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Abstract 

As tropical cyclones (TCs) move into the midlatitudes, they are often associated with 

extensive heavy precipitation. This precipitation can lead to widespread flooding events, such as 

occurred with Hurricane Irene (2011) over the northeastern United States. Despite the high-

impact nature of these events, there are relatively few studies that explore the sensitivity of 

precipitation forecasts to model initial conditions, instead focusing on the variability in TC track.  

The goal of this work is to understand what modulates precipitation forecasts over the 

northeastern United States during Hurricane Irene. This is investigated using the Global 

Forecasting System (GFS) ensemble prediction system, initialized at 0000 UTC 27 August 2011. 

The ensemble members that forecast the largest precipitation totals (i.e., wet members) over the 

Catskill Mountains of New York (where over 15” of rain were observed) are then compared to 

the members that predicted the least precipitation (i.e., dry members), to diagnose the processes 

that lead to the rainfall differences. Results indicate that the amount of rainfall is tied to storm 

track, with wetter members clustered on the western side of the track envelope, and drier 

members on the east. Variability in storm track is associated with variability in each member’s 

potential vorticity field at model initialization. 

The 0.5° GFS ensemble is then downscaled to 3 km using the Weather Research and 

Forecasting (WRF) model, in order to better simulate the effects of mesoscale processes and 

terrain on precipitation distribution. This ensemble features a more complex relationship between 

precipitation and storm track than a simple east–west correlation. The wettest members are 

characterized by lower-tropospheric winds that are directed perpendicular to the eastern face of 

the Catskills (where the heaviest rainfall occurred), allowing maximum upslope forcing during 

the period of highest rainfall rates, as well as by greater horizontal moisture flux convergence. It 
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is interesting to note, however, that the drier eastern members have the greatest synoptic forcing 

for ascent in the Catskills. Their lower rainfall totals may be due to the eastern members 

positioning the bulk of the available moisture too far east for that forcing to produce large 

rainfall amounts.	
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1.  Introduction 

1.1  Precipitation in landfalling tropical cyclones 

As tropical cyclones (TCs) move from the tropics into the midlatitudes and interact with 

synoptic weather systems, they are often associated with extensive regions of heavy precipitation 

(e.g., DiMego and Bosart 1982a; Atallah et al. 2007), which can lead to widespread, devastating 

flood events. Chen et al. (2010) sought to uncover the dynamics driving these flood events by 

performing a comprehensive analysis of precipitation characteristics in landfalling TCs, and 

found that as a TC’s regular spiral rainband structure is disrupted during landfall, other factors 

determine the distribution of precipitation over land. On the synoptic scale, moisture availability 

was determined to be the dominant control of rainfall amount, with landfalling TCs producing 

much greater amounts of rain when there was strong water vapor transport into the region. 

Likewise, the process of extratropical transition (ET; discussed in more detail in section 1.2) 

alters the distribution of TC precipitation by introducing cold air (and thus asymmetric 

baroclinicity) into the system (Klein et al. 2000). The highest rainfall rates are found in the 

vicinity of this baroclinicity (Bosart and Dean 1991), where frontogenesis (and thus synoptic 

forcing for ascent) occurs, although if the cold air manages to permeate the center of the 

transitioning TC, rainfall rates for the entire system can decrease (Ritchie and Elsberry 2007).  

Topography and mesoscale processes also play a large role in the horizontal distribution 

of precipitation in landfalling TCs (Chen et al. 2010). The upslope flow generated by a TC’s 

winds blowing orthogonal to a topography gradient provides enough ascent to produce locally 

elevated rainfall totals (e.g., Lin et al. 2001; Wu et al. 2002; Lin et al. 2011). In addition, 

mesoscale vortices can form within the larger TC circulation (Harr and Elsberry 1996), again 

leading to locally increased ascent and higher rainfall amounts (Wu and Kuo 1999). Therefore, 
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precipitation forecasting for landfalling tropical cyclones can be difficult, as it is necessary to 

consider both the synoptic aspects of the flow, such as moisture transport and structural changes 

within the TC circulation, and mesoscale processes, such as terrain interactions and embedded 

vortices, to make an accurate prediction.  

1.2  Extratropical transition 

As discussed in the previous section, extratropical transition is one of the major 

influences on the horizontal precipitation distributions of many landfalling TCs, as the heaviest 

rainfall rates in a transitioning cyclone tend to emerge in regions of maximum baroclinicity 

(Bosart and Dean 1991). Hart and Evans (2001) estimated that half of all TCs that make landfall 

on the east coast of the United States and Canada undergo ET, so an understanding of ET is 

necessary in order to create accurate precipitation forecasts for landfalls in this region. ET occurs 

when a decaying TC becomes baroclinic in nature and reintensifies into a cold-core extratropical 

cyclone (Jones et al. 2003). The definition of ET presented in Klein et al. (2000) includes a 

transformation stage, in which a TC transitions into an extratropical cyclone, and a 

reintensification stage, in which that extratropical cyclone either strengthens or dissipates. The 

transformation stage itself is further divided into three steps. During step one, the TC begins to 

move into a baroclinic zone, placing the TC near a supply of cold, dry air to its northwest. This 

cold air begins to be entrained into the TC, decreasing convection and precipitation on its 

western side. In step two, the TC proceeds even farther into the baroclinic zone. The cyclonic 

circulation of the TC, coupled with the cold air to the north and the warm air to the south, gives 

rise to substantial cold air advection (CAA) on its western side, and warm air advection (WAA) 

to its east. The WAA is associated with rising air on the eastern side of the TC, which flows into 

the jet and creates a large asymmetric cloud shield aloft. The WAA also transports a substantial 



 3 

amount of moisture into the system, much as a warm conveyor belt does in an extratropical 

cyclone (Eckhardt et al. 2004), increasing precipitation rates to the northeast of the storm center 

(Atallah and Bosart 2003). The CAA helps to further entrain dry air to the west, which ultimately 

ends the convection in the storm core. In step three, the eyewall dissipates, as do the last 

remnants of the TC warm core. The new dominant circulation is defined by the rising air 

occurring within the WAA to the east of the low, and the sinking air occurring within the CAA 

to the west. The precipitation structure within the storm now strongly resembles that of an 

extratropical cyclone, with the highest rainfall rates located in the regions of maximum 

baroclinicity, and the system’s transition to a cold core low is complete. 

As the process of ET is underway, the transitioning TC’s outflow can become confluent 

with the midlatitude jet, which can be associated with a substantial increase of the jet’s kinetic 

energy (Palmén 1958; DiMego and Bosart 1982b). This interaction is associated with an 

increasingly meridional flow pattern downstream of the TC (Archambault et al. 2013). Through 

the use of idealized simulations, Riemer et al. (2008) identified the primary mechanism by which 

TCs induce Rossby wave amplification in the extratropical flow: advection of potential vorticity 

(PV) by the divergent outflow of the TC. As a TC undergoes ET, its cyclonic circulation will 

advect low-PV air from the tropics towards the midlatitude PV gradient. The low-PV air 

impinges on the jet, bowing it northwards and leading to ridge amplification. This bowing also 

increases the gradient of PV in the baroclinic zone, leading to the strengthening of its associated 

winds and the formation of a jet streak. The exit region of this jet streak can provide a favorable 

environment for extratropical cyclogenesis, allowing a new cold-core cyclone to form. The 

cyclonic flow around this new low can further amplify the downstream ridge (Riemer et al. 

2008).  
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Davis et al. (2008) found that as a TC becomes extratropical, its outflow at upper levels 

will increase rapidly, which speeds the advection of low-PV air and amplifies the downstream 

response. Furthermore, Archambault et al. (2013) tested the importance of three main factors that 

modulate the extratropical flow response: the characteristics of the large-scale flow pattern, the 

characteristics of the TC, and the strength of the interaction between the TC and the extratropical 

flow. The sensitivity of the downstream response to the characteristics of either the large-scale 

flow pattern or the TC was found to be small, while the strength of the interaction between the 

TC and the extratropical flow was recognized as the dominant control on the magnitude of 

downstream impacts. 

Archambault et al. (2015) builds on the work of Archambault et al. (2013) by performing 

an in-depth analysis of the dynamics behind strong and weak interactions between TCs and 

extratropical flow. Cases with strong interactions (ETs that feature greater advection of PV by 

the TC’s irrotational outflow) produce greater ridge amplification downstream of the TC, leading 

to the formation of a strong high-latitude ridge that can persist for several days. Cases with weak 

interactions, however, feature the excitation of a weak wave train that soon decays. Strong cases 

are able to produce the large amount of divergent outflow needed to maintain an amplified wave 

train because they tend to occur in environments that feature greater midlevel forcing for ascent 

and frontogenesis. These environments also tend to have a greater moisture supply available for 

latent heat release, which additionally strengthens a TC’s divergent outflow. 

