAMNEST was 

also very successful in accurately predicting precipitation types for the event. Again except for 

sleet, all other precipitation types were predicted with greater than 78% accuracy, with a higher 

number of observations to compare to (Fig. 5.18c). Rain was the lowest at 78.78%, freezing rain 

predictions were right 91.79% of the time, and snow predictions were correct 83.33% of the 

time. None of the RF models were able to capture any of the sleet observations; instead, they 

forecasted mostly, or exclusively, freezing rain. This forecast bust highlighted the difficulty of 

forecasting sleet as well as the RF models’ potential bias for predicting freezing rain over sleet. 

 
Fig. 5.18. Same as Fig. 5.1 except for only 9–10 January 2022. 

The location of interest examined for this storm was the freezing rain in Amsterdam, NY, 

which had the largest freezing rain report of 0.4 in of flat ice. The probability timeseries for 

Amsterdam (Fig. 5.19a) showed a significant period of mixed precipitation being the highest 

probability. This occurred from 0500 UTC 9 January to 0400 UTC 10 January. Freezing rain was 

the dominant precipitation type most of this time (0900–2100 UTC 9 January). This period 

matched with the period of the main precipitation on 9 January and had the conditions to produce 

freezing rain including warm air advection, above freezing air aloft and below freezing air at the 

surface. 
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The other location examined for this event was in Osceola, NY, where 30 in of snow fell. 

The probability timeseries for Osceola (Fig. 5.19b) appeared to be representative of the 

precipitation occurring there. Most of the snow that fell in Osceola was from the lake-effect 

event that occurred on 10 January.  The NAMNEST RF guidance had snow exclusively as the 

dominant precipitation type. This guidance corroborated 30 in of snow falling in Osceola, 

especially given its location and the long-duration lake-effect snow event that occurred. Overall, 

the available RF forecast guidance was successful at capturing all the precipitation types, except 

sleet, for the 9–10 January event. There was a bias towards freezing rain in all RF models as no 

sleet observations were accurately captured. In addition, the largest magnitude events for 

freezing rain and snow were well captured by the NAMNEST RF guidance.  
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Fig. 5.19. Timeseries of RF probabilities at locations of interest during the 9–10 January storm. 
NWS LSRs with the highest reported magnitude of each precipitation type were selected as the 
locations of interest:(a) Amsterdam, NY and (b) Osceola, NY.  
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6. Future Work and Conclusions 

6.1. Future Work 

While the RF winter precipitation models and operational forecasts have great potential 

to aid operational precipitation type forecasting, future work can be done to both improve and 

complement what is currently available. Focusing on the RF algorithm, refinements and changes 

in the training datasets may provide increased accuracy. While CoCoRaHS reports were selected 

as the basis for the training datasets, it would be beneficial to test the algorithm with training 

datasets based on ASOS and mPING reports. The inclusion of these other datasets could expand 

the number of cases available for training data, including the ability to predict mixes of 

precipitation types and providing useful information in comparing the three types of winter 

precipitation reports. In addition to updating the basis of the training datasets, the winters from 

2020–2021 onward could be incorporated into the training datasets thereby increasing the 

number of cases.  

The RF could also be improved through additional internal testing, testing different 

configurations, and creating additional data combinations. By updating the training datasets, 

more internal testing would be needed to redetermine what datasets are the best options. Also, 

there is the ability to try techniques like principal component analysis (PCA) on the different 

datasets and data combinations to see if that improves the RF results by reducing the dimensions 

of the dataset. The configuration of the RF could also be re-examined to see if it can be 

improved. Updated training datasets would require different RF configurations. In addition, 

alternative ML techniques could be applied to forecasting winter precipitation types. Another 

area that may create improvement is in the data combinations. While multiple data combinations 
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have been demonstrated, there are still a multitude of possibilities to increase the number of data 

sources. On the observational side, potential collaboration with the NYSM to use the profiler 

network would allow for the development of a state-wide observational product. On the model 

side, discussions with NWS Albany indicate that the Rapid Refresh (RAP) and National Blend of 

Models (NBM) may be other models to incorporate. For the data fusion component, combining 

model and observation data, like the HRRR and NYSM product, could be done for the other 

NWP models. In addition, there is the possibility to create an ensemble or weighted product of 

all the RF output. This product could create the potential for more accurate forecasts by giving 

ranges of probabilities based on the ensemble of model data. Along with adding more models, 

the vertical resolution and forecast lead time could continue to be increased through evaluation 

of the HRRR RF model. One more important area of future work is continuing to evaluate the 

RF models in different ways including comparing to numerical models’ output against other 

methods used in operational forecasting. 

