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ABSTRACT

A conventional forecasting notion is that as lead time decreases, numerical weather prediction

models exhibit a leftward (i.e., west) trend in the forecast position of low-pressure systems

along the East Coast of the U.S. This left trend, which may turn seemingly weak ocean

cyclones into high-impact weather events for the Northeast U.S., is attributed to various

potential causes, such as variability in upstream shortwave troughs, or the representation

of latent heat release in the NWP models downstream of the trough associated with the

incipient cyclone. This study seeks to address whether this rule of thumb holds any significant

merit, and to examine a long-term climatology of Northeast U.S. cold season cyclones from

a forecast skill and error perspective.

A climatology of ensemble forecasts of high-impact Northeast winter storms initialized

from 0 to 5-day lead times was constructed using the Global Ensemble Forecast System

(GEFS) Reforecast version 2, from 1 November 1985 through 31 December 2015. Cases in-

cluded in this climatology were those identified within 750 km of the 40ºN/70ºW benchmark

from an ERA-I based cyclone track dataset created by Sprenger et al. (2017), but also could

be tracked with CFSR data using a 925-hPa area-averaged vorticity maxima and height

minima-based tracking algorithm. The verification of the ensemble forecasts at 0 through 5-

day lead times are computed against the CFSR verification track, and the analysis quantifies

the GEFS climatological forecast track and intensity errors and biases.

A total of 517 cyclones were identified, with the CFSR verification tracks consistent

with prior climatologies of East Coast cyclones. When applying the tracking algorithm to

the ensemble forecasts, an underdispersive bias was found in the GEFS for both position and
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intensity forecasts, in addition to the GEFS exhibiting predominantly along-track position

variability. The climatology results did not find a systematic right of track bias; for most of

the reforecast lead times, cyclones tended to exhibit a slightly left of track bias on average,

while the 12–66-hour lead time range shows a prominent slow bias for most cases. The

forecasts exhibit a negative correlation between across-track bias and intensity bias, peaking

at day 3 forecast lead time, which motivated assessing synoptic composites of left vs. right

of track bias and weak vs. strong intensity bias. More amplified flow over the United States

was found in the right of track and weak bias composites compared to the left of track and

strong bias composites, in addition to a stronger downstream polar jet streak and upstream

subtropical jet streak relative to the mean cyclone location. Assessing the synoptic composite

differences of small vs. large across-track variability found a tendency for higher mean sea

level pressure and upper level heights across western North America in the small across-track

variability composite, which along with a significantly more negative temperature anomaly

in the eastern two thirds of the U.S. suggests a higher likelihood of cold air outbreaks than

large across-track variability.
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1. Introduction

1.1 Motivation

Cold season extratropical cyclones (ECs) are a common phenomenon in the United

States (U.S.) East Coast. These storms can produce wide-ranging socioeconomic impacts

including heavy snow, damaging wind, heavy rain and coastal flooding. There are many

well-documented cases of high impact snowstorms in the Northeast U.S., including intense

ECs that produced upwards of 50 cm (20 in) of snow, as in the Superstorm of 1993 (Kocin

et al. 1995) and the Presidents’ Day 1979 cyclone (Bosart 1981). Other cases associated with

relatively weak ECs in terms of minimum sea level pressure but nonetheless produced heavy

snowfall have also occurred, including the President’s Day storm of 2003 (Kocin and Uccellini

2004a). Snowfall rate, time of day and preparation are contributing factors that allow even

climatologically minor snow accumulation events to cause major societal disruptions. For

example, the 14–16 November 2018 snowstorm in New York City produced heavy snow rates

upwards of 4 cm hr−1 during the middle of rush hour, which brought traffic to a standstill

with cars stranded for many hours despite only 16.2 cm (6.4 in) of snow. Better identification

of the potential for these events and understanding our ability to forecast them with sufficient

forecast lead time is a motivating factor for this thesis.

While the ability to skillfully forecast Northeast ECs and associated snowfall accumu-

lations has improved substantially over the last several decades, there remain high impact

cases with deficiencies in forecast skill within the 48-hour to 96-hour lead time forecast range

from the event. Notable cases include 25–27 December 2010 (Zheng et al. 2013), in which

operational numerical weather prediction (NWP) model guidance simulated the cyclone too

weak and too far to the east, and 25–27 January 2015 (Greybush et al. 2017), in which the

operational model guidance simulated the cyclone too far to the west. Operational forecast-

ers often utilize a rule of thumb stating that the forecast position of a Northeast EC will
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trend left (i.e., closer to the coast) with decreasing forecast lead time. The implication of

this rule of thumb is that this left trend leads to higher impact events than originally antic-

ipated. While not well documented in literature, this rule of thumb appears to be based on

a hypothesis that there is a systematic bias in NWP models to underrepresent the role of

diabatic processes associated with convection in the incipient stage of the cyclone’s life cycle,

thus failing to adequately simulate the downstream upper-tropospheric PV erosion associ-

ated with latent heat release and accordingly the amplitude of the EC. This rule of thumb

motivates the question of whether such a systematic bias can be identified from a reforecast

ensemble perspective, as well as differences between cases that exhibit different types of error

and ensemble spread, which this thesis aims to assess with the goal of improving situational

awareness for operational forecasting of these Northeast ECs.

1.2 Literature Review

This literature review contains three sections. Section 1.2.1 describes synoptic and

mesoscale processes associated with cyclogenesis and snowfall. Section 1.2.2 provides an

overview of NWP modeling of Northeast ECs and their biases and improvement over time,

and Section 1.2.3 is a review of objective midlatitude cyclone identification and tracking

algorithms.

1.2.1 East Coast Cyclones and Snowstorms: Overview, Climatology and Dynamics

From both climatology and process perspectives, extratropical cyclogenesis in North

America have been extensively studied in literature (e.g., Miller 1946; Uccellini 1990; Bentley

2018). At its most simplistic element, extratropical cyclogenesis is associated with baroclinic

instability, as potential energy associated with low-tropospheric baroclinicity is converted

into kinetic energy (Eady 1949). Early developments in simplifying the equations of motion

into a quasigeostrophic (QG) system (Sutcliffe 1947; Charney 1948) allowed for an improved

understanding of synoptic-scale dynamic forcing associated with cyclogenesis and upward

vertical motion. Further application of QG theory by and later modifications by Trenberth
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(1978) streamlined the usefulness of these equations for operations by highlighting the diag-

nostic relationship between omega and the advection of geostrophic vorticity by the thermal

wind. This was also shown by Sutcliffe (1947) via the development theorem, in which the

positive advection of thermal vorticity by the thermal wind contributes to a tendency for

1000-hPa convergence and amplification of the cyclone.

Cyclogenesis can also be assessed from a potential vorticity (PV) framework as well.

Assuming a balanced flow, Davis and Emanuel (1991) applied an inversion technique to PV to

describe surface cyclogenesis as a mutual interaction between a surface PV anomaly (SPVA)

and an upstream upper-tropospheric PV anomaly (UPVA). As the UPVA approaches the

downstream SPVA and its associated baroclinic zone, its circulation infringes on the baroclin-

icity and induces a southerly flow, with low-tropospheric warm air advection strengthening

the SPVA and in turn inducing northerly flow advecting larger values of mean PV into the

UPVA. This positive feedback process continues until warm seclusion occurs once the SPVA

and UPVA become vertically aligned. Given that cyclogenesis is frequent near eastern North

America (Sanders and Gyakum 1980), understanding the processes associated at the cyclo-

genesis stage, particularly along the coastal baroclinic zone, is important for analyzing these

cyclones and identifying cyclogenesis objectively.

While ECs can occur in many parts of the world, the frequency of rapid cyclogenesis

is favored in specific geographic regions, for example, off the eastern coasts of Asia and

North America (Sanders and Gyakum 1980; Allen et al. 2010). Rapid cyclogenesis is more

likely to occur in these regions due to enhanced low-tropospheric baroclinicity compared to

over land, and/or latent heat release associated with higher moisture content over the warm

ocean currents (Sanders and Gyakum 1980; Nuss and Anthes 1987; Reed et al. 1988). The

combination of large baroclinicity and ample moisture acts to amplify the positive feedback

cycle described by Davis and Emanuel (1991). A comprehensive study of Northeast U.S.

snowstorms by Kocin and Uccellini (2004b) found that a majority of the highest impact

snowstorms to affect the Northeast region were associated with intense cyclones compared to
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climatology, generally below 990-hPa. In addition, a subset of the cyclones analyzed by Kocin

and Uccellini (2004b) had rapidly deepened off the East Coast. The relationship between

high impact weather and rapid cyclogenesis near the Northeast highlights the importance of

understanding the ability to resolve and predict rapid cyclogenesis for forecasting Northeast

snowstorms.

Despite variability in specific case environments in the high impact snowstorms ana-

lyzed by Kocin and Uccellini (2004b), compositing the synoptic-scale patterns during and

preceding these high-impact cases shows an antecedent upper-tropospheric ridge over western

North America with an amplifying downstream trough over eastern North America. Another

feature of importance in the development of high-impact Northeast snowstorms is the pres-

ence of jet streak coupling near the Eastern U.S. In this composite, the poleward entrance

region of the northern jet streak is near the Northeast, and associated with low-tropospheric

cold air advection, while a subtropical jet streak is located to the south with cyclogenesis of-

ten occurring near the poleward exit region of this jet streak. Jet streak coupling is also often

associated with rapid cyclogenesis, implying strengthened upper-tropospheric ageostrophic

divergence and a deepening of the surface cyclone.

Mesoscale factors also have an important role in the intensity and location of heavy

snowfall in Northeast snowstorms. Most mesoscale snow bands embedded within an EC tend

to occur within the northwestern quadrant of the cyclone (Novak et al. 2004). The snow

band formation and maintenance is the result of an increase in low-to-mid tropospheric fron-

togenesis (Novak et al. 2010). Stronger kinematic frontogenetical forcing, latent heat release

associated with precipitation, and reduced conditional stability above the front in association

with differential horizontal temperature advection contribute to the increased frontogenesis.

Snow bands associated with Northeast snowstorms were partitioned into four categories:

pivoting, quasi-stationary, laterally translating, and hybrid (Kenyon 2013). The climatolog-

ical analysis of these four categories revealed that snow bands are typically associated with

rapidly intensifying ECs. However, the analysis also found cases of synoptically weak low
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pressures associated with a snow band resulting in heavy snowfall, such as the 30 March

2003 snowstorm (Evans 2006) which resembles the quasi-stationary band composite, and the

Presidents’ Day 2003 storm (Kocin and Uccellini 2004a), thus it should be recognized that

not all Northeast heavy snowfall events are associated with rapidly intensifying cyclones.

1.2.2 Numerical Modeling of Northeast ECs: Deterministic and Ensemble Approaches

Rapid cyclogenesis was often underforecast in the early days of NWP modeling through

the 1970s (Sanders and Gyakum 1980). One such notable case was the 1979 Presidents’

Day Storm (PDS). During the PDS, a strong anticyclone in the Northeast U.S. developed

upstream of a strong baroclinic zone. Heavy snow developed in association with low-

tropospheric warm air advection and isentropic ascent in the vicinity of the baroclinicity.

The initial round of precipitation was accompanied by a weak surface cyclone over Ken-

tucky. A subsequent secondary cyclone developed off the Mid Atlantic coast as a tropopause

polar vortex (TPV) infringed upon the aforementioned baroclinic zone, inducing the devel-

opment of this seconary cyclone which underwent rapid deepening (Bosart 1981; Uccellini

et al. 1984; Uccellini et al. 1985). The operational NWP guidance available at the time of the

PDS failed to simulate the rapid cyclogenesis of the secondary low. The major shortcoming

in the operational forecasting of the PDS event spurred the need for research to improve

understanding and forecasting of rapid cyclogenesis. When full physics were applied to sim-

ulations of this case, incorporating boundary layer fluxes and latent heat release, the model

had a significantly better representation of the deepening rate of the cyclone. The improved

representation of the boundary layer and diabatic processes led to a more intense and farther

left of track cyclone than originally forecast (Nuss and Anthes 1987; Uccellini 1990).

The role of diabatic processes on surface cyclogenesis has been the subject of research

since the 1950s (Reed et al. 1988). Studies such as Chen and Dell’osso (1987) and Reed

et al. (1988) focusing on East Asian and North Atlantic cyclogenesis, respectively, found that

latent heating had a large impact on the deepening rate of ECs. Condensation heating was
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found to account for 40%-50% of the deepening for cases studied by Reed et al. (1988), with

simulations that included latent heating having produced a deeper cyclones than those that

contained full physics but removed the effects of latent heating. These studies highlighted

the importance of properly accounting for diabatic processes in accurately simulating rapid

cyclogenesis. Subsequently, additional studies evaluating operational NWP models available

at that time found a systematic underforecasting of deepening rates of cyclones, especially

over water, in addition to a slow motion bias (Grumm and Siebers 1989; Smith and Mullen

1993). It was hypothesized by Grumm and Siebers (1989) that the underdeepening bias over

the ocean may be associated with lack of data as well as a systematic model cold bias.