1.3  Numerical weather prediction 

Although ET plays a large role in determining the precipitation distribution of landfalling 

TCs, there are as a variety of synoptic features which also modulate rainfall. These additional 

features increase the difficulty of creating accurate landfall precipitation forecasts, leading 
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forecasters to numerical weather models for guidance. Global models, such as the National 

Centers for Environmental Prediction’s (NCEP) Global Forecast System (GFS) and the 

European Centre for Medium-Range Weather Forecasts’ (ECMWF) model, use a global grid to 

simulate atmospheric dynamics, incorporating numerical solutions for dynamical equations and 

parameterizing smaller-scale processes (Krishnamurti 1995). Regional models, such as the North 

American Mesoscale Forecast System and the Weather Research and Forecasting (WRF) model, 

have more localized domains, but use a higher resolution, are more easily customizable, and 

present the opportunity to dynamically calculate precipitation (Michalakes et al. 2001). Both 

types of models assimilate observational data in an attempt to improve accuracy (Rabier 2005). 

However, a single, deterministic model simulation is prone to increasing error with time, due to 

error introduced both by a lack of continuous initial observations and by assumptions made 

within the model physics, which grows with time due to the chaotic nature of the atmosphere 

(Lorenz 1963).  

Probabilistic weather forecasting has been increasingly emphasized in recent years as a 

way to determine the range of solutions and account for the chaotic nature of the atmosphere. 

Many authors have advocated the use of probabilistic forecasts as a way to account for some of 

the model error arising from initial condition and model physics inaccuracies (e.g., Epstein 1969; 

Gleeson 1970), often focusing on model ensembles as the best way to generate these 

probabilistic forecasts (e.g., Krishnamurti et al. 2000). Ensembles attempt to replicate a realistic 

probability density function through individual forecasts, with the assumption that the observed 

field will fall somewhere within the distribution of the members. 

Multiple methods have been employed over the years to deduce initial condition 

uncertainty. The ECMWF Ensemble Prediction System (EPS) uses singular vectors, representing 
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the most unstable phase space directions early on in the simulation, linearized around a short-

term forecast trajectory to dynamically add perturbations to an initial analysis (Molteni et al. 

1996), generating multiple ensemble members. The United States’ National Meteorological 

Center created an early operational model ensemble that used the breeding of growth nodes 

method, in which perturbations were added to a higher-resolution control simulation by 

computing the difference between two nonlinear forecasts, and applying the uncertainty implied 

by that difference to the control (Tracton and Kalnay 1993; Toth and Kalnay 1997), thereby 

producing a number of ensemble members, although this method has been replaced in the 

modern GFS. 

The Ensemble Kalman Filter (EnKF; Whitaker and Hamill 2002) is another popular data 

assimilation technique used to generate initial condition perturbations. The EnKF uses a Monte 

Carlo statistical method to provide each ensemble member with unique initial conditions based 

on available observations. The EnKF is employed by initializing and running a short-term 

ensemble for a given period of time. Then, observations are assimilated to create a new ensemble 

analysis, and the short-term ensemble is re-initialized with this analysis and run for another time 

step. This cycle of short-term data assimilation can continue for any length of time, and then the 

ensemble can be run forward from the last analysis to produce a forecast (Evensen 2003). The 

current operational version of the GFS uses another type of Kalman filter called the ensemble 

transform Kalman filter (ETKF), which uses ensemble transformation to more quickly assimilate 

data (Bishop et al. 2001).  

Statistical data assimilation methods such as the EnKF are mainly intended to solve the 

problem of incomplete observational data and its resulting error. However, models also gain 

error by relying on physics parameterizations, which save computational power and replicate 



 7 

physical processes that occur on scales that models can’t resolve. This parameterization error can 

become especially pronounced in the case of a complicated forecast scenario such as ET (Davis 

et al. 2008). For example, Bassill (2014) examined the differences in forecast track for Hurricane 

Sandy (2012) predicted by the GFS and ECMWF. This study found that, although the ECMWF 

was able to accurately predict the track that Sandy would take days before the GFS, the GFS 

could produce a correct track with similar lead time as the ECMWF when it was run with the 

same cumulus parameterization as was utilized in the ECMWF. This cumulus parameterization 

was better able to simulate the increase in vertical mass flux typically observed in TCs 

undergoing ET, producing a more accurate representation of divergent outflow aloft and 

advection of low-PV air into an upstream trough. Because of this accuracy, the ECMWF 

predicted that the trough would slow and steer Sandy to the west, correctly placing its 

precipitation swath over the Northeast. 

Although physics parameterizations can introduce error into forecasts, this work will 

focus more on the effects that initial condition errors in particular can have on rainfall forecasts 

by using Hurricane Irene (2011) as a case study. The analysis will examine Irene in terms of 

precipitation variability between members of an ensemble forecast, and will test whether some of 

the variability in rainfall is due to differences in the way that the various members simulate the 

TC–jet interactions that occur during ET. Even though the members all use the same physics, 

small differences in the orientation and intensity of Irene, and the midlatitude jet, can be 

magnified by the process of ET, eventually producing much different forecasts. 

1.4  Synoptic history of Hurricane Irene (2011) 

Hurricane Irene formed from a tropical wave that moved off the coast of Africa on 15 

August 2011. Although the disturbance was associated with relatively strong convection, it took 
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several days for a closed circulation to develop, preventing the system from being classified as a 

tropical depression. Irene was finally named as a tropical storm late on 20 August 2011 while 

located to the east of Martinique, and began to move west-northwest through the Caribbean Sea. 

It reached hurricane strength on 22 August, while located just off the coast of eastern Puerto 

Rico, causing extensive flood damage in that region before moving northwestward past 

Hispaniola and strengthening to a category 3 hurricane. On 24 August, Irene turned northward 

towards the Bahamas and mid-Atlantic states. After passing over the Bahamas as a category 2 

storm, Irene made landfall near Cape Lookout, North Carolina at 1200 UTC 27 August as a 

category 1 hurricane, before re-emerging over the Atlantic and continuing on a northward track. 

The hurricane’s final landfall as a category 1 hurricane occurred just east of New York City 

shortly after 1200 UTC 28 August, and Irene was declared extratropical at 0000 UTC 29 August 

(Avila and Cangialosi 2011; Figure 1). 

As Irene moved north from the tropics to the midlatitudes, the storm’s motion was 

strongly influenced by the larger-scale synoptic pattern of the atmosphere, most notably by two 

separate troughs situated over the continental United States. As troughs deepen into the 

midlatitudes and subtropics, they bring colder, higher-PV air equatorward (Hoskins et al. 1985). 

High-PV perturbations in the atmosphere are associated with cyclonic winds (Davis 1992), so the 

introduction of a high-PV trough into the vicinity of a TC can substantially alter the 

environmental steering flow acting upon that cyclone (e.g., Galarneau and Davis 2013). On 24 

August, as Irene moved over the southern Bahamas, it began to interact with a weak cyclonic 

upper-level PV perturbation over the southeastern United States and Gulf of Mexico (Figure 2a). 

Because this trough was situated to the west of Irene, the cyclonic circulation around it placed 

the TC in a region of southerly flow, turning Irene north towards the United States (Figure 2b–d). 
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By the time Irene reached the Carolinas, a second, stronger trough had formed over the central 

and eastern United States, once again placing the TC in a region of southerly steering flow, 

sending the storm farther north towards New York and the northeastern United States (Figure 

3a–e). This trough is discussed further in section 2.2.  

Hurricane–trough interactions such as this have been responsible for some very large 

precipitation totals in landfalling tropical cyclones. In October 1954, for example, Hurricane 

Hazel was situated off of the coast of Florida. Thanks to a strong trough situated over the central 

and eastern United States, Hazel accelerated to the north-northwest and made landfall in the 

Carolinas (Palmén 1958), interacting with a pre-existing frontal boundary and depositing nearly 

a foot of rain across the region (Collins 1954). In 1972, Hurricane Agnes re-emerged over the 

Atlantic, off the coast of Virginia, on a trajectory out to sea. However, a Canadian trough 

developed a strong negative tilt over the Great Lakes region, placing Agnes in southeasterly 

environmental steering flow and turning it northwestward into upstate New York and 

Pennsylvania, where it was associated with widespread rainfall totals of 8–16 in (DiMego and 

Bosart 1982a). Hurricane Floyd (1999) had a storm track remarkably similar to Irene’s, and a 

very similar rainfall distribution (although Floyd was shifted slightly to the east), again the result 

of a deep trough situated over the central and eastern United States (Atallah and Bosart 2003). 

More recently, Hurricane Sandy (2012) was also steered inland due to a strong negatively-tilted 

trough over the central United States, leading to severe coastal flooding across the Northeast 

(Blake et al. 2013). 

