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Outline

• The Tropical Cyclone Artificial Neural-network 
Error (TCANE) model

• Results from 2024 independent forecasts
• Sample products
• Product website
• Verification

• Future Plans
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The TCANE Model
• A Machine-Learning model developed at CIRA and being evaluated and 

improved under NOAA Hurricane and Ocean Testbed (HOT) support

• Predicts the track and intensity error distributions
• Assumes SHASH distribution for intensity, Bivariate normal distribution for track
• Input includes multi-model track and intensity forecasts and storm environmental 

predictions

• Input
• Multiple model track and intensity forecasts
• SHIPS predictors

• Shear, SST, distance to land along forecast track
• t=0 h max wind and t=-12 to 0 h max wind tendency

• Output
• Consensus model error distributions (early version)
• NHC official forecast error distributions (late version)
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TCANE Intensity Model Design
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Sinh-ArcSinh Distribution ( SHASH) for Various Input Parameters

µ = length (similar to normal distribution mean) 

σ = scale  (similar to normal distribution standard deviation)

γ = skewness

τ = tail 



TCANE Track Model Design
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Bivariate normal distributions for various input parameters

µx , µy = forecast biases in the x,y directions

σx ,σy = standard deviations of x and y errors

ρ(x,y)  = correlation of x and y errors

σx=σy  ρ=0 σx<σy  

ρ=0
σx>σy  

ρ=0

σx=σy  

ρ<0
σx=σy  

ρ>0

BVND plots from https://datasciencegenie.com/



TCANE v1.0
• Input 

• Track:       Early HWRF, GFS, ECMWF, UKMet, storm environment predictors
• Intensity: DSHP, LGEM, Early HWRF, GFS, storm environment predictors

• Output
• Parameters of the track and intensity error distributions
• Text and graphical forecast uncertainty products 

• Early run – error distributions of the 4-model consensus
• Potential use as forecaster guidance 

• Late run – error distributions of NHC official forecasts
• Potential use to add situational forecast dependence to public-facing 

uncertainty products
• Input to NHC’s Wind Speed Probability and P-Surge models
• Cone of Uncertainty

• Graphical products developed based on NHC/TSB coordination
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Products for 2024 Demonstration

• Track Uncertainty
• Uncertainty ellipses from TCANE and climatology for the 67th percentile

• Intensity Uncertainty
• Uncertainty time series from TCANE and climatology

• Probability of cat 1, 2, 3, 4 and 5 hurricane

• Probabilities of rapid intensification

• Explainable AI products (still under development)
• SHAP values for guidance on which predictors are affecting error distributions 
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TCANE Track Error Distribution Predictions
Hurricane Helene 24 Sept 2024 12 UTC

Early                                                           Late
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TCANE Intensity Error Distribution Predictions
Hurricane Helene 24 Sept 2024 12 UTC

Early                                                                           Late
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TCANE Probabilities of Hurricane Categories
Hurricane Helene 24 Sept 2024 12 UTC
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TCANE Probability of Rapid Intensification
Hurricane Helene 24 Sept 2024 12 UTC

TCANE

SHIPS-RII

SHIPS-RII Consensus

TCANE

SHIPS-RII

SHIPS-RII Consensus



TCANE Real-Time Website 

• Python programs for model training (2013-2023 cases)

• Fortran and shell scripts for real-time TCANE runs for 2024 cases

• Python programs for graphical products

• 2024 version ready late in the season
• No real-time ECMWF forecasts, so cases run after NHC provides post-storm a-

decks

• Full season being back-filled on CIRA development TC real-time page 
for evaluation

• Real-time tests in 2025
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2024 TCANE Verification

• TCANE trained on 2013-2023 data

• Verification of 2024 near-real time AL and EP/CP cases 
through 11/7/2024

• Verification measures
1. Reliability – How often did the consensus (early) or NHC forecast 

(late) fall within estimated error bounds?

2. Error-spread relationships – Is the TCANE predicted error spread 
a measure of the observed error spread?

• Early and Late runs evaluated separately

15



16
For perfect reliability, blue (red) bars would reach the 67th (80th) percentile dashed 
lines
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For perfect reliability, blue (red) bars would reach the 67th (80th) percentile dashed 
lines



Error-Spread Relationships

• Are the NHC error distributions wider when TCANE predicts 
wider distributions?

• Stratify the post-storm NHC intensity/Track errors by the 
TCANE Inter-Quartile Range (IQR)

• Intensity - 75th percentile-25th percentile

• Track – Average of the IQR along the major and minor ellipse axes

• Make box-whiskers plots for NHC errors for each IQR group
• Individual forecast times and summed over all forecast times
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Track Error-Spread Summary Statistics
12-120 h Combined 
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Intensity Error-Spread Summary Statistics
12-120 h Combined 
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Summary and Next Steps
• Summary

• TCANE estimates consensus and NHC official track and intensity forecast uncertainty
• Input from multi-model ensembles and TC environment parameters

• 2024 independent tests showed mostly good reliability (slightly under-dispersive) 
and strong error-spread relationships for track and intensity in AL and EP 

• Track/intensity uncertainty graphical products for 2024 cases available on CIRA 
developmental TC-Realtime website

• Next Steps (Year 3)
• TCANE v2.0

• Include HAFS model and GFS ensemble track forecast spread as TCANE inputs
• Develop version for western North Pacific (WP)
• Real-time products on TC-Realtime
• Add explainable AI graphics to TC-Realtime webpage

• Quick guides for TCANE products
• Coordinate with HOT facilitator to test TCANE training on NHC infrastructure  
• Test impact of TCANE error distributions on NHC wind speed probability model 
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Back-up Slides
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Explainable AI Methods –Shapley Values

• Explainable AI – Post-processing methods to provide insight into why a ML 
model made the forecast it did 

• Shapley values – based on game theory to estimate the contributions from 
various “players” in a game

• Takes into account interactions of predictors
• Computationally expense, scales by 2N

• Feasible for TCANE due to low dimension of neural network input vector

• Shapley Additive Global Importance (SAGE)
• Importance of input parameters for the entire model

• SHapley Additive Explanations (SHAP)
• Importance of input parameters for a single forecast 
• “Waterfall” plots
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SAGE and SHAP Examples
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SHAP “Waterfall” Plot for Intensity Spread σ 
12 h forecast Hurricane Otis 25 Oct 2023 00 UTC 

(Just before RI period)

Less uncertainty   More uncertainty

SAGE Plot for Intensity Spread σ 
Atlantic TCANE – All Forecast Times



SAGE Plots for Atlantic track TCANE 
with GEFS Ensemble Spread Predictors 

25E-W Track Forecast Uncertainty                        N-S Track Forecast Uncertainty