Since the aforementioned studies, significant strides have been made in NWP modeling,

including much higher horizontal and vertical model resolutions and parameterization of

convective and cloud microphysical processes, and in sufficiently high model resolutions the

ability to explicitly resolve cloud microphysics. As such, this set of same systematic biases

that were evident in NWP models in the 1970s may not be applicable in modern NWP

models. Nonetheless, there have been recent cases with short-term poor forecasts of EC

track and intensity, such as the 24–25 January 2000 cyclone (Zhang et al. 2002), 26–27

December 2010 (Zheng et al. 2013), and 26–27 January 2015 (Greybush et al. 2017). In

addition, improved forecast skill of EC track and intensity does not always correlate to

improved snowfall forecasts, especially with regards to simulating mesoscale snow bands

within the larger scale cyclone (Greybush et al. 2017).

A recent analysis of systematic NWPmodel biases in ECs in North America composited

operational Global Forecast System (GFS) and North American Mesoscale (NAM) model

forecasts for the 2002–2006 cool seasons, and found substantial spatial variability in model

biases (Charles and Colle 2009). When focusing on the West Atlantic region off the East

Coast and assessing position biases from a latitude and longitude coordinate framework,

a westward EC track bias was evident in the NAM and slight westward track bias was

calculated for the GFS in the 42–60 hour forecast lead time range. Colle and Charles (2011)
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found further variability in biases as a function of lead time, with the GFS exhibiting a

northeast cyclone position bias in the 102–120 hour lead time range, and a slight northwest

cyclone position bias in the 36–48 hour lead time range. Cases where the GFS overdeepened

the surface cyclone at 96-hour lead time also exhibited a northeast position bias, while cases

where the GFS underdeepened the cyclone had a south position bias (Colle and Charles

2011).

Ensemble forecasting arose from the notion that random, small-scale perturbations in

the initial conditions could have a large impact on the subsequent forecast evolution, that

served as an early basis for chaos theory (Lorenz 1963). This concept served as a motivation

for ensemble-based forecasting, where imposed perturbations in the model initial conditions

and model physics are an attempt to represent the uncertainty and error in observations

(Molteni et al. 1996). The ensemble of forecasts would theoretically produce a dispersive

distribution of possible forecast outcomes, which should contain the eventual true observed

solution.

More recent studies have applied an ensemble forecast approach to assess the pre-

dictability of East Coast ECs. While initial studies relied on using the adjoint of a forecast

model to assess the sensitivity of the model forecast to initial conditions, Torn and Hakim

(2008) demonstrated that an ensemble forecast approach can be used to link forecast uncer-

tainty with initial conditions. This ensemble sensitivity method was applied to the 26–27

December 2010 snowstorm, which most operational models resolved as too weak and too far

east, using the operational 50-member European Centre for Medium-Range Weather Fore-

casts (ECMWF) ensemble (Zheng et al. 2013). The resulting analysis showed that medium-

range uncertainty associated with the intensity of the cyclone could be traced back to the

amplitude of an upstream wave packet, while along-track uncertainty was associated with

the amplitude of the precursor cyclone and the position of an antecedent trough over the Gulf

of Mexico. EC climatology research by Korfe and Colle (2018) compared ensemble forecasts

for U.S. East Coast cyclones from the Global Ensemble Forecast System (GEFS), Canadian
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Meteorological Centre (CMC), and the European Centre for Medium-Range Weather Fore-

casts (ECMWF). This study found a general bias to underdeepen the more intense ECs in

the medium range, with a slow (negative along track) bias for most of the forecast range and

a left of track bias from 120 to 144 hour lead times.

The studies on forecast skill climatology of East Coast ECs focus on similar, albeit

slightly different, geographic regions and time frames. For many of these studies, the use of

operational ensemble forecast data is a limiting factor to the time range of case selection.

Often times, operational model upgrades lead to different ensemble versions which tend to

exhibit different systematic forecast biases. Additionally, there have been comparatively few

studies in literature pertaining to the synoptic-scale patterns associated with categorically

different EC biases and errors. This thesis seeks to bridge this gap in literature by utilizing

a reforecast dataset to create a longer term climatology of ECs and assessing the synoptic

scale patterns associated with extremes in various error types.

1.2.3 Objective Cyclone Identification and Tracking

The subject of analyzing trends and biases in EC forecasts brings forth the question of

how to objectively identify and track ECs in a spatially gridded dataset. Tropical cyclones

can be easily tracked due to their relatively slow motion and a coherent trackable vortex.

In addition, there are authoritative documents that include official track and intensity data

for observed tropical cyclones, such as IBTRACS (Knapp et al. 2010). In contrast, tracking

midlatitude cyclones is more complicated. The literature lacks a single widely-accepted

objective definition of a cyclone. ECs are also characterized by large vertical tilts, variability

in cyclone horizontal symmetry and vertical depth, and ECs can merge and/or phase (Neu

et al. 2013).

The current suite of cyclone identification and tracking algorithms utilize different

variables to identify cyclones at consecutive time steps. The algorithms often use mean sea

level pressure (Wernli and Schwierz 2006), 1000-hPa geopotential height minima (Blender
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and Schubert 2000), 925-hPa area-averaged cyclonic relative vorticity (Bentley 2018), 850-

hPa vorticity maxima (Hodges 1994; Sinclair 1997), or a combination of MSLP and vorticity

(Murray and Simmonds 1991; Hewson and Titley 2010). These algorithms are primarily

based on identifying and tracking features on single horizontal surfaces, which while generally

sufficient, fails to account for the vertical structure of cyclones which can vary significantly

throughout their life cycle. Some algorithms do account for vertical structure; Lim and

Simmonds (2007) applied a pseudo-vertical identification and tracking criteria to represent

the depth and tilt of the cyclone.

There are advantages and disadvantages to using a cyclone identification algorithm

based on either vorticity maxima or pressure minima. The reasoning for selecting either

variable can depend on the specific aspects of a cyclone are most relevant. Hodges et al.

(2003) notes vorticity-based algorithms place a larger emphasis on the wind field and high-

frequency Synoptic scale, while pressure-based algorithms emphasize the mass field and low-

frequency synptic scale. Existing literature presents multiple reasons for why each variable

should or should not be used; Pinto et al. (2005) notes that algorithms searching for pressure

minima overestimate deep, mature cyclones while failing to detect cyclolysis or cyclogenesis,

which a vorticity-based algorithm would be better able to identify.

The second part of an algorithm after the identification of a cyclone is to construct a

cyclone track. As defined by Neu et al. (2013), "a cyclone track consists of a series of cyclones

identified in sequential time steps at adjacent locations, which are deemed to represent the

same physical feature in reality." Tracking cyclones is sensitive to the temporal resolution of

the data used. Most standard modern reanalysis data uses 6-hour increments, during which

an average midlatitude cyclone can traverse upwards of 660 km assuming an average motion

of 110 km h-1 (Blender and Schubert 2000; Neu et al. 2013). Identifying a cyclone track at

its first time step is more difficult since there is no motion vector data from a pre-existing

track. Current methods in tracking algorithms apply climatological motion vectors (Murray

and Simmonds 1991; Sinclair 1997), or use the initial position of the cyclone as a first guess
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location for its next location (Wernli and Schwierz 2006). For cyclones that have existed

beyond one time step, methods apply a combination of climatological cyclone motion and

extrapolated motion vector to calculate a probability of the likelihood of a match between

two cyclones in different time increments (Murray and Simmonds 1991; Sinclair 1997). These

algorithms utilize a reduced linear continuation of the track from a previous time step to

account for climatological deceleration of a cyclone with time (Wernli and Schwierz 2006),

or applying an approximated steering flow-based extrapolation (Hewson and Titley 2010).

The varying methodologies of each cyclone tracking algorithm has its advantages and

disadvantages. A comparison of numerous algorithms was conducted by the Intercompari-

son of Mid Latitude Storm Diagnostics (IMILAST; Neu et al. 2013) project, applied to the

same reanalysis data and the same spatial and temporal resolutions. The IMILSAT results

show general agreement in tracks of intense, long-duration cyclones, but also show notable

differences including a large spread in the lifespan of short lived cyclones. The algorithms

implement different magnitudes of spatial smoothing which effectively reduces the horizontal

resolution of the data and thus can impact the number of cyclones identified (Sinclair 1997;

Blender and Schubert 2000). The spatial smoothing also has the effect of relaxing the mag-

nitude of mesoscale features such as vorticity maxima. The smoothing is intended to reduce

the signature from frontal boundaries that may have larger magnitudes of vorticity than the

center of the cyclone, thus focusing the algorithm on the larger scale circulation associated

with the synoptic scale cyclone. The smoothing could incorrectly combine multiple separate

features within close proximity into the same feature (Sinclair 1997). Though smoothed data

may miss potentially trackable features, unsmoothed data may be oversensitive to mesoscale

variability. This highlights the importance of the horizontal resolution of the data used for

cyclone identification (Blender and Schubert 2000).

Objective cyclone tracking algorithms are subject to similar limitations and errors

regardless of methodology. Externals factors such as input data are such factors; the rapid

storm motion of midlatitude cyclones, in addition to rapid acceleration or deceleration of
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these ECs, can result in the tracking algorithm splitting a cyclone track into two or more

separate cyclones when upon visual inspection these features could be considered the same

physical entity. Alternatively, the presence of two cyclones in close proximity may result in

the temporal merging of two seemingly separate physical entities as the same cyclone (Neu

et al. 2013). Using smaller time increments can increased confidence that the same feature

is being tracked between one time step and the next one.

Another area of weakness in cyclone tracking algorithms is with cyclogenesis and cy-

clolysis portions of a cyclone’s life cycle, meaning algorithms can begin or end the cyclone

track at much different times (Neu et al. 2013). The asynchronous cyclogenesis or cyclolysis

times can be attributed to the degree of horizontal smoothing, or utilizing different pressure

levels for tracking. The variation in vertical tilt and depth of the cyclone can be a function

of its life cycle stage, but also vary based on the variables used for tracking. While most

conventional algorithms exhibit weaknesses with the aforementioned scenarios, Hanley and

Caballero (2012) accounts for cyclone mergers and splits as well as multicenter lows by using

MSLP contours to identify the presence of multicentre cyclones (MCCs), which it found are

common in intense cyclones. This algorithm, while an overall improvement, nonetheless has

limitations with about 20% of connections between cyclones deemed as spurious.

The identification and tracking of cyclones near the U.S. East Coast presents additional

complexities due to regional topography and phenomena, such as secondary redevelopment

(Kocin and Uccellini 1990). In secondary redevelopment a primary cyclone, represented by a

MSLP minimum approaching the East Coast from west of the Appalachian Mountains, can

weaken west of the mountains as a secondary, initially weak, surface cyclone develops near

a coastal baroclinic zone. Such cyclones are often referred to as "Miller-B" type cyclones

(Miller 1946). These cyclones are characterized by cold air damming east of the Appalachian

Mountains associated with high lower-tropospheric stability and northeasterly surface flow

blocked by the terrain. These low-level characteristics enhance baroclinicity near the coastal

region and facilitate a second area of surface cyclogenesis while the antecedent surface low
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west of the Appalachians decays. These cyclones are known to be problematic for tracking

algorithms because cyclones at their incipient stage are typically shallow and based in the

lower-troposphere. Depending on the pressure level selected for the tracking algorithm and

the distance matching criteria between time steps, tracking algorithms may be inconsistent

with keeping this as the same cyclone or splitting it into two cyclones during the transfer

process. Other cases where both primary and secondary low pressures are active at the same

time present challenges regarding which cyclone can be considered the dominant feature,

especially if they remain within close proximity to one another.

1.3 Research Goals and Hypotheses

This thesis will examine the predictability and prediction skill of Northeast ECs from an

ensemble reforecast perspective. The perceived existence of a systematic right of track bias

in forecasts of Northeast ECs will be investigated with the goal to improve the understanding

of biases and errors of forecasts of Northeast ECs and help increase situational awareness.

Specifically, from an ensemble reforecast dataset, cyclones with 1) right vs. left of track

biases, 2) weak vs. strong biases, and 3) along vs. across track variability will be compared.

The key research goals for this thesis, and their accompanying hypotheses that will be

addressed in this thesis, are as follows:

1. Investigate whether there is a systematic right of track bias in the short-to-medium

range.

• Hypothesis 1: The null hypothesis is that there is no systematic right of track

bias for all cyclones. This hypothesis is motivated by the forecaster rule of thumb

suggesting a directional bias with decreasing lead time, in addition to prior studies

(Korfe and Colle 2018; Bentley 2018) that show no systematic right of track bias

for ordinary cyclones. A slight right of track bias exists for more intense cyclones,

similarly to prior research by Bentley (2018).
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2. Assess the spatial distributions and temporal trends in track and intensity errors for

forecasts of Northeast ECs.

• Hypothesis 2: There is a correlation between an underdeepening bias and a right

of track bias in the GEFS forecast. This hypothesis is motivated by numerical case

studies of the PDS event showing an underdeepening bias associated with a right

of track bias (Nuss and Anthes 1987; Uccellini 1990). More intense cyclones are

associated with stronger downstream warm air advection, isentropic ascent and

latent heat release, thus shortening the downstream half wavelength and resulting

in stronger downstream PV erosion and downstream ridge amplification. The logic

is that the aforementioned set of processes can reconfigure the flow diabatically to

change the storm motion, and this set of processes is not well resolved by models

at longer lead times.