Like these other TCs that interacted with upstream troughs, Irene was responsible for 

substantial flooding and damage across the Northeast. As the storm moved inland, it deposited 

widespread rainfall totals of 4–7 in, with locally higher amounts. The Catskill region of New 
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York in particular received very large amounts of precipitation, with some locations seeing up to 

a foot of rain in less than 24 h. Irene directly caused 41 deaths and $15.8 billion in damages in 

the United States, with three towns in the Catskills deemed uninhabitable due to flooding after 

Irene had passed (Avila and Cangialosi 2011).  

As Irene approached the eastern United States, the National Hurricane Center (NHC) 

recognized it as a heavy rainfall threat, and put a high priority on producing accurate 

precipitation forecasts. This goal was facilitated by obtaining a substantial number of 

supplemental observations for assimilation into NCEP’s real-time GFS forecasts (Majumdar et 

al. 2013). Ten aircraft missions were flown between 23 and 27 August to obtain dropsonde data 

from Irene, while upper-air sites in the National Weather Service (NWS) Southern and Eastern 

Regions launched additional rawinsondes at 0600 and 1800 UTC beginning at 1800 UTC 22 

August. At 0600 UTC 25 August, the region of supplemental rawinsondes was expanded to 

include all stations east of the Rocky Mountains. The dropsonde data proved to significantly 

increase forecast accuracy at all initialization times, while the rawinsonde data significantly 

improved forecast accuracy for GFS simulations initialized at 0600 and 1800 UTC. Majumdar et 

al. (2013) further explained that if the GFS is run without these additional data, it allows the 

upstream trough to progress too quickly to the east, which displaces Irene too far offshore, 

thereby understating the potential impacts on land. With the supplemental observations, 

however, the GFS was able to simulate a slowly-moving trough and produce a relatively accurate 

track forecast for Irene. This success helps to illustrate that more continuous initial conditions do 

result in a quantifiable decrease in forecast error. 

Like the other TCs discussed in previous sections, Irene underwent ET around the time of 

landfall, meaning that its precipitation field was influenced by ET dynamics. Using a cyclone 
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phase space diagram (Hart 2003; Figure 4), it can be seen that Hurricane Irene was undergoing 

ET for about 36 h prior to the NHC’s official declaration of its status as an extratropical cyclone 

at 0000 UTC 29 August (Figure 3e). As Irene moved nearer to the trough situated over the 

eastern United States, the processes described in Klein et al. (2000) became apparent: WAA 

increased on the eastern side of the TC and CAA to the west, while outflow aloft accelerated (not 

shown, but can be inferred from the increasing PV gradient to the north of Irene illustrated in 

Figure 3). A jet streak formed to the north of Irene, indicating that the kinetic energy of the 

midlatitude jet was locally increasing. Finally, Irene’s circulation became fully coupled to the jet 

and its associated upstream trough, producing an extratropical cyclone. Therefore, the modeling 

challenges associated with ET are most likely present in simulations of Irene during this time 

period, making the storm a good candidate for an ET modeling case study. 

1.5  Goals of this work 

 Rappaport (2000) estimated that, between 1970 and 1999, half of the TC related deaths 

that occurred in the United States were due to freshwater flooding; thus, accurate forecasts of 

such events are vital to prepare for, and to mitigate, the negative effects of TC landfall on 

communities. Tropical cyclone track and intensity forecasts have improved substantially in 

recent years (Yamaguchi et al. 2015), largely due to advances in numerical weather prediction, 

although models still retain some biases and inaccuracies (e.g., Davis et al. 2016). However, 

despite the high-impact nature of heavy precipitation events associated with landfalling TCs, 

relatively few studies have explored the sensitivity of TC-related precipitation forecasts to model 

initial conditions beyond looking at the variability in TC track. The goal of this work is to 

understand what modulates precipitation forecasts over the northeastern United States during 

Hurricane Irene by examining the synoptic and mesoscale dynamics of an ensemble initialized 
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36 h before Irene made landfall over the Northeast. section 2 will focus on determining the 

synoptic sources of precipitation variability in an 80-member GFS ensemble, while section 3 will 

focus on the mesoscale causes of precipitation variability in an 80-member WRF ensemble. 
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2.  GFS ensemble rainfall variability 

2.1 GFS 0.5° model description 

 An 80-member ensemble of the 2014 experimental version of the GFS was initialized at 

0000 UTC 27 August 2011 (when Hurricane Irene was off the coast of North Carolina; Figure 

3a) and run through 0000 UTC 29 August 2011 (when Irene was declared extratropical over 

New England; Figure 3e).  The 80-member ensemble was based off of a high-resolution (~27 

km) control forecast, which was perturbed using the EnKF (Whitaker and Hamill 2002) and 

hybrid 3D-variational data assimilation (Wu et al. 2002b). This statistical assimilation method 

combines initial static background error with the 80 perturbed members produced by the EnKF, 

and adds the resulting perturbations back to the initial high-resolution control forecast. The 

resulting 80 high-resolution initial analyses are used as initial conditions for the ensemble 

member forecasts. These forecasts were output with 0.5° spatial resolution and three-hourly 

temporal resolution.  

2.2 GFS 0.5° Results 

2.2.1 Analysis of ensemble forecasts 

 The main purpose of this research is to determine why some ensemble members predict 

large precipitation totals at a given location, while others predict much less. As discussed in 

section 1, this work uses Hurricane Irene as a case study to examine ensemble variability in 

rainfall forecasts for the Catskill region of New York (Figure 5). The Catskills were one of the 

hardest hit areas by Irene, receiving up to 305 mm of rain in some areas (Figure 6b), making the 

region an ideal metric for evaluating the accuracy of each ensemble member’s precipitation 

forecast. Sets of the wettest and the driest of the GFS ensemble members (in terms of Catskills 
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precipitation) are therefore compared in order to deduce the dynamical causes behind the 

variability in their precipitation.  

2.2.2 General overview of ensemble member rainfall characteristics 

The performance of the ensemble as a whole was assessed by comparing the 48 h 

ensemble mean and standard deviation of precipitation to observations for the same time period, 

obtained from the Earth Observing Laboratory’s NCEP / Environmental Modeling Center 4 km 

Stage IV precipitation data (Figure 6; Lin 2011). Overall, the GFS ensemble mean did well at 

predicting the spatial extent of Irene’s rainfall, with a rain swath about 5° of longitude wide 

extending from North Carolina up through New England present in both the ensemble mean 

rainfall (Figure 6a) and the observed rainfall (Figure 6b). The highest rain totals were also 

correctly located over the Mid-Atlantic and Carolina coastlines. However, the ensemble mean 

underpredicted the actual amount of rainfall received nearly everywhere over land, and did not 

reproduce the greater than 254 mm accumulations seen over North Carolina, Delaware, or the 

Catskill region of New York (Figure 6c). This difference is perhaps to be expected, as the 

process of calculating an ensemble mean will damp out any local maxima seen in individual 

members, resulting in a smooth, lower-magnitude distribution of values. The high standard 

deviation (Figure 6d) seen over Virginia and North Carolina allows the possibility that some 

members produced locally higher totals, and an examination of individual ensemble members 

showed that many of these simulations did produce maxima of greater than 254 mm there, albeit 

in differing locations. However, it is notable that while the ensemble standard deviation was 

elevated over the Catskills (~50 mm), its magnitude was less than that produced farther south 

(>65 mm), suggesting that fewer individual members predicted high enough rainfall totals 
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(possibly due to errors in the GFS’s inability to simulate terrain effects and mesoscale processes; 

see section 3 for details).  

The GFS ensemble mean (Fig. 6a) also displays a sharp gradient on the western edge of 

the accumulated precipitation swath. This implies that track variability between the individual 

ensemble members could have been a driver of precipitation variability, as a small east-west shift 

of the rain swath could substantially alter the amount of precipitation delivered to a specific 

location. To test this hypothesis, the predicted storm track for each ensemble member was 

derived by finding the latitude and longitude of the minimum value in the mean sea level 

pressure field on a defined eastern United States domain (31–50°N, 60–82°W) at three-hourly 

intervals, and comparing these tracks to Irene’s observed storm track, obtained from the revised 

Atlantic hurricane database (HURDAT2) best track analysis (Landsea and Franklin 2013) 

(Figure 7). In the case of Irene, 1–2° of logitudinal variability was present between the storm 

tracks produced by each ensemble member. When combined with the sharp gradient in 

precipitation that occurred on the western edge of the GFS ensemble mean rain swath (Figure 

6a), this track variability makes it likely that storm position was a major control on the amount of 

precipitation delivered to certain areas (such as the Catskills).  

To test this hypothesis, the total 48 h precipitation received by the Catskills (defined here 

as 41.5–42.5°N, 73.5–75°W) was compared with the average storm track longitude for each 

ensemble member (Figure 8). The data show a strongly linear relationship between these two 

variables (r = 0.77), with precipitation amount increasing for a more westward average storm 

longitude. The strong linearity implies that storm position was the dominant factor controlling 

Catskills rainfall amount. Furthermore, Irene’s observed track fell about one third of a degree of 

longitude to the west of the ensemble mean track at landfall (Figure 7), suggesting that the 
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westward-tracking members may be more realistic than the eastward-tracking ones, assuming the 

model’s precipitation is correct.  