On the operational forecast guidance side, improvements could be made to enhance the 

user experience and ease of use, which would likely increase the number of end users. By 

making the forecast maps interactive, users could zoom in or out, add or remove layers, and 

display multiple types of information on the same plot. These enhancements would eliminate the 

need to produce so many plots and make it easier for users to customize what they see. An 

additional way to improve the plots is to utilize the information from the probabilistic 

verification. Knowing what the numbers actually represent is important, and this could be 

implemented on each product by replacing the current probabilities with what that value has 

correlated to historically, or could include different levels of confidence contours, similar to the 

SPC Severe Weather Outlooks. Additional upgrades to the website and archive would make 
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them more user friendly. The end goal is to make the website as easy to use as possible for end 

users. Some ways to achieve this could be to include the interactive graphics previously 

mentioned, improving the slideshow format to be more like a slider bar, and making it easy to 

get summaries of events through the archive.  

6.2. Conclusions 

Winter mixed precipitation events present numerous challenges to forecasters, ranging 

from areas of complex terrain to winter storms where precipitation types can transition across 

very short distances. ML algorithms can aid with these challenges by combining multiple large 

datasets to help account for local terrain variation or the widespread area covered by a large 

winter storm. A RF was trained to produce probabilistic predictions of precipitation type to help 

ease the data burden on forecasters who try to synthesize large datasets in real-time. To create 

this RF, CoCoRaHS reports were collected for four categories of precipitation: rain, freezing 

rain, sleet, and snow. These reports were then matched with observational (NYSM surface 

observations and upper-air radiosondes) and model (NAMNEST and HRRR) datasets to create 

combinations of training datasets. These datasets were then tested extensively for their accuracy 

in identifying winter mixed precipitation types, as well as for the best configuration of the RF 

and the variables in the datasets. Slight changes in the composition of these datasets created 

differences between the RF runs, reinforcing the idea that the variables and data combinations 

used to train a RF can impact the ability of the RF. Additionally, each data source and 

combination must be treated differently because combinations of variables may not be 

transferrable. This effect was found after seeing the same additional variables improve the 

NAMNEST RF runs while causing a decrease in the skill of the NYSM RF runs.  
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After finalizing the training datasets and understanding their strengths and weaknesses, a 

method was described that focused on transferring the research RF into an operational RF. Real-

time data was processed and matched with grid locations to produce datasets compatible with the 

RF. Data challenges occurred during this transition process, such as dealing with missing 

datasets and incomplete real-time datasets due to hardware or data transmission issues (both for 

observational devices and data disseminated online). Product development methodology was 

also presented for context as why certain products were made or updated. Finally, examples of 

products available to end users were shown as they allow for end users to access information on 

all precipitation types.  

Verification of the original NYSM and upper-air, NYSM and upper-air reduced, and 

NAMNEST forecast guidance was completed for the winters of 2020–2021 and 2021–2022. 

ASOS and mPING reports were used to verify both deterministically and probabilistically how 

well the RF forecast guidance did predicting precipitation types and what the probabilities 

displayed truly represent. It was shown that the original NYSM and upper-air product was 

limited by its ability to generally produce only sleet prediction. The NYSM and upper-air 

reduced product was an improvement on the original NYSM and upper-air product because it 

generated more realistic probability distributions and was more accurate overall. The 

NAMNEST RF model was successful at identifying different precipitation types and generating 

realistic probability distributions. To help forecasters and users to learn how long guidance can 

be trusted, the NAMNEST model was examined to see how well it did at predicting at different 

lead time. The NAMNEST guidance was fairly consistent in the accuracy of its predictions 

across five hours of lead time. The mixed precipitation types had the largest average drop off in 

accuracy when comparing the six different length forecasts. In addition to verifying how these 
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products did over the two-winter period, two case studies showed the effectiveness of the 

different RF models over different types of winter precipitation events. Over both the two-winter 

period and individual case studies, there was success at predicting different precipitation types, 

particularly for rain, freezing rain, and snow. However, in both the NYSM and upper-air product 

reduced, and NAMNEST models, it appeared that there was a bias in mixed precipitation 

prediction where the model favored freezing rain over sleet. More extensive testing and 

comparison to other precipitation type algorithms will help to improve the RF models. 

RFs, and other ML algorithms, can provide improvements in forecasting difficult weather 

events. While developing these algorithms is one part of the process, effectively discussing and 

learning what needs to be done to transition these algorithms into operations is an equally 

important part of the process. Evaluating these algorithms on an ongoing basis is important 

because understand their successes and limitations is necessary in order to effectively understand 

the RF guidance and communicate about the algorithms. For winter mixed precipitation events, 

working with end users to create meaningful products and training tools will help increase 

understanding and improve RF forecast guidance. 
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