3. Identify upstream and local synoptic-to-large scale patterns for ECs characterized by

large and small ensemble mean track and intensity biases.

• Hypothesis 3: Cases with a weak or right of track bias are associated with more

meridional flow over North America relative to a strong or left of track bias, re-

spectively. This is motivated by the same reasoning used in hypothesis 2, but as

assessed from a synoptic composite perspective. The logic motivating this hypoth-

esis is that the meridional flow over North America is conducive to preconditioning

the flow with more subtropical moisture.

4. Identify upstream and local synoptic-to-large scale patterns for ECs characterized by

large and small along and across track ensemble mean position spread.

• Hypothesis 4: Cases with large across track variability are associated with more

downstream ridging relative to small across track variability. The logic motivating

this hypothesis is that larger across track variability is associated with an ampli-
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fying upper level flow downstream of the cyclone, with a shorter half wavelength

relative to small across track variability cases.

• Hypothesis 5: Cases with large along track variability are associated with a

stronger jet streak over eastern North America relative to small along track vari-

ability. It is hypothesized that cases with larger along track variability are enter-

ing a region with a strong upper tropospheric jet alinged parallel to the cyclone

motion vector.

Chapter 2 will focus on the data and methodology used to construct a climatology

of Northeast ECs and detail the cyclone identification and tracking algorithm applied in

this thesis. Chapter 3 will show and analyze the climatology of Northeast ECs as well as

their intensity and track biases, followed by Chapter 4 analyzing the results from different

composites of cases with varying ensemble error and spread. Chapter 5 will conclude the

results from the preceding two chapters while offering suggestions for future work relating

to the transfer of research to operations.
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2. Data and Methodology

The purpose of this thesis is to first identify cyclones that tracked close to the Northeast U.S.,

then quantify several aspects of the predictability of these storms. The analysis specifically

considers cool-season (Nov–Mar) extratropical cyclones that can be tracked within both

reanalysis and ensemble forecast frameworks. When identifying cyclones with a potential

to impact the major population centers in the Northeast, operational meteorologists in the

National Weather Service often reference cyclones that track near the coordinate located at

the 40°N and 70°W “benchmark”. From here on, the term "benchmark" refers to the 40°N

and 70°W coordinate.

2.1 Data

Three sets of data were primarily used for this study: a reanalysis cyclone track

dataset, reanalysis data, and reforecast data. This analysis uses a dataset of MSLP mini-

mum tracks from the 70-km resolution European Centre for Medium-Range Weather Fore-

casts (ECMWF) interim reanalysis (ERA-Interim; Dee et al. 2011) that was generated by

Sprenger et al. (2017) (referred to as Sprenger from here on). The Sprenger dataset was

generated with the cyclone identification and tracking algorithm developed by Wernli and

Schwierz (2006). This data was used for case selection, as further elaborated in section 2.2.1.

Ensemble forecasts were retrieved from the 1.0° horizontal resolution, 11-member Global

Ensemble Forecast System (GEFS) Reforecast version 2 (Hamill et al. 2013). The GEFS

Reforecast is available from December 1984 to present day and is based on the 2012 version

of the GEFS, ensuring a consistent version of the model over a long term hindcast period.

The forecast verification is based on the 0.5° horizontal resolution NCEP Climate Forecast

System Reanalysis (CFSR; Saha et al. 2010) dataset. Calculations using this gridded data

were done using Python and a variety of libraries, including MetPy (May et al. 2008 - 2017)

and GeoPy.
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2.2 Case Selection

2.2.1 Case identification in Reanalysis Data

A preliminary list of cyclone cases was created using the Sprenger dataset. From the

original list containing all global cyclone data, several filters to identify candidate cyclones

that were likely to have affected the Northeast U.S. during the October–March time frame

included retaining cyclones that (a) existed for a minimum of 48 hours, (b) tracked within

a 750-km radius of the benchmark for a period of 12 or more hours, and (c) had a minimum

lifetime MSLP below 1016 hPa and a minimumMSLP within the 750-km domain surrounding

the benchmark below 1005 hPa. These criteria were selected to ensure that sufficiently

intense and long-lived cyclones were identified. This set of cyclones are likely to be trackable

with an objective tracking algorithm in an ensemble reforecast dataset. The selection criteria

was applied from 1 November 1985, since the GEFS Reforecast is available from beginning

1 December 1984, through 31 December 2015 when the Sprenger dataset terminates. The

case list yielded a preliminary total of 601 candidate cases.

There are some high-impact cases that exhibit multiple MSLP minima and are not

identified as a single cyclone in the Sprenger dataset, and thus fail to satisfy the crite-

ria above. To ensure most such high-impact events were included in this climatology, the

preliminary list of events was compared against events classified in the Northeast Snowfall

Impact Scale (NESIS; Kocin and Uccellini 2004a), which ranks NE snowstorms as a function

of the spatial extent of snow, amount of snow, and the population affected by the snowstorm.

One prominent case that failed to meet the preliminary case criteria was the 6–8 January

1996 blizzard, which ranks as a category 5 "extreme" storm and has the second highest

NESIS value in the dataset. This case was manually added to the case list for a total of 602

candidate cases.

After identifying the preliminary cases, the next step was to ensure that these cyclones

were trackable within the CFSR. This step implemented the objective cyclone tracking algo-

rithm discussed in section 2.3 to the CFSR, with the CFSR horizontal resolution coarsened
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to a 1.0° grid using bilinear interpolation to maintain consistency between the resolution of

the CFSR and GEFS, and compared the cyclone tracks obtained from the CFSR to those

from the Sprenger dataset. Cyclones between the two datasets were considered a match if:

• A track identified using the CFSR is within 500-km of the track from the equivalent

cyclone identified in the Sprenger dataset

• The CFSR and Sprenger tracks are within 500-km of each other within a 12-hour

centered window of when the Sprenger track was closest to the benchmark

• The CFSR and Sprenger cyclones both lasted for 24 or more hours

The criteria above filtered the number of cases down to 517 candidate cases.

2.2.2 Case identification in Ensemble Forecasts

For all identified cases in the CFSR, the tracking algorithm was subsequently applied

to the GEFS forecast data at several lead times to obtain cyclone tracks for each ensemble

member. The time at which the CFSR track was closest to the benchmark will be referred

to from here on as the "time of peak impact", and is used as a reference time to determine

the time corresponding to forecast initialization and lead times, as well as verification. For

some cyclone track calculations that require information from the time steps preceding and

following the time of peak impact (e.g., storm motion vectors), a separate "verification time"

was obtained by adjusting the time of peak impact forward or back by 6 hours in cases where

the time of peak impact coincided with the first or last time identified in the CFSR track,

respectively. This adjustment procedure is represented visually in Figure 2.1.

The GEFS Reforecast dataset is only initialized once daily, at 0000 UTC, in contrast

with operational model guidance which is initialized four times daily. This motivates the

need to find an initialization time that most closely matches to the day 0 lead time. The

aforementioned verification time was used as the reference to determine which forecast ini-

tialization corresponded to certain lead time groups. This procedure is represented visually

17



in Figure 2.2. For cases that verified at 0000 UTC, the 0000 UTC run from that day was

chosen as the day 0 lead time. Following a similar analysis conducted by Torn (2017), for

cases that verified at 0600 UTC (1800 UTC), the closet initialization time is 6 hours prior

(after). Handling 1200 UTC verification times is more complex, as Torn (2017) notes it is

unclear whether the initialization time 12 hours prior or after should be used. While Torn

(2017) discarded cases with a 1200 UTC verification time, this study retains them for the

purposes of retaining all useful data. To ensure that the hour 0 lead time forecast is as close

as possible to the time of cyclogenesis, if the CFSR track has a cyclone position 12 hours

prior to the verification time, then the initialization time used is 12 hours prior, otherwise

the initialization time used is 12 hours after.

2.3 Cyclone Tracking Algorithm

There are many complexities in tracking Northeast cyclones. These complexities are

the result of discrepancies in methodologies that lead to differences in cyclone tracks be-

tween cyclone tracking algorithms (e.g., section 1.2.3). Since this research is focused on

understanding the predictability of Northeast cyclones, an objective cyclone tracking algo-

rithm was developed to account for these complexities of Northeast cyclone tracking. This

algorithm was subsequently applied to both reanalysis and ensemble forecast perspectives.

2.3.1 Selection of Variables and Pressure Level

As discussed in section 1.2.3, tracking algorithms are sensitive the temporal and spatial

resolution of the dataset, variable used for tracking (e.g., mean sea level pressure, relative

vorticity, center of circulation, geopotential height), and pressure level (if applicable), among

other factors. This section describes why a combination of 925-hPa area-averaged relative

vorticity maxima and geopotential height minima were utilized in this algorithm to identify

cyclones in gridded datasets. 925-hPa was selected (as opposed to MSLP) to account for

secondary redevelopment of a surface cyclone, as discussed in section 1.2.3. The discrepancy

between the primary and secondary low tends to be maximized near the surface, while the
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secondary low lags in development at 850-hPa1.

Comparing these redeveloping, or Miller-B, cyclones in the ensemble forecast and ver-

ification process raises several questions, including whether the whole cyclonic circulation

should be considered as one cyclone or two separate features. How to consider these cy-

clones from a forecast perspective can differ among cases. The considerations are a function

of the location and timing of the redevelopment depicted in the ensemble member, and the

pressure level used for tracking.

In ensemble forecasts, variability in the location and timing of the secondary cyclogen-

esis frequently associated with East Coast cyclones also presents an issue of inducing a large

ensemble position spread. If there is a broad synoptic scale circulation associated with a

cyclone with a weak MSLP gradient that is similar among ensemble members, the location

of the absolute MSLP minimum can range in location from just west of the Appalachians

to just off the Mid Atlantic coast. The ensemble cyclone positions in these cases will gener-

ally bifurcate into two clusters. This induces an artificial spread in cyclone position that is

not necessarily indicative of a similar spread in mid-upper tropospheric forcing, or cyclone

impacts.

One method of mitigating this superficial spread in cyclone position is by using a mass

centroid approach to determine cyclone location. The centroid approach is frequently utilized

to identify tropical cyclone centers in high resolution data, and can similarly be applied to

a midlatitude cyclone with a broad pressure gradient and multiple MSLP minima similar

in magnitudes. Here the methodology of Nguyen et al. (2014) is applied to the 925-hPa

geopotential height field in the proximity of the absolute geopotential height minimum. A

caveat for this approach exists with cyclones with large asymmetries in the pressure gradient,

where the pressure gradient is often weaker on the south and east quadrants where pressure

is lower in association with frontal boundaries. This caveat leads to a frequent bias with

this approach for midlatitude cyclones with a single minimum and strong pressure gradient,
1 The tracking algorithm was also implemented using the 850-hPa level, but secondary cyclogenesis was

detected much later than at 925-hPa, justifying the use of the latter.
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which shifts the position of the centroid south and east of its true location.

In addition to the height centroid method, applying horizontal area-averaging to the

vorticity field is another way of mitigating the potential for artificial ensemble spread. As ref-

erenced in section 1.2.3, numerous tracking algorithms applied area-averaging and/or spatial

smoothing to the field of interest (e.g., vorticity, MSLP). This effectively reduces the horizon-

tal resolution of the data, thus reducing mesoscale features not associated with the synoptic

scale cyclone, such as frontal boundaries. The area-averaging allows the tracking algorithm

to focus on tracking the synoptic-scale cyclone. While a useful approach in the short term,

it is unavoidable to retain at least some ensemble position variability especially at longer

lead times due to larger ensemble spread in the location of the transfer of the surface cy-

clone. This larger spread can result in some variability in whether ensemble members meet

the criteria for retaining the same cyclone as opposed to initiating a new cyclone off the

coast, depending on several factors such as the distance that the cyclone traveled in a single

time step. Nonetheless, the ensemble forecast position spread using this method is reduced

compared to an approach that does not apply horizontal smoothing or area-averaging.

2.3.2 Cyclone Identification and Tracking

The cyclone tracking algorithm developed for this thesis uses 925-hPa area-averaged

relative vorticity and geopotential height as well as Python specific functionality. An ide-

alized example of this is illustrated in Figure 2.3. To identify cyclones, the algorithm first

calculates 700-km area-averaged 925-hPa relative vorticity and applies a 2-sigma Gaussian

filter to eliminate mesoscale and shorter wavelength features, thus retaining the synoptic-

scale vorticity on the order of 700-km or larger, a methodology similar to Sinclair (1997).

In order to identify area-averaged vorticity maxima greater than 1.5 × 10−5 s−1 , Python’s

SciPy maximum filter function (scipy.ndimage.filters.maximum_filter) is applied using a

10° window. For every such identified maximum, a geopotential height minimum centroid

is computed, following the methodology of Nguyen et al. (2014), provided that there is a
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geopotential height minimum within a 750-km radius of the 925-hPa area-averaged vorticity

maximum.