Figure 9 takes a closer look at this implication by comparing a westward-tracking 

ensemble member with an eastward-tracking one, both in terms of total rainfall amount and of 

three-hourly rainfall rate during the interval of maximum precipitation at the latitude of the 

Catskills (36–39 h). The westward-tracking member features a 48 h rain swath with its highest 

values over eastern New York, while the eastern one has its highest values over New England. 

Likewise, the western member placed the largest 36–39 h rainfall rates directly over the Catskills 

(centered on ~74.5°W), with the eastern one placing the largest rates over eastern Massachusetts 

and New Hampshire (centered on ~71.5°W). Even though the specific rainfall amounts generated 

were visually similar between the two members, the large difference in position results in very 

different rainfall totals for specific regions of the Northeast. Again, the precipitation produced by 

the westward-tracking member most closely resembles the observed precipitation (Figure 6b). 

Figure 9 also hints at some differences in timing between the wet western members and 

the dry eastern ones, in addition to the previously examined spatial differences. The eastern 

member placed the 36–39 h precipitation farther north than the western one, suggesting that 

Irene may have moved more quickly in that simulation. A time series of mean precipitation rate 

over the Catskills for the 10 wettest ensemble members, the 10 driest, and the remaining 60 

members (Figure 10) clearly shows that the drier members produced a peak rainfall rate for this 

region three hours earlier than the wetter ones, although the two composites had similarly-shaped 

curves. Figures 8–10 imply Irene took a more westward, slowly progressing track in the wetter 

simulations, allowing the area of maximum rainfall to move closer to the Catskills and linger 
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there, while in the drier simulations, the region of maximum rainfall occurred farther to the east 

and moved away from the Catskills more quickly. 

2.2.3 Comparison of the 10 wettest and 10 driest ensemble members 

The GFS ensemble forecasts show that the farther west a particular member tracked 

Hurricane Irene, the more rain that member delivered to the Catskills. Therefore, the remainder 

of this analysis will focus on two scenarios to determine the causes of precipitation variability in 

the GFS ensemble: 1) wet, westward-tracking, and 2) dry, eastward-tracking simulations. 

Composite fields were created for the ten wettest ensemble members and the ten driest for 

comparison. As discussed in section 2.2.2, there are both spatial and temporal differences in how 

Irene is positioned in the wet members as opposed to the dry members. The speed and direction 

of a hurricane’s propagation is often influenced by the timing and orientation of upstream 

features (Carr and Elsberry 2000), so a working hypothesis for the differences observed in this 

ensemble is that differences in track between the wet and dry members are due to differences in 

the timing of upstream features. This hypothesis was tested by comparing the composited 

synoptic-scale features of the 10 wettest ensemble members with those of the 10 driest, using the 

method described below. If the hypothesis is true, significant positional differences should be 

observed both in Irene and in upstream features between the two composites. 

The synoptic-scale features of the wet and dry member composites were primarily 

compared using composite difference plots of various fields. Composite difference plots display 

the ensemble mean of a particular field, the normalized difference between the wet and dry 

scenarios, and the statistical significance of that difference. The normalized difference for each 

field in question was computed with the formula 
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where "#123 represents the mean of the ith field for the wet members, "#456 represents the mean of 

the ith field for the dry members, and 7&' is the ensemble standard deviation of the ith field (Torn 

et al. 2015). Normalizing by the standard deviation allows disparate fields and times to be 

compared to one another, even if their actual magnitudes are on different scales. Statistical 

significance was computed at 8 = 0.05 using a Student’s t-test (Ruxton 2006).  

The expected positional differences between synoptic-scale features are immediately 

apparent when examining composite difference plots of 300 hPa area-averaged circulation at 00 

h, 06 h, 18 h, and 36 h (Figure 11; the area average for a particular gridpoint was calculated by 

taking the average of all neighboring gridpoints within a 200 km radius). 300 hPa circulation was 

selected because TCs are areas of strong cyclonic circulation, so any position difference in that 

circulation would show up very well in a composite difference plot. In addition, midlatitude 

features (such as an upstream trough) likely to influence the TC are maximized in the upper 

levels of the troposphere. Although differences between the two composites are of relatively low 

magnitude at the time of model initialization (Figure 11a), a statistically significant positional 

difference co-located with Irene arose by 06 h (Figure 11b), as evidenced by the +/- 0.8 

difference centered on Irene off the coast of the Carolinas. The warm colors to Irene’s west 

indicate that the wetter members positioned Irene’s circulation west of the ensemble mean, while 

the dry colors to its east show that the drier members positioned it east of the ensemble mean. 

This positional difference grew in magnitude through 18 h (Figure 11c) and 36 h (Figure 11d), 

when Irene made landfall in New York. The fact that positive differences arise to the west of the 

ensemble mean and negative differences to the east supports the previous conclusion that the 

wetter members are taking a westward track and the drier members an eastward one. 
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In addition to the differences associated with the position of Irene, another strong 

positional difference can be observed in the placement of the upstream trough located over the 

Great Lakes. At 06 h, or six hours into the simulation, the positive circulation connected to the 

leading edge of the trough had progressed slightly farther east in the drier members (as 

evidenced by the -0.8 differences in place over Pennsylvania and Virginia), although this 

perturbation is not statistically significant. By 18 h, the upstream trough in the drier members 

had progressed significantly farther to the east (as evidenced by statistically significant -1.6 

anomalies over western New York and Pennsylvania, than the trough in the wetter members, 

which remained over the Great Lakes. When Irene made landfall at 36 h, the positional 

differences in the trough were especially pronounced over the eastern Great Lakes and western 

New York and Pennsylvania, with differences greater than +/- 2. The timing differences in this 

upstream trough in the 18 hours preceding landfall were likely responsible for the differences in 

storm position at the time of landfall. The drier members featured a more progressive trough, 

blocking Irene from moving inland and accelerating it off to the east. The trough in the wetter 

members, on the other hand, remained farther to the west, allowing Irene to maintain a 

predominately northward heading into eastern New York, placing the maximum rainfall rates 

over the Catskills.  

It is important to note, however, that Irene developed statistically significant positional 

differences before the upstream trough, implying that the forecast variability that ultimately 

developed originated in the vicinity of the TC. As tropical cyclones are capable of modifying 

their environments, especially during extratropical transition (e.g., Harr et al. 2008; Torn 2010; 

Archambault et al. 2013), which Irene was undergoing at the time, it is plausible that processes 

within Irene itself were responsible for the timing differences that developed in the synoptic-
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scale flow. Therefore, the next step is to determine which dynamic processes within Irene could 

be responsible for the modeled position differences in the upstream trough.  

First, it is important to confirm that Irene had a mechanism for altering its environment. 

As discussed in section 1, divergent outflow can allow forecast error from within a TC to 

propagate to the surrounding midlatitude flow, so divergence is a likely candidate for such a 

mechanism. Figure 12 shows that from 06 h onwards, the wetter members featured substantially 

stronger upper-level divergence (as indicated by the positive 1.2–2 difference values oriented 

NE-SW over the east coast) on the northwestern side on Irene, indicating that there was a 

mechanism in place for halting the progression of the upstream trough. Using this information, 

we proposed two hypotheses: first, that the wetter members featured a greater magnitude of 

divergence on Irene’s western side because they were simulating greater mid-level latent heat 

release on that side of the storm, and this divergence redistributed the PV field around Irene in 

the wetter members, allowing the TC to take a more westward track. The second hypothesis 

focuses less on the magnitude of the divergence aloft than on its position relative to the trough, 

and asserts that the initial differences in storm track between the wet and dry members were due 

to differences in the broader steering flow which began in the vicinity of Irene. Once set on a 

more westward path, presumably by stronger easterly steering flow, the wetter members placed 

the divergent outflow from Irene closer to the upstream trough than the drier members, allowing 

the outflow to more efficiently slow the trough’s progress. The first hypothesis will be proven 

correct if the wetter members featured greater latent heat release on the western side of Irene 

than the drier members during the first 18 h of the model run. The second will be verified if the 

wetter members were initialized with greater easterly steering flow, which shifted the divergence 

aloft closer to the upstream trough.  



