

浴

औ

x

四

NATIONAL WEATHER SERVICE

Update of the AQM operational forecast systems for the National Air Quality Forecasting Capability Jianping Huang (NOAA/NWS/NCEP/EMC)

Fanglin Yang, Jeffrey McQueen, Cory Martin, Raffaele Montuoro (NWS/NCEP/EMC), Kai Wang, Ho-Chun Huang, Brian Curtis, Anna Smoot Hyundeok Choi, Haixia Liu (EMC, Lynker), Barry Baker (OAR/ARL), Youhua Tang, Patrick Campbell(ARL, GMU). Daniel Tong (GMU) Georg Grell (OAR/GSL) Hongli Wang, Ruifang Li (GSL, CIRES)

2024 AQ Forecaster Focus Group Workshop

James Wilczak (OAR/PSL) Irina Djalalova, Dave Allured (PSL, CIRES) Shobha Kondragunta (NESDIS/STAR) Chuanyu Xu, Zigang Wei (IMSG, NESDIS/STAR) Fangjun Li and Xiaoyang Zhang (SDSU) Jack Kain, Youngsun Jung (STI)

College Park, MD, October 10, 2024

Outline

- AQM v7.0.7 Implementation (May 14, 2024)
 - Major Changes
 - Model Configurations
 - Performance Highlights
- AQM v7.0.8 Implementation (October 1, 2024)
 - Major Changes
 - Performance Highlights
- AQM v8.0 Development (Planed for Q1 2026)
 - Major Changes Proposed
 - Preliminary Results
- Future Plans

औ

ž

512

Major Changes for AQM v7.0.7

- Transition operational AQM from the GFS-CMAQ offline-coupled system to a UFS-based online-coupled atmosphere-air quality system, UFS-AQM.
- Replace individual model domains for CONUS, Alaska, and Hawaii with a single unified domain at 13-km horizontal resolution.
- Increase the model's vertical levels from 35 to 65 and extending the model's top from 60 hPa to 0.2 hPa.
- Replace daily Blended Global Biomass Burning Emissions Product (GBBEPx) inputs with hourly Regional ABI and VIIRS fire Emissions (RAVE) data at higher horizontal resolution (0.03 degrees) to improve diurnal variation, intensity, and vertical distribution of wildfire emissions.
- Replace the Biogenic Emissions Inventory System (BEIS) with aerosol and gaseous emissions estimated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN).
- Apply the Kalman Filter Analog (KFAN) bias correction technique over the large unified domain to improve near-surface ozone (O_3) and fine particulate matter (PM_{2.5}) predictions.

ž

औ

K)

DOD

Model Configurations for the AQMv7.0.7 Implementation

	Atmos. & air quality models	UFS-Atmos + CMAQv5.2 Online-coupling	
Â.	Gas mechanism & aerosol model	CB6r3 + Aero6	- 290 - 290 - 280 - 280 - 270 - 260
\diamond	Grid_spacing & vertical levels	13 km & 65 levels (topped at 0.2 hpa)	
	Anthropogenic emissions	NEI 2016v1 for CONUS + EDGAR-for- HTAPv2, CEDSv2 & OMI-HTAP for O- CONUS	
35	Fire emissions	RAVE v1 (hourly, 0.03 deg) + Sofiev plumerise algorithm, linearly- distributed, VOCs off	A single large North American domain covers
2	Biogenic & dust emissions	MEGANv2 & Fengsha	three operational product domains (i.e., CONUS, AK and HI)
0	Dynamics & physics	FV3 & CCPP GFSv16 suite	 NOAA's UFS-AQM based AQMv7.0.7 was implemented on May 14, 2024
)/I.	Chem-LBCs	AM4 for gases + GEFS for aerosols	

NATIONAL WEATHER SERVICE

ž

K

CH

AQMv6 (GBBEPx) vs. AQMv7.0.7 (RAVE v1): PM_{2.5} Predictions

AOMv6 20230626 t06z 20230628/0600V048 PM25 sfc conc (µg/m³) x DOD . 75 100 125 150 250 300 400 500 600 750 (a)

ž

औ

 $\mathbf{\Lambda}$

51.5

AOMv7 20230626 t06z 20230628/0600V048 PM25 sfc conc ($\mu g/m^3$)

Huang et al. (BAMS submission, 2024)

NATIONAL WEATHER SERVICE

AQMv7 Improves PM_{2.5} during Quebec Fire 2023

NATIONAL WEATHER SERVICE

ž

AQMv7.0.7 Improves 24-hr ave. PM_{2.5} in Summer

- AQMv7 demonstrates higher CSI values for 24-hr ave. PM_{2.5} for both the raw model and bias-corrected (BC) products (dashed) than AQMv6.
 - AQMv7 exhibits enhanced predictive capabilities for PM_{2.5} exceedance events (≥35 ug/m³).