Next, the algorithm attempts to match currently identified cyclones to those from the

previous time step. A simple solution used in other tracking algorithms is to match the closest

cyclone from the previous time step with the current cyclone to create a track (Wernli and

Schwierz 2006). For this algorithm, the weighted proximity of both the identified vorticity

maxima and height minima from the cyclones in the previous time step were compared to

the current cyclone, and the cyclone where both the vorticity maxima and height minima

locations were closest was matched. If no cyclones are identified in the previous time step

within a 750-km radius of the current cyclone, it is considered to be a new cyclone.

For the second time step and beyond, Figure 2.4 provides an illustration of the steps

below that describe how the tracking portion of the algorithm functions.

• Step A: For all identified cyclones in the current time step, the closest cyclone from the

previous time step is chosen as a potential candidate cyclone for matching. If there is

such a cyclone within a 600-km radius of the current cyclone location given a 6-hour

time interval in the data (e.g., Blender and Schubert (2000)), step A(i) is performed.

If not, then step B is performed.

• Step A(i): An extrapolated motion vector is computed from the previous two, or three

if available, time steps of the candidate cyclone, and if the current cyclone is within 400

km of the extrapolated vector then the two cyclones are matched to create a track. If

this condition fails, or if there is no cyclone in the previous time step within a 600-km

radius of the current cyclone, then step B is performed.

• Step B: If there are (a) no cyclones at the current time step within a 1000-km radius of

this cyclone, and (b) a cyclone in the previous time step within 750 km of the current

cyclone, the two cyclones are matched to create a track. If this condition fails, step C

is performed.
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• Step C: If this cyclone’s position is within 60 degrees of the extrapolated motion vector

of the previous cyclone, then the two cyclones are matched to create a track. Otherwise,

this process is repeated for all cyclones from the last time step within a 750-km radius

of this cyclone, and if no successful match is found, then this cyclone is considered to

be a new cyclone.

The algorithm was applied for all candidate cyclones, and was applied to track all

cyclones in the North America domain beginning from 24 hours prior to when the cyclone

was first identified in the Sprenger dataset. In order to focus on tracking cyclones near

the U.S. East Coast and to avoid complexities associated with cyclolysis or cyclone mergers

towards southern Greenland and Iceland, the algorithm was cut off 36 hours past the time

of peak impact.

2.3.3 Matching Ensembles Tracks to Cyclones

Once cyclone tracks have been identified in the CFSR dataset, the next step is to track

these cyclones in the GEFS Reforecast dataset, as described in section 2.2. The tracking

algorithm is applied to all cyclones identified in the forecast dataset from 0 through 5 day

forecast lead time. Considering cyclones in a forecast framework necessitates a method to

match ensemble tracks to the CFSR verification reference cyclone. Since forecast position

error grows with forecast lead time, sometimes non-linearly (Korfe and Colle 2018), a search

radius with varying size as a function of lead time was applied following the methodology

of Bentley (2018). The cyclone matching search radius starts with 400 km at 0-hour lead

time and expands by 200 km every 24 hours to reach 1400 km at 120-hour (5-day) lead

time. To match the ensemble track to the verification CFSR cyclone, the ensemble track

must fall within this search radius at any point within a 12-hour window centered at the

verification time. If multiple ensemble tracks occur within this radius, the closest ensemble

track is selected as a match to the CFSR verification cyclone track.
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2.4 Ensemble Forecast Diagnostics and Verification

One of the main goals of this thesis is to assess the spatial distribution and temporal

trends of ensemble forecasts for Northeast ECs, as well as to determine whether a systematic

right of track bias exists (section 1.3). To investigate the ensemble track and intensity spread

and error, the mean ensemble standard deviation (STDEV) and mean absolute error (MAE)

for all cases were calculated.

To evaluate whether the GEFS forecasts of cyclone position and intensity are well

calibrated, the ratio of the mean STDEV to the mean bias-corrected root mean square error

(RMSE) was calculated following the methodology described in Murphy (1988). The STDEV

is defined as follows:

STDEV (t) =

√√√√ 1

M(t)

M(t)∑
m=1

σ2
m(t)

σ2
m(t) =

1

N − 1

N∑
n=1

(xn(t)− xm(t))
2

Where M(t) is the total number of cases at lead time t, σ2
m(t) is the variance of case

m at lead time t, N is the total number of ensemble members at lead time t, xn(t) is the

forecast value from an individual ensemble member n at forecast lead time t, and xm(t) is

the ensemble mean value at forecast lead time t. The bias-corrected root mean square error

(RMSE) is defined as follows:

RMSE(t) =

√√√√ 1

M(t)

M(t)∑
m=1

(xm(t)− b(t)− on(t))2

b(t) =
1

M(t)

M(t)∑
m=1

(xm(t)− o(t))

Where b(t) is the bias (e.g., systematic error) of the ensemble forecast climatology

at forecast lead time t, and o(t) is the verification CFSR value valid at the same time as
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the ensemble mean forecast xm(t). For ensemble position forecasts, the bias was calculated

by partitioning the bias into latitudinal and longitudinal components, and removing the

component biases from the ensemble mean forecast at time t. This calculation will provide

information on whether the GEFS Reforecast ensemble is well calibrated. A well calibrated

ensemble will have a STDEV-to-RMSE ratio equal to one, where the STDEV equals the

RMSE. A ratio less than one, with a STDEV statistically significantly less than the RMSE,

indicates an underdispersive bias – meaning the forecast verified outside of the ensemble

spread. A ratio greater than one, with a STDEV statistically significantly larger than the

RMSE, indicates an overdispersive bias – meaning the verification lies inside the ensemble

spread (Murphy 1988).

In addition to STDEV, ensemble variability can be further analyzed from a position

variability relative coordinate to ascertain whether most of the ensemble forecast position

variability is in the along-track or across-track direction. To do so, the ensemble forecast

position ellipse methodology utilized in Hamill et al. (2011) was employed, and is represented

in Figure 2.5. To calculate this ellipse, eigenvectors of the displacement of ensemble forecast

cyclone positions relative to the ensemble mean are computed, with the largest eigenvec-

tor (S1) denoting the direction of greatest position variability and thus the ellipse major

axis. The angle between eigenvector S1 and the ensemble mean motion vector (MV) were

subsequently compared. If the angle is zero, with MV parallel to S1, variability is predomi-

nantly in the along-track direction. If the angle is 90°, with MV normal to S1, variability is

predominantly in the across-track direction.

2.5 Composite Analyses

The upstream and local synoptic-to-large scale patterns for ECs associated with various

ensemble mean spread and errors are considered in hypotheses 3–5 and are assessed using

a composite analysis approach. These composites were created using CFSR data, but cases

are assigned to groups based on different bias and spread categories. Given the correlation
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in intensity and across-track biases discussed in section 3.3, composites were created with

CFSR data based on ensemble mean biases and spreads calculated for forecasts at day 3

lead time. These day 3 lead time biases and spreads are computed over a 12-hour period

centered at the time of peak impact, or essentially when the CFSR verification cyclone track

was at its closest proximity to the benchmark location, to ensure temporal continuity in the

observed biases or ensemble spreads over the 12-hour time frame. These composites were

further filtered to cyclones that occurred within a specific radius of the benchmark, varying

by composite group, to prevent large positional variability. To assess the hypotheses stated

in section 1.3, composites were created as follows:

• Left vs. Right of Track Bias: Cases where the day 3 lead time ensemble mean exhibited

an across-track error corresponding to either left of track (LOT) or right of track (ROT)

greater than 25 km compared to the CFSR storm motion vector, and consistently

exhibited that error for the 12-hour period centered at verification time, were selected

as candidate cases. The closest proximity of the CFSR verification cyclone to the

benchmark must be 250 km or less for these cases to be selected. These thresholds

yielded 49 LOT cases and 53 ROT cases.

• Weak vs. Strong Bias: Cases where the day 3 lead time ensemble mean exhibited a

weak (WB) or strong (SB) 925-hPa geopotential height bias compared to the CFSR

verification value, and consistently exhibited that error for the 12-hour period centered

at verification time, were selected as candidate cases. The closest proximity of the

CFSR verification cyclone to the benchmark must be 250 km or less for these cases to

be selected. These thresholds yielded 63 WB cases and 44 SB cases.

• Small vs. Large Across Track Variability: Cases where the day 3 lead time ensemble

position spread in the across track direction relative to the ensemble mean motion

vector was in the lower quartile (small variability; SV) or the upper quartile (large

variability; LV) of the GEFS climatological across-track variability, with that spread
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consistent for the 12-hour period centered at verification time, were selected as candi-

date cases. The closest proximity of the CFSR verification cyclone to the benchmark

must be 275 km or less for these cases to be selected. These thresholds yielded 36 SV

and 36 LV cases.

• Small vs. Large Along Track Variability: Cases where the day 3 lead time ensem-

ble position spread in the along track direction relative to the ensemble mean motion

vector was in the lower quartile (small variability; SV-L) or the upper quartile (large

variability; LV-L) of the GEFS climatological along-track variability, with that spread

consistent for the 12-hour period centered at verification time, were selected as candi-

date cases. The closest proximity of the CFSR verification cyclone to the benchmark

must be 275 km or less for these cases to be selected. These thresholds yielded 36 SV-L

and 36 LV-L cases.

For each bias group, composites were computed for MSLP, 500-hPa geopotential height

anomaly relative to the 1981-2010 CFSR climatological value at the time of each case, and

300-hPa wind speed. Composite differences were subsequently calculated and tested for

statistical significance at the 95% confidence level using a 1000 resample bootstrap test

following the methodology of Rios-Berrios et al. (2016).
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Figure 2.1: Procedure followed for selecting verification time using the time of peak impact
(TOPI) for each case. Green circles represent (top) TOPI and (bottom) verification time,
or in case 3 both TOPI and verification time.

Figure 2.2: Procedure followed for selecting the day 0 lead time initialization based on the
case verification time.
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Figure 2.3: Idealized illustration of the cyclone tracking algorithm. The 925-hPa geopotential
height field is contoured in light blue contours, with the dark blue line representing the 925-
hPa height minimum track. The area encompassed by the area-averaged 925-hPa vorticity
exceeding the minimum threshold is denoted by the dark red contour, with the area-averaged
vorticity maximum track in the bold red line.
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Figure 2.4: Procedure followed for the cyclone tracking algorithm from the second time step
and beyond of an existing cyclone.
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Figure 2.5: Forecast position ensemble spread ellipse, adapted and modified from the original
figure in Hamill et al. (2011). Individual dots represent ensemble member positions, the circle
represents the bivariate normal distribution fit to contain 90% of the data, S1 represents the
eigenvector along the direction of greatest ensemble spread, and eigenvector S2 is normal to
S1.
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3. Climatology

3.1 Climatology of All Candidate Cyclones

Figure 3.1 shows the identified CFSR cyclone tracks for all cases in the October–March

1985–2015 period using the cyclone tracking algorithm described in section 2.3. The majority

of the candidate cyclones can be considered coastal lows and progress from southwest to

northeast. Generally, these cyclones are first identified near the Southern U.S., the northern

Gulf of Mexico or the Southeast U.S. coast, with the more intense cyclones concentrated

over the western Atlantic Ocean and in higher latitudes. There is an additional smaller

subset of northwest to southeast progressing cyclones identified over southern Canada that

are generally weaker than the coastal low subset. The density of CFSR cyclone tracks,

calculated as the number of cyclone tracks within a 350-km radius normalized by the total

number of cyclones, is shown in Figure 3.2a. The cyclone track density shown in Figure 3.2a

differs from climatologies of all of North American cyclone tracks, with the present subset

exhibiting a slight westward shift of the maximum east of New England and the absence

of additional maxima in other regions of North America, but nonetheless exhibits a similar

maximum in cyclone track density just north of the Gulf Stream southwest of Nova Scotia.

The westward shift is likely a result of not including cyclones that track too far south to

satisfy the criteria for candidate cases listed in section 2.2.1.

The cyclogenesis location density (Fig. 3.2b) is calculated based on the locations

where cyclones are first identified by the tracking algorithm. For the purposes of this thesis,

"cyclogenesis" will be defined from here on as the location where the cyclone was first

identified in the tracking algorithm, with this caveat considered given that the same cyclone

may have a different cyclogenesis location and time when calculated using a different tracking

algorithm. There are two distinct maxima in cyclogenesis location density: one over the

western Atlantic Ocean west of the benchmark, and a second over the South Mississippi
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Valley. A third less distinct maximum exists over southern Manitoba. The first region of

cyclogenesis near the benchmark is likely associated with coastal cyclogenesis events in the

Gulf Stream region as well as secondary redevelopment of cyclones originating farther inland.

The second region of cyclogenesis in the Southern U.S. is likely associated with cyclogenesis

downstream of upper-tropospheric troughs emerging from the Rockies, and redevelopment

of lee cyclones along the climatological baroclinic zone in the region (Bentley et al. 2019).