 21 

A composite time series of latent heat release at 500 hPa (500 hPa was selected for 

analysis because Irene displayed large amounts of variability in latent heating in between 

members at that level) on the western side of Irene (defined here as the area encompassed by +/- 

2°N of latitude and +4/+1°W of longitude from the storm center for each ensemble member, 

chosen to correspond with the maximum positive values seen on the divergence composite 

difference plots) for the 10 wettest members, the 10 driest, and the remaining 60 members. The 

time series (shown in Figure 13), show that the first of the two hypotheses is unlikely to be 

correct. The three composites exhibit similar magnitudes of latent heat release (ranging from -1 

to +7 K/3hr) throughout the 48 h simulation, with the wetter members producing less latent heat 

than the drier members at all times except 9–15 h, and to a lesser extent 27–33 h. The only 

interval in which the wetter members were consistently associated with the most latent heat 

release, and the driest members the least, is between 09 h and 15 h. If latent heat release is 

related to the linear correlation between storm position and rainfall total, it would likely be the 

latent heat release from this time interval. 

Figure 14 displays vertical profiles of latent heat release for each of the three composites 

at 12-h (the time of maximum positive difference between the wet and dry members). The wetter 

members do appear to display elevated latent heat throughout the mid-troposphere at this time, 

although the magnitude of the difference is very small. However, when 12 h latent heat release at 

500 hPa is compared to total precipitation received by the Catskills (the metric by which wet and 

dry members are defined) there is almost no correlation (r = 0.19; Figure 15). Therefore, we 

conclude that mid-level latent heat release is not a good predictor of whether a particular 

ensemble member will be wet or dry over the Catskills, and was not the driving mechanism by 

which the upstream trough was slowed and Irene allowed to track farther west.  
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With the first hypothesis disproved, the second hypothesis (that the initial differences in 

storm track between the wet and dry members were due to differences in the broader steering 

flow) is tested by examining composite difference plots of 250–850 hPa layer zonal steering flow 

at 00 h, 06 h, 18 h, and 36 h (Figure 16). Zonal steering flow was calculated by removing the 

irrotational and nondivergent wind vectors from the total wind within a 3° radius of the TC’s 

center following Galarneau and Davis (2013). At the time of model initialization, the wetter 

members placed Hurricane Irene within a broad region of statistically significant perturbation 

easterly steering flow, as evidenced by -1.2 standardized zonal flow anomalies maximized to the 

northeast of Irene (Figure 16a). By 06 h, the magnitude of the difference between the wetter and 

the drier members increased, with Irene situated at the center of a strong easterly perturbation 

(Figure 16b). By 18 h, the easterly perturbations strengthened and grew in area (Figure 16c), 

persisting through the time of Irene’s landfall (Figure 16d). Thus, from the time of model 

initialization, the wetter members possessed the necessary synoptic setup to steer Irene closer to 

the approaching trough than the dry members.  

Torn et al. (2015) performed a similar verification of GFS ensemble forecasts on 

Hurricane Sandy (2012), and also found that ensemble members that produced westward tracks 

were characterized by easterly perturbations in the steering flow surrounding the storm. In 

Sandy, the easterly perturbations were determined to have been the result of a negative PV 

anomaly associated with an anticyclone located poleward of Sandy. The clockwise flow around 

the negative PV anomaly resulted in increased easterly flow to its south, steering Sandy farther 

west. 

To test whether a similar PV anomaly was responsible for steering Irene, composite 

differences are displayed for the 350 K PV field surrounding Irene at 00 h, 06 h, 18 h, and 36 h 
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(Figure 17). At the time of model initialization (Figure 17a), the wetter members featured a 

positive PV anomaly on the southern wave guide, to the southwest of Irene, just off the coast of 

northeastern Florida. The cyclonic flow associated with this positive PV anomaly would be 

expected to generate easterly steering flow perturbations in the vicinity of Irene (Figure 16a), 

yielding a perturbation westerly motion. The cyclonic PV anomaly persisted through 06 h 

(Figure 17b), maintaining the increased easterly steering flow in the wet members (Figure 16b). 

By 18 h (Figure 17c), the initial PV perturbation has disappeared; however, by this time, a 

significant difference had developed between the wet and dry members’ placement of both the 

TC and the upstream trough, as evidenced by the < -2 magnitude perturbations over the 

Appalachians (Figure 17a), indicating that the high-PV trough had not yet arrived in that region. 

The anticyclonic flow anomalies associated with this perturbation placed Irene once again in a 

region of strong easterly steering flow (Figure 16c), which persisted through the storm’s landfall 

at 36 h (Figure 17d).  

Many studies have examined the mechanism by which tropical cyclones undergoing ET 

affect PV distributions along the midlatitude wave guide (e.g., Riemer et al. 2008; Torn 2010; 

Archambault et al. 2013). A primary mechanism by which energy can be transferred from a 

tropical cyclone to the jet is through negative PV advection by the storm’s irrotational outflow. 

As per the second hypothesis above, the wetter members are the ones in which easterly steering 

flow perturbations started Irene on a more westward course, bringing its divergent outflow in 

closer proximity to the upstream trough in the midlatitude flow. The outflow then advected more 

low-PV air poleward into the jet, slowing the forward progression of the high-PV trough. This 

interaction set up a feedback mechanism between Irene and the midlatitude wave guide, wherein 

Irene advected low-PV air poleward and westward, slowing the trough, which allowed Irene to 
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track even farther west, further advecting low-PV air and slowing the trough even more. This 

feedback was largely absent in the dry, eastward-tracking members, which never got close 

enough to the trough to effectively slow its progress. Figure 18 displays a composite difference 

plot of 250 hPa irrotational outflow at 15 h. Irene’s upper-level outflow was strongly divergent at 

this time, and is represented in the ensemble mean as a starburst pattern of outward-pointing 

vectors radiating from the TC’s center. A strong easterly wind perturbation can be seen on the 

leading edge of the upstream trough (represented by the -1.2 differences over Ohio), indicating 

that the wetter members had significantly higher magnitude irrotational wind advecting low-PV 

values in that location.  

Altogether, the information provided in Figs. 16–18 illustrates the mechanism by which 

the wetter ensemble members were able to take a more westerly track. The analysis supports the 

following steering flow hypothesis: the differences in Irene’s track were due to differences in the 

timing of upstream features, which in turn were due to differences in steering flow at the time of 

model initialization. This sequence of events is consistent with each ensemble member being 

initialized with a different PV field, in order to compensate for the discontinuous nature of real-

time weather observations.   
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3. WRF ensemble rainfall variability 

Although the GFS is a good synoptic-scale model, it can have difficulty producing 

accurate forecasts over regions of complex terrain (Carpenter et al. 2004). Lower-resolution 

terrain input files don’t resolve individual peaks and valleys, and thus don’t accurately reflect the 

mesoscales forcings or hydrology of complex areas. In order to examine the role that these types 

of complex terrain and mesoscale processes played in the evolution of precipitation in Hurricane 

Irene, the 0.5° GFS ensemble discussed in the previous section was downscaled to 15 km and 3 

km using the Weather Research and Forecasting (WRF) model. The methods and results 

associated with these downscaled ensembles are discussed in this section. 

3.1 WRF 15 km model description 

The 0.5° GFS ensemble was initially downscaled to 15 km over the eastern United States 

and western Atlantic (25–50°N, 60–95°W) using WRF version 3.6, with physics comparable to 

those employed in the High-Resolution Rapid Refresh model (HRRR): Thompson microphysics 

(Thompson et al. 2004), the Rapid Radiative Transfer Model for Global Climate Models (GCMs) 

(RRTMG) longwave and shortwave radiation (Mlawer et al. 1997), the Mellor-Yamada-

Nakanishi-Niino (MYNN) planetary boundary layer (PBL) and surface scheme (Nakanishi and 

Niino 2009), the Rapid Update Cycle (RUC) land surface model (LSM; Benjamin et al. 2004), 

and the Kain-Fritsch cumulus parameterization (CP; Kain 2004). This setup allowed for 

improved representation of terrain and mesoscale processes, although it should be noted that 15 

km terrain is still too coarse to capture individual peaks and valleys (thereby retaining 

inaccuracies in simulated terrain processes such as upslope flow).  

3.2 WRF 15 km Results 
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With the GFS ensemble, the major factor that determined how much precipitation the 

Catskills received from a particular ensemble member was Irene’s storm track. Members that 

tracked Irene farther west produced higher Catskills rainfall totals, while members that tracked 

Irene farther east produced lower Catskills rainfall totals. However, this simple east-west 

dependency does not exist in the WRF 15 km ensemble. When the total precipitation received by 

the Catskills in the WRF 15 km ensemble is plotted against the average storm track longitude for 

each member (Figure 19), the plot reveals that there is very little correlation between those two 

variables. Instead, members on the eastern and western edges of the distribution produced the 

lowest rainfall totals, while members with central tracks produced the highest. These results 

indicate that there is still a relationship between storm track and Catskills rainfall in the WRF 15 

km distribution, but that it is a much more complex and nonlinear.  

