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Connecting Models and Observations

Background

heterogeneity:.

® Evaluating the two-way Interactions between the atmosphere and land surface processes Is crucial to our
understanding of regional and global climate, vegetation dynamics, and watershed hydrology.
* Modeling vegetation phenology from weather Is challenging due Its interannual variations and complex spatial

* \We developed a novel machine learning model, ML-LAI, based on convolutional Long Short-Term Memory (LSTM)
techniques to study regional-scale interactions between the atmosphere and Leaf Area Index (LAI).

Input Dataset

* Weather variables

Surface air temperature and precipitation data are sourced
from Global Historical Climatology Network(GHCN) dally
dataset.
* Vegetation data

Moderateb Resolution Imaging Spectroradiometer (MODIS)
LAl product MCD15A3H, a 4-day composite dataset with a
500-meter pixel size.
* Soll moisture data (in progress)
* Additional variables are currently under investigation:
terrain, geographic locations, etc.

Preliminary research area

* Trained on dally data from 2003-2020. All data is
Interpolated to a grid with 0.01 degree resolution.

* The Initial focus Is on the Southwestern United States, as
shown in Fig. 1.

ML-LAI Model
* Built on convolutional LSTM (ConvLSTM) architecture. Fig. 2
llustrates the model diagram during the training process.

* Designed to learn temporal patterns within each sequence,
capturing the temporal changes in LAI.
* Extract spatial relationships across multiple variables,
enabling it to understand the interactions between weather and
vegetation changes.

Model Training

* The current version of ML-LAI uses 14-day time series
seguences of multivariate inputs to predict LAl values over the
following 14 days.

* Data subsets, each covering a 1x1 degree area, are treated
as Individual samples. Figure 3 illustrates the location of these
subsets within the research area.
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Fig. 1. MODIS LAI data in the research area
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Fig. 3. Subsets selection for model training

Preliminary Results

savannas and woody savannas.

* Fig. 4 Is the comparison of the average LAI values across the domain
area from ML-LAI prediction and from MODIS. The difference Is less than
0.03, and effectively captured both seasonal and interannual variations.

* Fig. 5 lllustrates the model’s performance across different land cover
types. Figure shows a subset of land types within the domain area.
Overall, the ML-LAI model demonstrates robustness in predicting LAI for
shrublands, croplands, evergreen needle leaf forest, grasslands,
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Fig. 2. ML-LAI model architecture diagram

Time Series of Averaged LAl for Land Cover Closed Shrublands

Time Series of Averaged LAI for Land Cover Deciduous Broadleaf Forest
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Time Series of Averaged LAI for Land Cover Grasslands

Time Series of Average LAl over the Testing Area
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Fig. 5. Average LAl over different land covers: closed shrublands,
broadleaf forest, evergreen needle leaf forest, grasslands.
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Fig. 4. Average LAI over the test domain area (yellow rectangle in the right plot)

Ongoing work

* Expand the model to cover the region of Continental United

States.

* Compare with Noah-MP model in prognostic vegetation.

| * Integrate ML-LAI with UFS atmospheric model.
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