3.2 Ensemble Forecast Skill and Calibration

The objective tracking algorithm described in section 2.3 was applied to all candidate

cyclones in the GEFS Reforecast dataset. Especially at longer lead times, uncertainties in

the cyclone evolution, motion and intensity may result in ensemble members that do not

have an identified cyclone matched to the CFSR verification track data. This requires an

analysis of the average number of ensemble members detected for each cyclone to obtain a

minimum threshold of ensemble members for subsequent analyses. Averaged over all cases,

the average number of ensemble members that contain a cyclone matched to a CFSR track

plotted by lead time, is shown in Fig. 3.3a. On average, there are 10–11 members of all 11

possible members that resolved the cyclone through 54 hours. This number decreases to 9

members by 90 hours and 8–9 members by 114 hours. Fig. 3.3b shows the percent of cases

by lead time in which the GFS forecast contains ≥7 or ≥11 ensemble members of all 11

ensemble members that resolved the case. While the number of cases with all 11 members

containing a matching cyclone decreases to below 40% by 102-hour lead time, the number of

cases with ≥7 members remains at above 80% through the entire 120-hour range. With the

higher percentage of cases containing 7 or more members considered, the subsequent results

will only incorporate an evaluation of the GEFS reforecast data corresponding to cases where

≥7 ensemble members were identified.

These ensemble forecast position tracks are used to evaluate the skill in forecasting

cyclone position and intensity as quantified by 925-hPa geopotential height. Figure 3.4
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shows the mean ensemble standard deviation (STDEV) and mean absolute error (MAE) for

both forecast cyclone position and intensity. The position standard deviation (Fig. 3.4a)

increases exponentially in the first 84 hours with a transition to a linear increase thereafter.

The average position STDEV is 59 km at 24-hour lead time, 197 km at 72-hour lead time,

and 472 km at 126-hour lead time. The ensemble mean error (Fig. 3.4b) increases linearly

with lead time, with an average of 97 km at 24-hour lead time, 253 km at 72-hour lead

time, and 454 km at 126-hour lead time. The cyclone intensity forecast STDEV (Fig. 3.4c)

increases somewhat non-linearly with lead time, with an average of 6.8 m at 0-hour lead

time, 27.4 m at 72-hour lead time, and 56.7 m at 126-hour lead time. The MAE of the

cyclone intensity (Fig. 3.4d) increases nearly linearly, with an average of 1.9 m at 0-hour

lead time, 36.1 m at 72-hour lead time, and 57.7 m at 126-hour lead time.

To evaluate whether the GEFS forecasts of cyclone position and intensity are well cal-

ibrated, the ensemble mean standard deviation (STDEV) and the mean bias-corrected root

mean square error (RMSE) are computed following the methodology described in section

2.4, averaged over all cases for all initializations and all forecast hours where seven or more

ensemble members were identified. As elaborated in section 2.4, a STDEV-to-RMSE ratio

of one indicates a well calibrated ensemble, a STDEV below the RMSE indicates an under-

dispersive bias, and a STDEV above the RMSE indicates an overdispersive forecast. The

resulting RMSE and STDEV for position and intensity forecasts are shown in Figure 3.5.

The forecast position results (Fig. 3.5a) suggest a slight overdispersive forecast at initial-

ization, which may be a result of the initial condition perturbation applied to the GEFS.

However, there is a consistent underdispersive position bias from 12-hour to 126-hour lead

time, which is significant at the 95% confidence level when using a two-sided t-test for the

null hypothesis that these two samples have identical averages. The intensity forecast (Fig.

3.5b) is similarly overdispersive at initialization, and is significantly (at 95% confidence level)

underdispersive from 6-hour lead time through the end of the analysis period at 126-hour

lead time.
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Ensemble variability can be further assessed utilizing a position variability relative co-

ordinate, as described in section 2.4. The ensemble position ellipse methodology from Hamill

et al. (2011) was applied to all cases at all forecast initializations, for all forecast hours where

seven or more ensemble members contained cyclones matched to the verification cyclone. The

vector along the direction of greatest ensemble spread was compared to the ensemble mean

motion vector to assess whether variability is predominantly in the along or across track

direction. The angle between the two vectors was calculated, with the distribution of the

angles as a function of lead time shown in Figure 3.6. An angle of zero indicates predom-

inantly along-track variability, while an angle of 90° indicates predominantly across-track

variability. The majority of the cases exhibit mainly along-track variability, with the median

angle between 25° and 30° from 0 through 5 day lead times.

The ratio of the S1 to S2 eigenvector (defined in Fig. 2.5) can be used to further assess

whether there is large preferred direction variability. The resulting distribution of ellipse

ratios for all cases across 0 through 120 hour forecast lead times shown in Figure 3.7. Most

cases have a ratio between 1 and 3, with a smaller subset of cases having a ratio between

3 and 4. Compared to an analysis of ensemble position ellipse ratios applied to tropical

cyclones (Elless 2015), there is a larger frequency of extreme preferred direction variability

within this climatology of ECs (i.e., ratio above 3) compared to a climatology of tropical

cyclone forecasts, implying that there often is preferred direction variability.

3.3 Climatology of Cyclones Partitioned by Forecast Skill

The forecast position error of the ensemble mean cyclone is examined with respect to

the CFSR storm motion vector, at multiple forecast lead times (Fig. 3.8). The majority

of the cases exhibit minimal error at initialization (Fig. 3.8a). A small number of cases

exhibit larger position errors, as large as 100 km. While some larger position errors at

initialization are to be expected given that initial condition perturbation was applied to the

GEFS (Hamill et al. 2013), some cases where a broad area of low pressure with a weak
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925-hPa height gradient may also inevitably lead to larger uncertainty regarding the initial

position of the cyclone in each ensemble member. By 24-hour lead time, the forecast position

error grows as represented by the frequency distribution of the maximum shifting towards a

slow and left track bias (Fig. 3.8b). This slow and left of track bias is also apparent in the

48-hour forecast data, before becoming less discernible by the 72-hour forecast. Longer lead

times towards 5-day lead time (not shown) show a more prominent left of track bias. This

near-term left of track and slow bias in the GEFS data is consistent with previous results by

Bentley (2018), as well as the slow bias found in an examination of North American cyclones

in the operational GEFS by Korfe and Colle (2018). The short-term left bias is statistically

significant from zero across-track bias at the 95% confidence level from 24-36 hour and 48-66

hour lead times. The slow bias is significant from 0 through 66 hour lead times. These biases

suggest that for an overall climatology of cyclones, there is no systematic right of track bias

for Northeast ECs.

Bentley (2018) found a right of track bias beyond forecast hour lead time of 156 hours

for extreme weather events, described by a category of anomalously intense cyclones that

lasted for a sufficiently long duration. While this thesis does not consider such long lead

times, a similar comparison of position error for all cyclones compared to the top 20th

percentile of cyclones as ranked by intensity, defined here as magnitude of 925-hPa area-

averaged vorticity, is presented in Figure 3.9. All cyclones and intense cyclones alike show a

significant (at the 95% confidence level) slow and left of track bias through 36-hour lead time.

While all cyclones continue to exhibit a slow and left bias through 78-hour lead time, the

left bias is no longer significant for intense cyclones beyond 36-hour lead time, with a slow

bias evident through 54 hours. The all cyclone group exhibits a left of track bias consistently

throughout the forecast period, especially towards 120 hours, while the intense cyclones have

no significant bias at longer lead times in neither the along nor across track direction. The

results presented here do not show a systematic right of track bias for Northeast ECs. It is

possible that such a bias may be evident at longer lead times not shown here, but captured
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by Bentley (2018).

Despite the significant short term left of track mean bias, it can be subjectively assessed

that the number of cases with a right of track bias especially prior to 72-hour lead time is

not negligible compared to the number of cases with a left of track bias (Fig. 3.8b,c). The

relatively similar number of right vs. left of track bias cases was used to test Hypothesis 2

(section 1.3) stating that a correlation exists between an underdeepening and right of track

bias. Figure 3.10 shows the Pearson correlation coefficient (PCC) between across-track error

and intensity error as a function of forecast lead time. There is a consistent negative PCC

across all lead times, which can be interpreted as a correlation between an underdeepening

and right of track bias, and similarly overdeepening and left of track bias in an ensemble

mean forecast. This correlation is significant from one through five day lead times at the

95% confidence level using the Pearson r, Spearman r, and Kendall Tau significance tests

(Wilks 2011). The relationship peaks at day 3 lead time (Fig. 3.11) with r = −0.45 before

decreasing to r = −0.33 by 5-day lead time (Fig. 3.11).

3.4 Climatology Discussion

Section 3.1 reviewed a climatology of all CFSR cyclone tracks from the 1985–2015

period (Fig. 3.1), as well as cyclone track density (Fig. 3.2a) and cyclogenesis density

(Fig. 3.2a). The CFSR cyclone track distribution is consistent with prior North America

extratropical cyclone (EC) climatology studies (e.g., Bentley et al. (2019)). The overall

regions of cyclogenesis are similar to the cyclogenesis density plot of ordinary cyclones from

Bentley et al. (2019). The differences occur near the coastal Atlantic where the maximum

is shifted poleward in this climatology, likely associated with the selection of 925-hPa vs.

surface levels used to calculate the cyclone tracks. The second maximum in the southern

U.S. is shifted equatorward compared to Bentley et al. (2019), likely due to failing to account

for cyclones that track too far north to satisfy the criteria for candidate cyclones. The

cyclogenesis region associated with lee cyclogenesis in Bentley et al. (2019) is absent in this
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climatology, likely indicating that the majority of lee cyclones track too far north and/or

undergo cyclolysis too early to satisfy the criteria for candidate cyclones.

Sections 3.2 and 3.3 reviewed whether the ensembles are well calibrated, and examined

across-track biases for ensemble mean forecast position as a function of lead time to assess

if a right of track bias exists. For both the all cyclone group and intense cyclones, no

systematic right of track bias was identified. For all cyclones, a large left of track bias is

apparent at long lead times, towards 120 hours (Fig. 3.9a). It is possible that this left bias

may be a result of the type of cases that exhibit a right of track (and accordingly weak

bias) containing ensemble members with cyclones that were too weak to be identified by the

tracking algorithm, while the cyclones with a left of track and strong bias were well identified

(section 3.3). This situation would lead to an undersampling of right of track cases at longer

lead times which would manifest as an overall left of track bias averaged over all cases. This

undersampling hypothesis has not been tested in this thesis and may be a subject of future

work.

Section 3.3 further found a negative correlation between track directional biases and

intensity biases, peaking at day 3 lead time before decreasing towards longer lead times. It

is speculated that the peak in correlation at day 3 lead time may be a result of ensemble

uncertainty mostly focused on shortwave troughs serving as precursors to cyclogenesis. These

upper-level features can lead to relatively minor track or intensity variability while the longer

wavelength regime is generally well modeled. This may not be the case at longer forecast lead

times beyond day 3, where additional uncertainties such as the type of cyclone evolution and

long wavelength regime break down the correlation between track and intensity biases. The

decrease in the correlation beyond day 3 lead time may also be associated with the average

time of an upper-tropospheric trough resulting in the incipient East Coast cyclogenesis to

traverse North America over the radiosonde sampling network, with upper-level signatures

72 hours preceding Northeast U.S. snowstorms often over western North America (Kocin

and Uccellini 2004b). However, this interpretation is speculative and these hypotheses have
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not been tested as part of this thesis.
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Figure 3.1: Tracks of all objectively identified cyclone tracks from the CFSR, shaded by
their 925-hPa area-averaged vorticity amplitude in 10−5 s−1.

Figure 3.2: Density of (a) all cyclone tracks and (b) location of cyclone when first objectively
identified, shaded by the percentage of cyclones within 350 km of a grid point normalized
by the total number of cyclones.
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Figure 3.3: (a) Average number of ensemble members identified for each case and (b) percent
of cases with all 11 members or 7 or more members, as a function of forecast lead time.

40



Figure 3.4: Ensemble forecast position (a) mean standard deviation in km and (b) mean
absolute error in km, as a function of forecast lead time. Panels (c) and (d) are the same
as (a) and (b) but for ensemble forecast intensity intensity. The 5th-95th percentile range is
shaded in light blue, with the 20th-80th percentile range shaded in darker blue.
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Figure 3.5: Bias-corrected RMSE (solid) and STDEV (dashed) for (a) position and (b)
intensity, as a function of forecast lead time. Dots denote where the difference between the
RMSE and STDEV is statistically significant at the 95% confidence level, with dark blue
dots indicating an overdispersive bias and light blue dots indicating an underdispersive bias.
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Figure 3.6: Violin plot distribution of the angle between ensemble mean motion vector and
the S1 eigenvector representing the direction of greatest ensemble spread, binned by forecast
lead time. Orange lines represent the median, and the box represents the interquartile range
(IQR).
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Figure 3.7: A histogram of the percentage of all forecasts from 0 through 120 hour lead
times in each ellipse ratio category.
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Figure 3.8: Ensemble mean forecast position error relative to the verification CFSR storm
motion vector oriented north, in kilometers, valid at (a) 0 hour, (b) 24 hour, (c) 48 hour,
and (d) 72 hour forecast lead times. Convex hulls representing the 50th, 75th and 95th
percentiles are contoured, with 40 km binned histograms for along and across track error
shaded by the frequency of cases in each bin, with higher values in red and purple.
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Figure 3.9: Ensemble mean forecast position error relative to the verification CFSR storm
motion vector oriented north, in kilometers, for (a) all cyclones and (b) Strongest 20%
percentile of cyclones. Numbers represent the forecast hour. Dark filled shading indicates
that both along and across track biases are statistically significantly different from zero at
the 95% confidence level, while lighter filled shading indicates either along or across track
biases are significantly different from zero at the 95% confidence level.
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Figure 3.10: Pearson correlation coefficient between across-track error vs. intensity error
as a function of forecast lead time. Dots in red indicate where the correlation coefficient is
statistically significant at the 95% confidence level.
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Figure 3.11: Across-track error (km) vs. intensity error (dam) for day 3 lead time forecasts.
The linear regression between the two variables and the r-value of the Pearson correlation
coefficient are labeled on the plot.
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4. Composites

The previous chapter examined a climatology of verification cyclone tracks from the CFSR,

obtained using the tracking algorithm referenced in section 2.3, as well as climatologies of

ensemble forecast position spread, finding an underdispersive position bias, in addition to

variability predominantly in the along-track direction with a smaller frequency of predomi-

nantly across-track variability. While no systematic right of track bias was found, there is a

negative correlation between across-track bias and intensity bias, peaking at day 3 lead time

(section 3.3). These results motivate this chapter’s goals to further examine these biases and

position variability groups from a synoptic perspective to assess the spatial differences in

the flow configurations, compared to the features typically associated with Northeast U.S.

snowstorms (Kocin and Uccellini 2004b).