This nonlinearity in the relationship between track and rainfall makes the composite 

differencing used in the GFS section an ineffective analysis technique, as the 10 wettest 

members will all be centrally located, but the 10 driest will be dispersed east and west (thereby 

cancelling out each other’s vortex signatures when composited), creating a false signal that 

wetter members have a stronger (and smaller) vortex circulation. Indeed, when a composite 

difference plot of 300 hPa circulation was produced for the time of Irene’s landfall (36 h into the 

model run; Figure 20) this exact pattern is seen: positive differences in the center of the hurricane 

(represented by the 0.8–2 magnitude positive differences off the coast of New Jersey, and 

negative differences in the surrounding environment (represented by the -0.8 to -1.6 differences 

across most of the northeastern US).  

Because of the false signal produced by composite differencing, an alternative analysis 

technique is needed. In addition, the fact that there is clearly a more complex relationship 
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between storm track and rainfall total suggests that terrain and mesoscale processes play an 

important role in determining the distribution of precipitation; thus, it is vital to simulate both as 

accurately as possible. As mentioned earlier, while 15 km resolution is a vast improvement over 

0.5°, it is still too coarse to capture the nuances of very complex terrain, such as exists in the 

Catskills. The WRF 15 km ensemble also relies on a CP, so mesoscale processes (specifically 

convective precipitation), too, are not being simulated as accurately as they could be. In order to 

address all of these issues, the 15 km WRF domain was further downscaled to 3 km. 3 km terrain 

is finely resolved enough to capture individual peaks and valleys of mountain ranges, and at 3 

km, convective precipitation is directly calculated, instead of being parameterized.  

3.3 WRF 3 km model description 

A portion of the WRF 15 km domain spanning the eastern United States from Michigan 

to Maine (29–46°N, 68–87°W) was further downscaled to 3 km, once again using WRF version 

3.6, with physics comparable to those employed in the HRRR. As discussed previously, the 15 

km simulation relied on a CP to approximate convective precipitation, but the 3 km grid was 

high-resolution enough that it was not necessary to use the cumulus scheme. In addition, new 

boundaries were defined for the Catskills in the WRF 3 km output, to better reflect the actual 

location of the mountain range in the higher-resolution topography. These new bounds (41.75–

42.75°N, 73.9–75.25°W, as opposed to the GFS’s 41.5–42.5°N, 73.5–75°W) are illustrated in 

Figure 21. 

3.4 WRF 3 km Results 

3.4.1 General overview of ensemble member rainfall characteristics 
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When the mean precipitation of the 80-member WRF 3 km ensemble is compared to 

observed precipitation over the eastern United States (Figure 22a–b), it can be seen that this 

ensemble mean is much better than the GFS ensemble mean (Figure 6a) at predicting rainfall for 

this time period in the Northeast. The WRF 3 km ensemble mean accurately forecasts 

accumulations of greater than 254 mm over the peaks of the Catskills, and widespread totals 

between 152 and 254 mm across southeastern New York, western Massachusetts and 

Connecticut, and southern Vermont, while the GFS ensemble mean failed to predict anything 

greater than 152 mm outside of extreme southeastern New York, western Massachusetts, and 

Connecticut (Figure 6a).  

The WRF 3 km ensemble, like the GFS ensemble, features a high standard deviation over 

the Mid-Atlantic states (Figure 22d), but while the GFS featured a fairly uniform standard 

deviation of 30–50 mm over the Northeast, the WRF 3 km displays values exceeding 65 mm in 

regions with complex terrain. Most notably for this study, there is high variability on the eastern 

slopes of the Catskills, suggesting that the steep terrain of these eastern slopes are a source for 

some of the large variability that occurs in Catskills rainfall forecasts between ensemble 

members. The WRF 3 km ensemble mean also underpredicted rainfall totals on the eastern 

slopes (Figure 22c). 

One major conclusion of section 2 was that Catskills rainfall variability in the GFS 

ensemble was mainly due to how far east or west individual members tracked Irene. The WRF 3 

km storm tracks do feature longitudinal variability (Figure 23), and individual members have 

roughly the same average storm track longitude in the WRF 3 km ensemble as they do in the 

GFS ensemble (Figure 23a); but, as was seen in the WRF 15 km ensemble, the WRF 3 km 

ensemble does not feature a linear relationship between Catskills precipitation and storm track 
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longitude (Figure 23b). Members with storm tracks near the center of the longitude distribution 

have generally higher precipitation amounts, although there is still ~60 mm of spread in 

precipitation for those members. 

3.4.2 Objective clustering methods 

The 3 km WRF ensemble features a more complex relationship between precipitation and 

storm track than a simple east–west correlation (as was seen with the GFS). Therefore, 

composite difference plots of the ten wettest and ten driest ensemble members were not effective 

analysis tools for this ensemble, and a new technique was needed to stratify members and 

address the question of what modulates rainfall variability over the Catskills. Objective 

clustering of ensemble members based on the precipitation field proved to be an effective 

method.  

For this analysis, the k-means objective clustering algorithm (Hartigan and Wong 1979) 

was used to group the 80 ensemble members into three clusters (Figure 24a), based on the 

distribution of rainfall over the domain 41.5–43.5°N, 73–76.5°W at 39 h into the forecast. 39 h 

was selected because it featured the highest precipitation rates over the Catskills, and members 

with the greatest rainfall at this time generally produced the greatest total accumulations over the 

region. The domain 41.5–43.5°N, 73–76.5°W was subsequently chosen because it encompassed 

the extent of the members’ rainfall swaths over New York at this time. This clustering 

methodology was proven to be robust, as very similar groupings were produced when the 

members were clustered based on the horizontal distribution of precipitation over the entire 

duration of the simulation, instead of just at 39 h. In addition, using more than three clusters 

proved to be redundant, indicating that three is sufficient to accurately portray the variability 

present in the ensemble (Figure 24d).  
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3.4.3 Objective clustering results 

The first cluster is comprised of members that tracked Irene to the center and west of the 

track distribution (Figure 24b; purple), the second consists of members with central and easterly 

tracks (Figure 24b; red), and the third is a residual cluster, encompassing members that were 

either too slow or too far on the edges of the track distribution to bring much rainfall to the 

Catskills (Figure 24b; blue). The western cluster brought the highest rainfall totals to the 

Catskills, while the eastern cluster brought reduced, although still substantial, accumulations 

(Figure 24c; purple and red lines). The residual cluster brought the least amount of rain, as its 

members placed Irene’s rain swath too far away from the region. The remainder of this thesis 

will focus on comparisons of the wetter, western cluster and drier, eastern cluster as two 

scenarios that resulted in substantially different rainfall rates, while still tracking near enough to 

the Catskills to produce significant accumulations.  

Three hypotheses are proposed to explain the variability between the wetter and drier 

clusters: 1) wetter members feature the greatest upslope forcing over the Catskills, 2) wetter 

members have increased moisture flux convergence over the Catskills, and 3) wetter members 

position the region of maximum Q-vector convergence over the Catskills, thus producing greater 

synoptic forcing for ascent. It should be noted that the first two of these hypotheses are related to 

mesoscale dynamics and terrain effects, and are not entirely independent of one another (as 

upslope flow in a moist environment will cause moisture convergence), while the third 

hypothesis deals with synoptic dynamics. 

Figure 25 tests the first of the three hypotheses (that the wetter cluster had stronger 

upslope forcing) by comparing the composited 900 hPa winds and three-hourly precipitation rate 

in relation to terrain for the wetter cluster (Figure 25a) and the drier cluster (Figure 25b) at the 
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time of maximum precipitation over the Catskills. The wetter members feature easterly low-level 

winds perpendicular to the steep eastern slopes of the Catskills, where the highest rainfall rates 

were seen. The drier members, on the other hand, have a more northerly flow (with a wind angle 

nearly 90° less than that of the wet members at 39 h), impacting shallower terrain gradients at the 

northern side of the Catskills. When an upslope metric (V10 • �Zs, where V10 is the 10-meter 

horizontal wind vector and �Zs is the gradient of the terrain height; Tang et al. (2016)) is 

examined for the Catskills locations that received the top 20th percentile of accumulated rainfall 

(the top 20th percentile was chosen in order to provide a clearer signal for comparison between 

the two clusters), it can be seen that the wind setup in the wetter members provides the wetter 

members with an additional band of strong positive upslope near the southeast part of the 

Catskills (near 42°N, 74° 15’W; Figure 26a), which is absent in the drier members (Figure 26b). 

An examination of Figure 26a reveals that the southeast part of the Catskills (near 42°N, 74° 

15’W) had one of the largest differences in precipitation rate between the western and eastern 

clusters, with the former receiving over 102 mm per 3 h, and the latter receiving only 38–64 mm 

per 3 h (Figure 25a–b). In addition, the drier members have much stronger downslope values 

over much of the 20th percentile region (as evidenced by the higher prevalence of dark blues in 

Figure 26b). These patterns persist throughout most of the time interval when rain was impacting 

the Catskills. This evidence supports the first hypothesis, which stated that wetter members 

feature the greatest upslope forcing over the Catskills.  