PMAVE CSI DAY2 fcst init12Z 0701 0831 - CONUS

ž

औ

x

51.53

AQMv7.0.7 Improves O₃ Exceedance Predictions in Summer

 AQMv7 demonstrates higher Critical Success Index (CSI) values for daily max. 8-hour ave.
 O₃ for both the raw model (solid) and biascorrected (BC) products (dashed)

better

ž

औ

x

THE

 \wedge

12

 AQMv7 exhibits enhanced predictive capabilities for O₃ exceedance events

than AQMv6.

(≥70 ppb). NATIONAL WEATHER SERVICE

OZMAX8_CSI_DAY2_fcst_init12Z_0701_0831 - CONUS

OBS Threshold - Daily Max 8HR_AVG Ozone Concentration

औ

K)

Upgrade of the AQM Operational System: v7.0.8

- Major Changes:
 - Update the Regional hourly Advanced Baseline Imager (ABI) and Visible Infrared Imaging Radiometer Suite (VIIRS) Emissions (RAVE) input datasets from version 1.3 to version 2.0, which use observations from NOAA's latest generation of U.S. polar-orbiting satellites (NOAA-21).
 - Update the list of AirNow's observational surface sites for ozone (O_3) and fine particulate matter ($PM_{2.5}$) to improve bias-corrected products.
 - Mitigate overprediction of fugitive dust.
 - Increase accuracy of predicted dry deposition velocities for small gravitational settling and aerodynamic resistance values.
 - Implement bug fixes and other code improvements.
- Implemented: Oct. 1, 2024

四日

12

AQMv7.0.8 Improves PM₂₅ Predictions in July 2024

NATIONAL WEATHER SERVICE

ž

Proposed Changes for AQM v8.0

- Increase model grid-spacing resolution from 13-km to 9-km.
- Update the Finite-Volume Cubed-Sphere (FV3) dynamical core based UFS-Atmosphere model.
 - Upgrade the Common Community Physics Package (CCPP) to align with the version used in the Global Forecast System (GFS) v17.
 - Upgrade CMAQ from version 5.2.1 to version 5.4.
 - Update the National Emission Inventory (NEI) from 2016 to 2019.
 - Refine fire emission representations and activate Volatile Organic Compound (VOC) emissions from wildfires.
- Implement a short training period for PM_{2.5} bias correction during intense wildfire events.
 - The implementation is planned for December 2025.

112

औ

K)

DOD

NATIONAL WEATHER SERVICE

NATIONAL WEATHER SERVICE

Summary

- The UFS based online-coupled AQMv7.0.7 was successfully implemented on May 14, 2024, showing substantial improvements in performance during intense wildfires and O₃ exceedance events.
 - An updated version (AQMv7.0.8) was implemented along with code bug fixes to support the upgrade of RAVE v2 fire emission products on Oct. 1, 2024.
 - Development of AQM v8.0 is underway by refining model grid-spacing, upgrading CMAQ, the UFS-Atmosphere model, and the National Emission Inventory, with implementation planned for Q1 FY 2026 with a possible delay.

ž

औ

K)

四日

 \land

Future Plans

- Incorporate data assimilation (i.e., **JEDI**) to constrain chemical initial conditions.
 - Use Tropospheric Monitoring Instrument (TROPOMI) and Tropospheric Emissions: Monitoring of Pollution (TEMPO) retrieval data to constrain ICs of NO₂, O₃, and other chemical species
 - Use AirNow surface $PM_{2.5}/O_3$ and satellite-retrieved AOD to constrain ICs of $PM_{2.5}/O_3$
- Switch to the MPAS dynamic core.
- Employ higher resolution (e.g., 3-km) or nested domain for CONUS.
- Develop an AI/ML based forecast model for AQM.

12

ž

औ

K)

四日