To examine hypotheses 3-5 as stated in section 1.3, suggesting that there are synoptic-

to-large scale flow configurations that are associated with systematic biases in the forecasts

of Northeast ECs, this chapter considers composites of cyclones categorized by bias groups.

These composites are created using CFSR verification centered at the time of peak impact,

with cases selected based on their bias or position spread evident at day 3 lead time. The

methodology for this chapter is further discussed in section 2.5. Section 4.1.1 considers left

of track vs. right of track biases at day 3 lead time, and section 4.1.2 considers weak vs.

strong intensity biases at day 3 lead time. Motivated by the presence of a relatively small

subset of cases exhibiting predominantly across-track variability, section 4.2.1 considers small

vs. large ensemble forecast position spread in the across track direction, and section 4.2.2

considers small vs. large ensemble forecast position spread in the along track direction.
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4.1 Ensemble Bias Composites

4.1.1 Left vs. Right of Track Bias

Figure 4.1 shows the CFSR composite differences between the day 3 lead time right

of track (ROT) minus the left of track (LOT) biases for MSLP (Fig. 4.1a-c), 500-hPa

geopotential height anomaly relative to climatology (Fig. 4.1d-f), and 300-hPa wind (Fig.

4.1g-i) at t0 – 48 h, t0 – 24 h and t0 lead times. Focusing on the MSLP composite at t0

(Fig. 4.1c), there is a region of significantly higher MSLP from the Rockies into the South

Plains and the Gulf of Mexico in the ROT composite compared to the LOT composite. This

difference originates over the Northwestern U.S. at t0 – 48 h (Fig. 4.1a) and propagates

equatorward while encompassing most of the continental U.S. by t0 – 24 h (Fig. 4.1b). The

ROT composite additionally has a region of significantly higher MSLP over the Northeast

U.S. 24 hours preceding the closest approach of the cyclone to the benchmark, compared to

the LOT composite.

The 500-hPa height anomaly field at the 0 hour lag time (Fig. 4.1f) shows a more

meridional flow over North America in the ROT cases compared to the LOT cases. The

difference in the flow is highlighted by a significantly deeper trough in the East Coast and a

higher amplitude ridge in the West Coast (Fig. 4.1f). This difference can be traced back to

t0 – 48 h with a significantly larger positive height anomaly over the Northwest U.S. (Fig.

4.1d), persisting over the West Coast through t0 while the downstream trough over the East

Coast is deeper in the ROT cases from t0 – 24 h to t0 + 6 h (the latter not shown). There is

an additional region of positive height anomaly downstream of the East Coast trough that

is significantly larger in the ROT than LOT cases from t0 – 24 h (Fig. 4.1e) to t0.

The evolution of the evolution of the 300-hPa composite difference with lag time (Fig.

4.1g-i) suggests that differences in the wind are associated with smaller scale variations

compared to the other fields analyzed. At t0 – 48 h, there are few regions of significant

differences aside from the larger magnitude in wind with the ROT cases relative to the LOT

cases over the core of the jet stream. At t0, a coupled jet streak signature is apparent in
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the mean of both composites, with the ROT composite mean exhibiting a stronger and

equatorward displaced subtropical jet streak, and a stronger downstream polar jet streak.

The composite differences representing higher MSLP in the ROT cases progress equa-

torward, and the differences indicate more meridional flow over North America in these cases,

suggesting that northerly flow in the Central U.S. may be more enhanced in the ROT cases.

Given that these cases occur during the cold season, there may be a higher frequency of

cold air outbreaks (CAOs) over the central United States leading up to and during ROT

cases. CAOs over the U.S. are generally associated with positive height anomalies over the

western U.S. and negative height anomalies to the east, and positive MSLP anomalies over

the western U.S. two days prior to the peak of the CAO (Konrad 1996). The composite

500-hPa height and MSLP fields in Figure 4.1 exhibit similarities to the aforementioned

features associated with CAOs, with higher amplitude flow over North America implying an

anomalous northerly wind with a more poleward source of air parcel trajectories and likely

a higher probability of a colder source region. The higher MSLP in the Northeast U.S. at t0

– 24 h is also likely indicative of stronger antecedent anticyclones over the Northeast U.S.,

associated with cold air damming and thus retaining low-tropospheric cold air while enhanc-

ing low-tropospheric baroclinicity and perhaps aiding in cyclogenesis (Kocin and Uccellini

2004b).

4.1.2 Weak vs. Strong Bias

Hypothesis 2 expects a negative correlation between the magnitude of the across-track

and intensity biases. The climatological analysis found a negative correlation between these

two biases in section 3.3, thus verifying hypothesis 2. This section will test hypothesis 3,

the composite difference between WB and SB cases will exhibit large-scale similarities to the

composite difference between the ROT and LOT cases. Specifically, WB cases are expected

to exhibit a more meridional flow over North America than SB cases.

Figure 4.2 shows the CFSR composite differences between the day 3 lead time weak
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(WB) minus strong (SB) biases for MSLP (Fig. 4.2a-c), 500-hPa geopotential height anomaly

relative to climatology (Fig. 4.2d-e), and 300-hPa wind (Fig. 4.2c-i) at t0 – 48 h, t0 – 24

h and t0. The MSLP composite difference at t0 (Fig. 4.2c) shows higher MSLP associated

with WB than SB cases in the Southeast U.S. and Gulf of Mexico regions. Compared with

the corresponding composite difference for ROT minus LOT cases (Fig. 4.1c), this positive

MSLP difference is confined to the South Plains and the Gulf of Mexico. Additionally, there

is a region where MSLP is lower in WB than SB cases over the North Plains and southern

Manitoba. The less expansive statistically significantly positive MSLP composite difference

is similarly evident at t0 – 24 h and t0 – 48 h.

The MSLP values within and surrounding the composite MSLP minimum at the bench-

mark at t0 are lower for the WB than SB cases. This implies that WB cases include more

intense cyclones than SB cases. Considering that the composite is not storm centered and

there is position variability among the cases within the composite, this does not necessarily

mean that WB cases are stronger than SB cases. However, an evaluation of the 925-hPa

cyclone area-averaged vorticity for both the LOT vs. ROT cases and the SB vs. SB cases

(Fig. 4.3) does suggest there are cyclone intensity differences. A comparison of the cyclone

intensity suggests that both WB and ROT cases are on average slightly stronger than SB and

ROT cases, respectively. The differences are statistically significant at the 95% confidence

level using a difference of means test.

The WB composite is associated with a lower 500-hPa height anomaly within the

East Coast trough than SB cases at t0 (Fig. 4.2f). Unlike the ROT minus LOT composite

difference (Fig. 4.1f), however, the ridge over western North America is not significantly

more amplified in the WB composite than the SB composite at t0. The composite difference

patterns over North America propagate downstream with time, with a positive difference in

height anomaly in the WB cases compared to the SB cases over the Northwest U.S. from t0 –

84 h (not shown) through t0 – 48 h (Fig. 4.2d), and a negative difference in height anomaly

with the WB cases compared to SB cases associated with the East Coast trough from t0 –
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24 h through t0 (Fig. 4.2e,f). While not shown, there is a subsequent positive difference in

height anomaly in WB cases compared to SB cases with the downstream ridge from t0 + 12

h through t0 + 36 h.

The 300-hPa wind composite at t0 (Fig. 4.2i) shows that the polar jet streak down-

stream of the cyclone is displaced poleward, and the subtropical jet streak upstream of the

cyclone is displaced equatorward, in the WB composite relative to the SB composite. While

there is no difference in wind speed in the polar jet streak, the subtropical jet streak is

stronger in the WB than SB composite. This difference is similarly evident at t0 – 24 h (Fig.

4.2h). This is different than the difference composite for ROT minus LOT cases (Fig. 4.1i),

in which the downstream jet streak was associated with wind speed differences between both

composites over the core of both subtropical and polar jet streaks.

Hypothesis 3 expected weak bias cases to be associated with a more meridional flow

than strong bias cases. At a single lag time, there are no coinciding positive (negative)

500-hPa height anomaly differences in the western (eastern) U.S. However, the previously

noted downstream propagation of the 500-hPa height anomaly differences between the WB

and SB composites suggests that when considering the temporal evolution of the 500-hPa

height anomaly field in the three day time period centered on the event, there is a more

meridional flow over North America in the WB composite compared to the SB composite.

Thus, hypothesis 3 is verified.

4.2 Ensemble Variability Composites

4.2.1 Across Track Ensemble Spread

This section examines hypothesis 4, which expects that cases with large across track

variability may be associated with more downstream ridging and a weak downstream polar

jet. Figure 4.4 shows the CFSR composite differences between the day 3 lead time of cases

with small across-track variability (SV) minus large across-track variability (LV) for MSLP

(Fig. 4.4a-c), 500-hPa geopotential height anomaly relative to climatology (Fig. 4.4d-f), and

53



300-hPa wind (Fig. 4.4g-i) at t0 – 48 h, t0 – 24 h and t0. The MSLP composite at t0 (Fig.

4.4c) shows an expansive area of higher MSLP in the SV composite than in the LV composite

from the central U.S. poleward into western Canada and the Northwest Territories. This

difference is persistent in that region through t0 – 84 h (not shown). There is an additional

equatorward and westward shift in the position of the Icelandic low at t0 – 24 h in the SV

composite compared to the LV composite. At upper levels, no significant difference was

found with the 300-hPa wind field near the coupled jet streak in the eastern U.S. at t0 (Fig.

4.4i). This is in contrast to prior composites of LOT vs. ROT biases and weak vs. strong

biases, which found differences with either the subtropical or polar jet streaks.

Hypothesis 4 asserts that large across track variability is associated with a more ampli-

fied downstream ridge than small across track variability. Contrary to the expectation stated

in hypothesis 4, there are no significant differences in the 500-hPa height field between SV

and LV cases near the East Coast in the three days prior to t0 (Fig. 4.4d-f). Differences

appear after t0 + 12 h (not shown) with lower heights over the Northeast U.S. and Southeast

Canada. The composite does not suggest an amplified downstream ridge, and these results

do not support hypothesis 4.

The persistence of the central U.S. signature of higher MSLP composite over several

days is indicative of colder temperature anomalies preceding and during the SV cases. This

suggestion is supported by the SV minus LV composite of 850-hPa temperature anomaly

(Fig. 4.5). SV cases are associated with widespread colder temperature anomalies across

the United States relative to the LV cases, with actual temperatures below climatological

normals across the eastern U.S. into the Gulf of Mexico (not shown). An additional feature

that is particularly notable in this composite is the persistence of higher 500-hPa height

anomalies across most of northern and western Canada in the SV composite relative to the

LV composite throughout the t0 - 84 h to t0 + 24 h range. When considered in combination

with lower heights equatorward of these more positive height anomalies in Canada, this

couplet implies a weaker westerly zonal wind over the western U.S. in the SV composite
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relative to the WV composite. This is supported by the analysis of weaker composite 300-

hPa wind for the SV case at t0 - 48 h.

The persistence of a western North American ridge anomaly throughout the 5-day

analysis period in the SV composite resembles a positive Pacific-North America (PNA)

teleconnection and a negative Eastern Pacific Oscillation (EPO) teleconnection pattern. A

positive PNA pattern has been correlated with cold North American patterns (Harnik et al.

2016). Similarly, a negative EPO pattern was linked to the anomalously cold winter of 2013–

2014 in the United States, which was associated with an upstream upper level block near

Alaska (Marinaro et al. 2015). In addition, negative North Atlantic Oscillation (NAO) and

negative Arctic Oscillation (AO) teleconnections have been linked to North American cold

air outbreaks (Walsh et al. 2001). A working hypothesis is that the SV cases are associated

with a more positive PNA and a more negative EPO that exhibit an amplified Alaskan

ridge and cold central U.S. Similarly, the large scale patterns over the eastern U.S. suggest

that SV cases are associated with a more negative NAO and AO than the LV cases, which

would indicate a higher likelihood of cold air outbreaks over the United States. To test these

hypotheses, teleconnection indices were compared between the SV and LV composites (Fig.