Figure 27 tests the second hypothesis (that the wetter cluster had stronger moisture 

convergence) by comparing the composited 100–1000 hPa layer mean winds, 100–1000 hPa 

integrated moisture transport by the southeasterly wind (which was the dominant direction of 

moisture transport for both clusters), and convergence of the 100–1000 hPa integrated moisture 
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transport (including all wind directions) for the wetter, western cluster (Figure 27a) and the drier, 

eastern cluster (Figure 27b), at the time of maximum precipitation over the Catskills (the 100–

1000 hPa layer was chosen as a means to approximate the moisture content of the whole 

troposphere). Not only do wetter members have greater moisture transport by the southeasterly 

wind into the Catskills (as can be seen by the larger contour values in Figure 27a), they also have 

greater moisture convergence over the mountain range (with a maximum 6*103 kg/m2/s, as 

opposed to a maximum of 3*103 kg/m2/s in the drier members), which would lead to increased 

precipitation. The drier members actually have moisture divergence over the Catskills (shown by 

the blue shading in southeastern New York), especially over that southeast part of the Catskills 

where the wetter members have an additional band of strong positive upslope. This evidence 

supports the second hypothesis, which stated that wetter members have increased moisture flux 

convergence over the Catskills. It should be noted again, however, that the first two hypotheses 

are not independent of one another, as upslope forcing can lead to moisture convergence. Indeed, 

the greater upslope values of the wetter members are possibly responsible for those members’ 

greater moisture convergence, although the wetter cluster does have larger actual values of 

moisture being transported into the Catskills (contours in Figure 27a). These patterns persist 

throughout most of the time interval when rain was impacting the Catskills. 

Finally, Figure 28 tests the final hypothesis (wetter members position the region of 

maximum Q-vector convergence over the Catskills) by comparing the composited 500–800 hPa 

layer mean Q-vectors and isotherms, and the Q-vector convergence for the wetter cluster (Figure 

28a) and the drier cluster (Figure 28b), at the time of maximum precipitation over the Catskills. 

The 500–800 hPa layer was selected because it represented the layer of strongest forcing for 

ascent in this system.  Q-vectors are defined by the equation  
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where < is the total Q-vector, R is the ideal gas constant for dry air, s is static stability, p is 

pressure, ug and vg are the zonal and meridional components of the geostrophic wind, and T is 

temperature (Sanders and Hoskins 1990). Physically, Q-vectors represent the change with time 

of the potential temperature gradient by the geostrophic wind. Convergence of Q-vectors 

indicates synoptic forcing for ascent (Hoskins and Pedder 1980), which is why the third 

hypothesis posed in this section is that wetter members position the region of maximum Q-vector 

convergence over the Catskills, thus creating greater quasigeostrophic forcing for ascent. 

Surprisingly, Figure 28 shows that the drier, eastern members actually feature much stronger Q-

vector convergence (and therefore synoptic forcing for ascent) than the wetter members (5*1013 

m2/kg/s of convergence in the dry members, as opposed to around 1*1013 m2/kg/s of 

convergence in the wet members), disproving the third hypothesis. The drier members have 

much stronger synoptic forcing for ascent, and thus for precipitation, throughout most of the 

interval when rain occurred over the Catskills. 

 The main drivers for precipitation in the wetter and drier clusters can be more clearly 

seen by comparing composited time series of all the metrics discussed in this section 

(precipitation, upslope, moisture convergence, and synoptic forcing; Figure 29). The wetter 

members feature large upslope (in red) and moisture convergence (in blue) values from around 

24 h into the forecast (when precipitation began over the Catskills) to the end of the model run, 

with peaks at 36 and 39 h, which correspond with the interval of maximum precipitation over the 

region (Figure 29a). The drier members have some weak upslope forcing initally, but it quickly 

disappears, while moisture convergence values remain moderate throughout the duration of the 

model run (Figure 29b). The precipitation curve (in green) in the dry members closely follows 
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the shape of the Q-vector convergence curve (in orange), with both peaking at 39 h and then 

decreasing to the end of the model run. Q-vector convergence does exist in the wetter members, 

but its magnitude is much lower. It should be noted that all four time series are scaled to fit on 

the same graph, in order to allow for easy comparison of curve shape. In addition, the synoptic 

forcing and precipitation rate are calculated as area averages over the Catskills domain, while 

upslope and moisture convergence are averaged only over the gridpoints in that domain that 

received the top 20th percentile of precipitation values, in order to display a clearer signal. 

To summarize the results of these cluster comparisons, precipitation in the wetter, 

western cluster was driven primarily by mesoscale processes and terrain effects (strong upslope 

forcing and moisture convergence), while precipitation in the drier, eastern cluster was driven 

primarily by synoptic forcing for ascent. The wetter cluster featured easterly low-level flow 

directly into the sharp terrain gradient of the eastern Catskills, creating large upslope magnitudes, 

while the drier cluster had more northerly low-level flow, which failed to impact as large a 

terrain gradient. Likewise, the wetter cluster simulated stronger moisture transport into the region 

than the drier cluster, and greater convergence of that moisture (the larger upslope magnitudes 

likely contributed to this convergence). The drier cluster, on the other hand, had stronger Q-

vector convergence than the wetter cluster, which generally featured either weak or negative Q-

vector convergence (and thus reduced synoptic forcing for ascent). These results illustrate the 

importance of terrain and mesoscale processes in producing large rainfall totals, as the cluster 

with a favorable mesoscale setup was able to produce substantially more precipitation than the 

synoptically forced cluster. 
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4.  Conclusions 

As TCs track into the midlatitudes, they are often associated with extensive regions of 

heavy precipitation. This precipitation can lead to devastating, widespread floods, such as 

occurred with Hurricane Irene (2011) over the Northeast, and particularly the Catskill region of 

New York. The goal of this work is to understand what modulated precipitation forecasts over 

the northeastern United States during Hurricane Irene by examining the synoptic and mesoscale 

dynamics of an ensemble initialized 36 h before Irene made landfall over the Northeast. In 

particular, the goal is to determine why some ensemble members predict large precipitation totals 

over the Catskills, while others predict much less. 

A large amount of variability exists in an 80-member GFS ensemble in terms of 

precipitation in the Catskills. The differences that exist between the rainfall forecasts of the ten 

wettest and ten driest GFS ensemble members are almost entirely due to the forecast position of 

Irene. The wetter members tracked Irene farther to the west, while the drier members featured a 

more eastward path. Ultimately, differences in storm track appear to be related to differences in 

the 0 h potential vorticity (PV) to the southwest of Irene. Wetter members were characterized by 

greater cyclonic PV to the southwest of the storm center, in a tropopause-based trough over the 

southeastern U.S., which placed the hurricane in a region of anomalously easterly steering flow. 

This steering flow started Irene on a more westward track, enabling its upper-level outflow to 

affect the midlatitude jet and causing a Great Lakes trough to slow and deepen. With the trough 

remaining well upstream, Irene was able to track even farther to the west, positioning the region 

of maximum rainfall directly over eastern New York and Vermont. These results imply that 

synoptic-scale interactions are the dominant source of variability in GFS forecasts of Irene, and 
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that variability forecasted precipitation distribution between ensemble members is largely 

controlled by storm position. 

The 0.5° GFS output was then downscaled to 3 km using the Weather Research and 

Forecasting (WRF) model, in order to allow a better representation of mesoscale processes and 

the effects of terrain on the precipitation distribution. Contrary to the GFS-based results, the 3 

km WRF output does not show a linear relationship between storm track and precipitation over 

the Catskills. Instead, precipitation in the wetter members was driven primarily by mesoscale 

processes and terrain effects (strong upslope forcing and moisture convergence), while 

precipitation in the drier members was driven primarily by quasigeostrophic forcing for ascent. 

The wetter members featured easterly low-level flow directly into the sharp terrain gradient of 

the eastern Catskills, creating large upslope magnitudes, while the drier members had more 

northerly low-level flow, encountering more shallow slopes. Likewise, the wetter members 

simulated stronger moisture transport into the region than the drier members, and greater 

convergence of that moisture (the larger upslope magnitudes likely contributed to this 

convergence). The drier members, on the other hand, had stronger Q-vector convergence than the 

wetter members, and therefore greater quasigeostrophic forcing for ascent. All of this illustrates 

the importance of terrain and mesoscale processes in producing large rainfall totals, as the 

members with a favorable upslope and moisture convergence setup were able to produce 

substantially more precipitation than the quasigeostophically forced cluster. 