4.6), including the PNA, EPO, NAO, and AO. Both SV and LV composites are associated

with a +PNA on average, but the SV cases have a larger +PNA index 1 and 2 days prior

to the event. The signal is more prominent with the EPO, as LV cases associated with a

slightly positive EPO preceding the event while SV cases exhibit a neutral EPO, with the

difference significant from 1 to 4 days prior to the event. The SV cases also exhibit a more

negative AO and a more positive NAO compared to the LV cases. The overall implication is

that SV cases are on average associated with a higher likelihood of cold air outbreaks, with

the preceding PNA more positive and EPO more negative over western North America than

LV cases. However, a negative EPO pattern was not found for the average of SV cases.
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4.2.2 Along Track Ensemble Spread

Figure 4.7 shows the CFSR composite differences between the day 3 lead time small

along-track variability (SV-L) minus large along-track variability (LV-L) for MSLP (Fig.

4.7a-c), 500-hPa geopotential height anomaly relative to climatology (Fig. 4.7d-f), and 300-

hPa wind (Fig. 4.7g-i) at t0 – 48 h, t0 – 24 h and t0. In contrast with the across-track ensemble

spread, which showed little composite differences near the East Coast and downstream of

the cyclone, this composite difference plot shows a temporally and spatially consistent area

of lower MSLP (Fig. 4.7a-c) and 500-hPa height anomaly (Fig. 4.7d-f) over the northwest

Atlantic Ocean downstream of the cyclone from t0 – 72 h to t0 + 24 h (the latter not shown).

This difference in the Atlantic Ocean suggests that LV-L cases are associated with a stronger

downstream ridge and higher MSLP downstream of the cyclone than LV-L cases. The SV-L

cases are also associated with higher 500-hPa heights over much of Canada in the period

preceding the event (Fig. 4.7d-f). Both of these areas suggest that LV-L cases are associated

with a more meridional flow across the United States, and lower geopotential heights across

central Canada, than the SV-L cases. This difference pattern is consistent with the SV and

LV composite difference, but is displaced eastward compared to Figure 4.4d-f, with large

along-track ensemble spread being associated with higher 500-hPa heights upstream over

the U.S. West Coast.

Hypothesis 5 asserts a stronger downstream jet streak with LV-L cases relative to

SV-L cases. Given the composite differences in the 500-hPa field, it would be expected

that there would be a difference in the 300-hPa wind field as well, specifically regarding

the latitude of the jet stream. Fig. 4.7i shows that at t0, the downstream polar jet streak

is both stronger and displaced poleward in the LV-L composite than the SV-L composite,

and these differences are statistically significant. This result is consistent with the stronger

500-hPa geopotential height gradient in the LV-L composite relative to the SV-L composite

downstream of the cyclone. Thus, hypothesis 5 is considered to be true.
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4.3 Composites Discussion

Section 4.1.1 analyzed the composite differences between left of track (LOT) and right

of track (ROT) day 3 lead time bias cases. It was found that the ROT composite is associated

with a more meridional flow over North America than the ROT composite, along with higher

MSLP over the Central and Western U.S. in addition to the Northeast U.S. preceding the

event. This signature is likely indicative of a higher frequency of cold air outbreaks over

the Central and Eastern U.S. associated with ROT cases. At 300-hPa, the ROT composite

mean exhibits a stronger and equatorward displaced subtropical jet streak with a stronger

downstream polar jet streak. This signature is indicative of a strong ageostrophic wind

component in the equatorward entrance region of the jet streak downstream of the cyclone.

The jet signature suggests stronger tropospheric upward vertical motion with the ROT than

LOT cases, which may be indicative of heavier precipitation and stronger latent heat release

downstream of the cyclone to further amplify the downstream ridge. This hypothesis has

not been tested in this thesis and may be explored further in future work.

Section 4.1.2 analyzed the composite differences between weak (WB) and strong (SB)

day 3 lead time bias cases. The difference field suggested wave packet-like downstream

propagation of the 500-hPa height differences, with significant differences originating from

a higher amplitude Western U.S. ridge in the WB composite and translating downstream

to a deeper East U.S. trough and a subsequent deeper ridge downstream of the cyclone.

Prior research has noted similarities in downstream error propagation to the long distance

propagation of a Rossby wave packet (Zheng et al. 2013; Torn 2017). However, it is unclear

if the signal shown here is in fact associated with a wave packet. The 300-hPa composite

mean shows a coupled jet structure in the East U.S., with the WB composite showing the

downstream polar jet streak displaced poleward while the subtropical jet streak is displaced

equatorward. This may suggest that troughs associated with WB cases have a higher overall

amplitude than those associated with SB cases, although this hypothesis has not been tested

in this thesis.
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When comparing ensemble variability in the across-track direction (section 4.2.1), cases

with small across-track variability (SV) were found to be associated with higher MSLP and

500-hPa heights over much of central and western Canada compared to large across-track

variability (LV) cases in the 2–3 days leading up to the event. There was a particularly

strong signature of higher MSLP over the central U.S. associated with SV cases, which was

associated with more negative 850-hPa temperature anomalies across the eastern two thirds

of the United States. Hypothesis 4, asserting that large across track variability is associated

with a more amplified downstream ridge and a weaker downstream polar jet streak, was not

supported by the composite difference analysis. However, further testing of this hypothesis

such as feature ridge axis tracking would likely be required to assert this with high confidence.

Analyzing ensemble variability in the along-track direction (section 4.2.2) showed that

cases with large along-track variability (SV-L) are associated with a stronger and poleward

shifted jet streak, as well as stronger downstream ridging over the western Atlantic Ocean,

than those with small along-track variability (LV-L). The stronger downstream jet streak

suggests that LV-L cases may be stronger and move faster than SV-L cases, with the uncer-

tainty in the magnitude of forcing for propagation a potential cause of the large variability,

which may be explored more in future work.
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Figure 4.1: Difference plots of ROT minus LOT bias composites for (a,b,c) MSLP (hPa),
(d,e,f) 500-hPa height anomaly (dam), and (g,h,i) 300-hPa wind (ms−1). The difference
plots are presented for (a,d,g) -48 hour lag time, (b,e,h) -24 hour lag, and (c,f,i) 0 hour lag,
with 0-hour lag composite centered at the time of peak impact. For each panel, the difference
field is shaded, with warm colors indicating the ROT composite has a higher value than the
LOT composite. The mean value of both ROT and LOT composites is contoured in black
lines, and black stippling indicates statistical significance at the 95% confidence level.
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Figure 4.2: Same as Fig. 4.1, but for composite difference of WB minus SB cases.
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Figure 4.3: Distribution of CFSR observed 925-hPa area-averaged vorticity for (a) LOT
(n=48) vs. ROT (n=45) cases and (b) WB (n=44) vs. SB (n=63) cases. Orange lines
represent the median, black dots represent the average, with the box extending from the
lower to upper quartile values. Whiskers denote the range of the data.
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Figure 4.4: Same as Fig. 4.1, but for composite difference of SV minus LV across-track
variability cases.
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Figure 4.5: Composite difference of SV minus LV across-track variability cases for 850-hPa
normalized temperature anomaly (σ) at 0 hour lag time.
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Figure 4.6: Teleconnection comparisons of (a) PNA, (b) EPO, (c) NAO, and (d) AO, for -14
to 14 day lag times centered at the time of peak impact. Blue lines denote small across-track
variability composite with light blue shading denoting the Interquartile range (IQR), with
the same for red denoting large across-track variability. Statistical significance is tested at
the 95% confidence level.
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Figure 4.7: Same as Fig. 4.1, but for composite difference of SV minus LV along-track
variability cases.
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5. Conclusions and Future Work

5.1 Conclusions

Motivated by the need to increase situational awareness of high impact weather, this

thesis examines the errors and biases in forecasts of cool-season Northeast ECs. The overar-

ching goals of this thesis are to (a) examine whether a systematic right of track bias exists,

(b) analyze the climatology of track and intensity errors from a GEFS Reforecast ensemble

perspective for the Northeast U.S., and (c) compare synoptic patterns for cases that exhibit

various ensemble mean errors and biases. First, objectively identified cyclone tracks were

obtained for the verification CFSR data and forecast GEFS data using a tracking algorithm

created for this research centered on Northeast ECs.

The available GEFS ensemble forecast data was used to assess the hypotheses put forth

in section 1.3. A caveat to these results is that a systematic underdispersive bias was found

for both position and intensity forecasts from hour 6 lead time onward, consistent with prior

similar analyses on the operational GEFS (Froude 2010) and the GEFS Reforecast (Bentley

2018). Analyzing the spatial distributions and temporal trends in track and intensity errors

for Northeast ECs revealed the following conclusions:

• There is no systematic right of track bias, both for all cyclones analyzed and for the

most intense 20th percentile of cyclones (Fig. 3.9). This verifies hypothesis 1 regarding

the existence of a systematic right of track bias, as stated in section 1.3.

• Short forecast lead times (i.e., 1 to 2 days prior to the event) exhibit a slow and left of

track bias relative to the storm motion vector.

• Longer forecast lead times (i.e., 4 to 5 days prior to the event) exhibit a left of track

bias for the category of all cyclones. Intense cyclones do not exhibit this medium range

left of track bias.
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• A negative correlation exists between forecast position and intensity errors for North-

east ECs; specifically, weak bias cases are correlated with right of track bias cases, and

strong bias cases are correlated with left of track bias cases. This correlation peaks at

day 3 lead time before decreasing towards longer lead times. This verifies hypothesis

2 regarding an expected correlation between position and intensity biases.

The existence of a correlation between cyclone position and intensity biases at day 3

lead time motivated further analyses of cases with left of track (LOT) and right of track

(ROT) biases, as well as weak (WB) and strong (SB) intensity biases. This analysis was

done utilizing a synoptic composite approach, in order to compare the differences in the

synoptic-to-large scale patterns between these different bias groups using CFSR data. These

composites revealed the following conclusions:

• Both ROT and WB composites are associated with a more meridional flow over North

America relative to LOT and SB cases, respectively, and higher antecedent MSLP

within the Central U.S.

• ROT cases are associated with a stronger downstream polar jet streak and upstream

subtropical jet streak relative to LOT cases, while in the WB cases the polar jet streak

is displaced poleward and the subtropical jet streak is displaced equatorward relative

to SB cases.

• These analyses verified hypothesis 3 regarding the existence of a correlation between

WB and ROT cases and a more meridional flow over North America relative to SB

and LOT cases.

To assess the climatology of ensemble variability, ellipses representing ensemble forecast

position variability were calculated following the methodology of Hamill et al. (2011). Most

cases exhibit position variability predominantly in the direction of the ensemble mean motion

vector (i.e., along-track variability), with a much smaller subset of cases exhibiting position
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variability predominantly normal to the direction of the ensemble mean motion vector (i.e.,

across-track variability). A composite approach to assess synoptic differences in cases that

exhibit small vs. large ensemble position spread in either the along or across track direction

revealed the following conclusions:

• Cases with small across-track variability (SV) are associated with a higher amplitude

ridge and higher MSLP over western North America compared to the large across-

track variability (LV) cases. There is no evidence of a stronger downstream ridge for

LV cases compared to SV cases, thus rejecting hypothesis 4.

• SV cases are associated with more positive PNA, more negative EPO, and more neg-

ative NAO and AO relative to LV cases in the 1–4 days preceding the event. These

result offer some prognostic value, and in conjunction with previous analyses suggest

a higher likelihood of cold air outbreak over the eastern half of the U.S. leading up to

and during a SV event compared to a LV event.

• Cases with small along-track variability (SV-L) are associated with a weaker down-

stream ridge over the western Atlantic Ocean and higher heights over Canada, as well

as a weaker and equatorward shifted downstream jet streak, relative to large along-

track variability (LV-L) cases. These results verify hypothesis 5.

5.2 Future Work

It should be recognized that the results obtained from this thesis, while providing value

into the climatology of Northeast ECs and their forecast skill and biases, are sensitive to

the tracking algorithm applied and the criteria used to match ensemble cyclones to the ob-

served cyclone, especially at longer lead times. Different cyclone identification algorithms,

especially those incorporating different criteria for cyclone identification as well as criteria

for accounting for cyclone mergers or splitting, may have some impact on the duration of

and number of cases. An area of future work may involve applying several different cyclone
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tracking algorithms, perhaps including more sophisticated algorithms that consider the ver-

tical structure of cyclones (e.g., Lim and Simmonds (2007)), to compare the climatology

of GEFS errors and biases while using the same dataset. Additionally, the systematic bi-

ases presented in this work, and the synoptic patterns that correspond with these biases

and errors, while similar to past literature, specifically are in reference to the version of the

GEFS Reforecast used for this thesis (Hamill et al. 2013). Future upgrades to a new en-

semble system, especially including a different dynamical core such as the upcoming Finite

Volume Cubed-Sphere Dynamical Core (FV3) model, will likely lead to different systematic

biases. In addition, while statistically significant differences were found between composites

of intensity biases, position biases and position variability, the physical mechanisms that are

associated with these differences were not investigated as part of this thesis, and serve as

opportunities for future work.

This thesis is additionally part of a research-to-operations (R2O) project, with the goal

of applying the results found in this thesis to operational forecasting in the National Weather

Service (NWS). One such goal is to create a web-based tool to view ensemble forecasts of past

high-impact Northeast ECs, and to apply the same methodology to real time operational

GEFS forecasts to compare the forecast ensemble spread and type of variability to the

climatology presented in this thesis.

69



BIBLIOGRAPHY

Allen, J. T., A. B. Pezza, and M. T. Black, 2010: Explosive Cyclogenesis: A Global Clima-

tology Comparing Multiple Reanalyses. J. Climate, 23, 6468–6484.

Bentley, A., 2018: Extratropical Cyclones Leading to Extreme Weather Events over Central

and Eastern North America. Ph.D. thesis, University at Albany, State University of New

York.

Bentley, A. M., L. F. Bosart, and D. Keyser, 2019: A Climatology of Extratropical Cyclones

leading to Extreme Weather Events over central and eastern North America. Mon. Wea.

Rev., 147, 1471–1490.

Blender, R., and M. Schubert, 2000: Cyclone Tracking in Different Spatial and Temporal

Resolutions. Mon. Wea. Rev., 128, 377–384.

Bosart, L. F., 1981: The Presidents’ Day Snowstorm of 18–19 February 1979: A Subsynoptic-

Scale Event. Mon. Wea. Rev., 109, 1542–1566.

Charles, M., and B. A. Colle, 2009: Verification of extratropical cyclones within cyclones

within NCEP forecast models using an automated tracking algorithm: Part I: Comparison

of the GFS and NAM models. Wea. Forecasting, 24, 1173–1190.

Charney, J. G., 1948: On the scale of atmospheric motions. Geophys. Publ. Oslo, 17 (2).

Chen, S., and L. Dell’osso, 1987: A Numerical Case Study of East Asian Coastal Cyclogen-

esis. Mon. Wea. Rev., 115, 477–487.

70



Colle, B. A., and M. E. Charles, 2011: Spatial distribution and evolution of extratropical

cyclone errors over North America and its adjacent oceans in the NCEP Global Forecast

System model. Wea. Forecasting, 26, 129–149.

Davis, C. A., and K. A. Emanuel, 1991: Potential Vorticity Diagnostics of Cyclogenesis.

Mon. Wea. Rev., 119 (8), 1929–1953.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and perfor-

mance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.

Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

Elless, T. J., 2015: Evaluating preferred direction tropical cyclone track variability in an

operational global ensemble prediction system. M.S. thesis, Department of Atmospheric

and Environmental Sciences, University at Albany, State University of New York.

Evans, M., 2006: An analysis of a frontogenetically forced early-spring snowstorm. Bull.

Amer. Meteor. Soc., 87, 27–32.

Froude, L. S., 2010: TIGGE: Comparison of the Prediction of Northern Hemisphere Ex-

tratropical Cyclones by Different Ensemble Prediction Systems. Wea. Forecasting, 25,

819–836.

Greybush, S. J., S. Saslo, and R. Grumm, 2017: Assessing the Ensemble Predictability of

Precipitation Forecasts for the January 2015 and 2016 East Coast Winter Storms. Wea.

Forecasting, 32, 1057–1078.

Grumm, R. H., and A. L. Siebers, 1989: Systematic Surface Cyclone Errors in NMC’s Nested

Grid Model November 1988–January 1989. Wea. Forecasting, 4, 246–252.

71



Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau,

Y. Zhu, and W. Lapenta, 2013: NOAA’s Second-Generation Global Medium-Range En-

semble Reforecast Dataset. Bull. Amer. Meteor. Soc., 94, 1553–1565.

Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011: Global Ensemble

Predictions of 2009’s Tropical Cyclones Initialized with an Ensemble Kalman Filter. Mon.

Wea. Rev., 139, 668–688.

Hanley, J., and R. Caballero, 2012: Objective identification and tracking of multicentre cy-

clones in the era-interim reanalysis dataset. Quarterly Journal of the Royal Meteorological

Society, 138 (664), 612–625.

Harnik, N., G. Messori, R. Caballero, and S. B. Feldstein, 2016: The Circumglobal North

American wave pattern and its relation to cold events in eastern North America. Geophys-

ical Research Letters, 43 (20), 11,015–11,023.

Hewson, T. D., and H. A. Titley, 2010: Objective identification, typing and tracking of the

complete life-cycles of cyclonic features at high spatial resolution. Meteorological Applica-

tions, 17 (3), 355–381.

Hodges, K. I., 1994: A General Method for Tracking Analysis and Its Application to Mete-

orological Data. Mon. Wea. Rev., 122, 2573–2586.

Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A Comparison of Recent Re-

analysis Datasets Using Objective Feature Tracking: Storm Tracks and Tropical Easterly

Waves. Mon. Wea. Rev., 131 (9), 2012–2037.

Kenyon, J. S., 2013: The motion of mesoscale snowbands in northeast U.S. winter storms.

72



M.S. thesis, Department of Atmospheric and Environmental Sciences, University at Al-

bany, State University of New York.

Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010:

The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer.

Meteor. Soc., 91, 363–376.

Kocin, P. J., P. N. Schumacher, R. F. Morales, and L. W. Uccellini, 1995: Overview of the

12–14 March 1993 Superstorm. Bull. Amer. Meteor. Soc., 76, 165–182.

Kocin, P. J., and L. W. Uccellini, 1990: Snowstorms Along the Northeastern Coast of the

United States: 1955 to 1985. Meteor. Monogr.

Kocin, P. J., and L. W. Uccellini, 2004a: A Snowfall Impact Scale Derived From Northeast

Storm Snowfall Distributions. Bull. Amer. Meteor. Soc., 85, 177–194.

Kocin, P. J., and L. W. Uccellini, 2004b: Northeast Snowstorms. (Volume I: Overview,

Volume II: The Cases), Vol. 54. Meteor. Monogr., Amer. Meteor. Soc.

Konrad, C. E., 1996: Relationships between the Intensity of Cold-Air Outbreaks and the

Evolution of Synoptic and Planetary-Scale Features over North America. Mon. Wea. Rev.,

124, 1067–1083.

Korfe, N. G., and B. A. Colle, 2018: Evaluation of Cool-Season Extratropical Cyclones in a

Multimodel Ensemble for Eastern North America and the Western Atlantic Ocean. Wea.

Forecasting, 33, 109–127.

Lim, E., and I. Simmonds, 2007: Southern Hemisphere Winter Extratropical Cyclone Char-

73



acteristics and Vertical Organization Observed with the ERA-40 Data in 1979 – 2001. J.

Climate, 20, 2675–2690.

Lorenz, E. N., 1963: Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–141.

Marinaro, A., S. Hilberg, D. Changnon, and J. Angel, 2015: The North Pacific–Driven Severe

Midwest Winter of 2013/14. J. Appl. Meteor. Climatol., 54, 2141–2151.

May, R., S. Arms, P. Marsh, E. Bruning, and J. Leeman, 2008 - 2017: Metpy: A Python

package for meteorological data. Boulder, Colorado, URL https://github.com/Unidata/

MetPy, doi:10.5065/D6WW7G29.

Miller, J. E., 1946: Cyclogenesis in the Atlantic Coastal Region of the United States. J.

Meteor., 3, 31–44.

Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble

Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 (529),

73–119.

Murphy, J. M., 1988: The impact of ensemble forecasts on predictability. Quart. J. Roy.

Meteor. Soc., 114, 463–493.

Murray, R. J., and I. Simmonds, 1991: A numerical scheme for tracking cyclone centers from

digital data. Aust. Meteor. Mag., 39, 155–166.

Neu, U., and Coauthors, 2013: IMILAST: A Community Effort to Intercompare Extratrop-

ical Cyclone Detection and Tracking Algorithms. Bull. Amer. Meteor. Soc., 94, 529–547.

Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center

identification methods in numerical models. Mon. Wea. Rev., 142, 4326–4339.

74

https://github.com/Unidata/MetPy
https://github.com/Unidata/MetPy


Novak, D. R., L. F. Bosart, D. Keyser, and J. S. Waldstreicher, 2004: An Observational Study

of Cold Season–Banded Precipitation in Northeast U.S. Cyclones. Wea. Forecasting, 19,

993–1010.

Novak, D. R., B. A. Colle, and A. R. Aiyyer, 2010: Evolution of Mesoscale Precipitation

Band Environments within the Comma Head of Northeast U.S. Cyclones.Mon. Wea. Rev.,

138, 2354–2374.

Nuss, W. A., and R. A. Anthes, 1987: A Numerical Investigation of Low-Level Processes in

Rapid Cyclogenesis. Mon. Wea. Rev., 115, 2728–2743.

Pinto, J. G., T. Spangehl, U. Ulbrich, and P. Speth, 2005: Sensitivities of a cyclone detection

and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift,

14 (6), 823–838.

Reed, R. J., A. J. Simmons, M. D. Albright, and P. Unden, 1988: The role of latent heat

release in explosive cyclogenesis: Three examples based on ECMWF operational forecasts.

Wea. Forecasting, 3, 217–229.

Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An Ensemble Approach to Investigate

Tropical Cyclone Intensification in Sheared Environments. Part I: Katia (2011). J. Atmos.

Sci., 73, 71–93.

Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer.

Meteor. Soc., 91 (8), 1015–1057.

Sanders, F., and J. R. Gyakum, 1980: Synoptic-Dynamic Climatology of the “Bomb”. Mon.

Wea. Rev., 108, 1589–1606.

75



Sinclair, M. R., 1997: Objective Identification of Cyclones and Their Circulation Intensity,

and Climatology. Wea. Forecasting, 12, 595–612.

Smith, B. B., and S. L. Mullen, 1993: An Evaluation of Sea Level Cyclone Forecasts Produced

by NMC’s Nested-Grid Model and Global Spectral Model. Wea. Forecasting, 8, 37–56.

Sprenger, M., and Coauthors, 2017: Global Climatologies of Eulerian and Lagrangian Flow

Features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 1739–1748.

Sutcliffe, R. C., 1947: A Contribution to the Problem of Development. Quart. J. Roy., 73,

370–383.

Torn, R. D., 2017: A Comparison of the Downstream Predictability Associated with ET and

Baroclinic Cyclones. Mon. Wea. Rev., 145, 4651–4672.

Torn, R. D., and G. J. Hakim, 2008: Ensemble-based sensitivity analysis. Mon. Wea. Rev.,

136, 663–677.

Trenberth, K. E., 1978: On the interpretation of the diagnostic quasi-geostrophic omega

equation. Mon. Wea. Rev., 106, 131–137.

Uccellini, L. W., 1990: Processes contributing to the rapid devel-opment of extratropical

cyclones. Extratropical Cyclones: The Erik Palmen Memorial Volume, C. W. Newton,

and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

Uccellini, L. W., D. Keyser, K. Brill, and C. Wash, 1985: The Presidents’ Day Cyclone

of 18–19 February 1979: Influence of Upstream Trough Amplification and Associated

Tropopause Folding on Rapid Cyclogenesis. Mon. Wea. Rev., 113, 962–988.

76



Uccellini, L. W., P. Kocin, R. Petersen, C. Wash, and K. Brill, 1984: The Presidents’ Day

Cyclone of 18–19 February 1979: Synoptic Overview and Analysis of the Subtropical Jet

Streak Influencing the Pre-Cyclogenetic Period. Mon. Wea. Rev., 112, 31–55.

Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme Cold Out-

breaks in the United States and Europe. J. Climate, 14, 2642–2658.

Wernli, H., and C. Schwierz, 2006: Surface Cyclones in the ERA-40 Dataset (1958–2001).

Part I: Novel Identification Method and Global Climatology. J. Atmos. Sci., 63, 2486–

2507.

Wilks, D. S., 2011: Statistical methods in the atmospheric sciences, International Geophysics,

Vol. 100. 3rd ed., Academic Press.

Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise”

snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 1617–1632.

Zheng, M., E. K. Chang, and B. A. Colle, 2013: Ensemble Sensitivity Tools for Assessing

Extratropical Cyclone Intensity and Track Predictability. Wea. Forecasting, 28, 1133–

1156.

77


	ABSTRACT
	ACKNOWLEDGEMENTS
	Introduction
	Motivation
	Literature Review
	East Coast Cyclones and Snowstorms: Overview, Climatology and Dynamics
	Numerical Modeling of Northeast ECs: Deterministic and Ensemble Approaches
	Objective Cyclone Identification and Tracking

	Research Goals and Hypotheses

	Data and Methodology
	Data
	Case Selection
	Case identification in Reanalysis Data
	Case identification in Ensemble Forecasts

	Cyclone Tracking Algorithm
	Selection of Variables and Pressure Level
	Cyclone Identification and Tracking
	Matching Ensembles Tracks to Cyclones

	Ensemble Forecast Diagnostics and Verification
	Composite Analyses

	Climatology
	Climatology of All Candidate Cyclones
	Ensemble Forecast Skill and Calibration
	Climatology of Cyclones Partitioned by Forecast Skill
	Climatology Discussion

	Composites
	Ensemble Bias Composites
	Left vs. Right of Track Bias
	Weak vs. Strong Bias

	Ensemble Variability Composites
	Across Track Ensemble Spread
	Along Track Ensemble Spread

	Composites Discussion

	Conclusions and Future Work
	Conclusions
	Future Work