In summary, when a synoptic-scale GFS ensemble is used to forecast precipitation in 

Irene, variability between members is predominantly due to differences in storm position, which 

arise through interactions with midlatitude synoptic features. The mesoscale WRF model, on the 

other hand, produces variations that are more due to differences in terrain effects and simulated 



 37 

mesoscale processes brought about by differences in storm track. With both models, a small east-

west deviation in a member’s storm track can have a huge effect on the amount of rain received 

by a particular location. The largest precipitation accumulations in an ensemble are obtained by 

positioning the storm track such that high rainfall rates are already in place over a region, and 

then enhancing those rainfall rates with strong upslope forcing. When forecasting precipitation in 

landfalling tropical cyclones, therefore, a forecaster must take into consideration whether a TC’s 

track will place it in a region where upslope forcing can locally enhance its synoptic rain swath. 

The worst flooding can result when a storm’s low-level winds are perpendicular to a steep terrain 

gradient in an already moist environment, and the enhanced precipitation over that terrain can 

later overwhelm downstream watersheds. In addition, clustering ensemble members into specific 

forecast scenarios can reveal more information than just using the ensemble mean and standard 

deviation, as it allows forecasters to evaluate several possible forecasts that appear in an 

ensemble.  
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Fig. 1: Track and intensity of Hurricane Irene 0000 UTC 21–29 August 2011. Source: NOAA 
NHC (http://www.noaanews.noaa.gov/stories2012/images/irene_track_full.jpg). Image is open 
source. 
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Fig. 2: Climate Forecast System Reanalysis (CFSR) 350-K PV analysis at a) 0000 UTC 24 
August, b) 1200 UTC 24 August, c) 0000 UTC 25 August, and d) 1200 UTC 25 August. 
Hurricane Irene is outlined in pink and the first upstream trough interacting with it is outlined in 
red. 
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Fig. 3: CFSR 350-K PV analysis at a) 0000 UTC 27 August, b) 1200 UTC 27 August, c) 0000 
UTC 28 August, d) 1200 UTC 28 August, and e) 0000 UTC 29 August. Hurricane Irene is 
outlined in pink and the second upstream trough interacting with it is outlined in red. 
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Fig. 4: Hurricane Irene cyclone phase space diagram, showing the storm’s transition from a 
symmetric warm-core system to an asymmetric cold-core system. Source: Florida State 
University cyclone phase evolution page 
(http://moe.met.fsu.edu/cyclonephase/archive/2011/gifs/irene2011/irene2011.a.gfs.57.png). 
Image is open source. 
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Fig. 5: Topographic map of New York and most of the Northeast. The Catskills are indicated by 
the black box. Source: maps-for-free.com. Image is open source.  

m 
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Fig. 6: GFS 27–29 August 2011 a) ensemble mean total accumulated precipitation (mm), b) 
observed accumulated precipitation (mm), c) difference between the ensemble mean and 
observed accumulated precipitation (mm), and d) ensemble standard deviation (mm). The 
Catskills domain is indicated by the white box. 

 

a) b) 

c) d) 
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Fig. 7: All 80 storm tracks for Irene produced by the GFS ensemble (black), as well as the 
ensemble mean track (yellow) and the observed storm track (red). 

Irene observed track 

Ensemble mean track 

Individual members’ tracks 
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Fig. 8: 27–29 August 2011 accumulated Catskills precipitation (mm) as a function of Irene’s 
average storm track longitude (degrees east) for each GFS ensemble member (blue). Irene’s 
observed position and precipitation is indicated in green. 
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Fig. 9: Total accumulated precipitation (mm; a,b) and 36–39 h rainfall rate (mm/3hr; c,d) for a 
westward-tracking member (20; a,c) and an eastward-tracking member (31; b,d). The Catskills 
domain is indicated by the white box.  

a) b) 

c) d) 



 51 

 

 
 
Fig. 10: Rainfall rates (mm/3hr) for the ten wettest (green) and ten driest (brown) GFS ensemble 
members over the Catskills domain, with the remaining 60 members (black). 
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Fig. 11: 300-hPa circulation differences between the 10 wettest and 10 driest members at a) 00-h, 
b) 06-h, c) 18-h, and d) 36-h. In this plot, contours represent the ensemble mean circulation (s-1), 
color shading represents the standardized difference between the wet member composite field 
and the dry member composite field, and stippling represents regions of statistical significance. 
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Fig. 12: Same as Fig. 10, but for 300-hPa area-averaged divergence (s-1). 
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Fig. 13: Time series of latent heat release (K/3hr) at 500-hPa on the western side of Irene. 
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Fig. 14: Vertical profile of latent heat release (K/3hr) on the western side of Irene at 12-h. 
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Fig. 15: 00–48 h Catskills precipitation (mm) as a function of 12 h 500-hPa latent heat release 
(K/3hr) on the western side of Irene. 
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Fig. 16: Same as Fig. 10, but for zonal steering flow (m/s). The green cyclone marker represents 
the position of Irene at each time. 
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Fig. 17: Same as Fig. 10, but for 350-K PV (units are PVU). 
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Fig. 18: Same as Fig. 10, but for 250-hPa divergent zonal wind at 15-h. The green line marker 
represents the position of Irene, and the green contour denotes the 2 PVU contour on this surface 
at this time. 
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Fig. 19: 27–29 August 2011 accumulated Catskills precipitation (mm) as a function of Irene’s 
average storm track longitude (degrees east) for each WRF 15 km ensemble member (blue). 
Irene’s observed position and precipitation is indicated in green.   
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Fig. 20: WRF 15 km 300-hPa standardized circulation (s-1) differences between the 10 wettest 
and 10 driest members at 36 h into the forecast. In this plot, contours represent the ensemble 
mean circulation (s-1), color shading represents the standardized difference between the wet 
member composite field and the dry member composite field, and stippling represents regions of 
statistical significance.  
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Fig. 21: Defined Catskills bounds for the GFS and WRF 15 km (pink box) and WRF 3 km (blue 
box) analyses. 
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Fig. 22: WRF 3 km 27–29 August 2011 a) ensemble mean total accumulated precipitation (mm), 
b) observed accumulated precipitation (mm), c) difference between the ensemble mean and 
observed accumulated precipitation (mm), and d) ensemble standard deviation (mm). The 
Catskills domain is indicated by the white box. 

a) b) 

c) d) 
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Fig. 23: a) GFS average storm track longitude (degrees east) compared to WRF 3 km average 
storm track longitude for each ensemble member, and b) WRF 3 km average storm track 
longitude compared to total Catskills rainfall (mm) for each ensemble member. Irene’s observed 
position and precipitation is indicated in green. 

a) 

b) 
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Fig. 24: a) Storm center positions at 39 h into the simulation sorted into three clusters 
(represented here by color). Clusters are based on the horizontal distribution of precipitation at 
this time over the domain outlined in green. b) Like Fig. 23b, with each member color-coded by 
cluster. c) Composited time series of precipitation rate (mm/3hr) over the Catskills for each 
cluster. d) Like a), but with six clusters instead of three.  

a) WRF 3 km 39 h Clustered Storm Centers 
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b) WRF 3 km Clustered Total Rainfall by Longitude 

d) Like a), but with six clusters instead of three 
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Fig. 25: 39 h precipitation (shaded; mm/3hr), 900-hPa winds (barbs; m/s), and topography (white 
contours every 100 m) for a) the wet, western cluster and b) the dry, eastern cluster. The pink 
arrow indicates the predominant wind direction into the Catskills. 
  

Wetter,	Western	Cluster Drier,	Eastern	ClusterWetter,	Western	Cluster Drier,	Eastern	Clustera) b) 
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Fig. 26: 39 h surface upslope velocity (shaded; m/s) and 900-hPa winds (barbs; m/s) over 
Catskills locations that received the top 20th percentile of precipitation accumulations for a) the 
wet, western cluster and b) the dry, eastern cluster.  
  

a) Western Cluster 20th Percentile Upslope b) Eastern Cluster 20th Percentile Upslope 
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Fig. 27: 39 h 100–1000-hPa layer mean winds (barbs; m/s), integrated moisture transport by the 
southeasterly wind (contours; every 100 * 10-4 kg/m/s), and integrated moisture transport 
convergence (shaded; 10-4 kg/m2/s) for a) the wet, western cluster and b) the dry, eastern cluster.  
  

Wetter, Western Cluster Drier, Eastern Cluster a) b) 
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Fig. 28: 39 h 500–800-hPa layer mean Q-vectors (arrows; 1012 m2/kg/s), isotherms (contoured; 
every 0.5 K), and Q-vector convergence (shaded; 1012 m/kg/s) for a) the wet, western cluster and 
b) the dry, eastern cluster. 
  

Wetter, Western Cluster Drier, Eastern Cluster a) b) 
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Fig. 29: Scaled time series of Catskills precipitation (green), upslope (red), and moisture 
convergence (blue) over Catskills locations that received the top 20th percentile of precipitation 
accumulations, and Q-vector convergence (orange) over the domain 41.5–43.5°N, 73–74.8°W. 
 

a)		Wetter, Western Cluster b)  Drier, Eastern Cluster 


