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Problem: Investigating the physics of climate is hampered by a 

limited number of observations and the inability to conduct A/B 

(perturbation) experiments on the natural system. Computer 

simulations resolving the equations of motion provide the first-

order surrogate solution. However, numerical models are 

imperfect, especially when representing subgrid-scale 

phenomena (model physics).  

 

Solution: Combine observational and model-generated data, 

human expertise, and machine-learning techniques to create 

explainable second-order surrogate models to gain insight into 

climate physics.
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Methodology: In what follows, we consider target data to be 

tendencies of a variable or errors in predicting this variable. We 

aggregate the target data from all grid points and every time 

step into an unconditional distribution. This aggregation is 

based on the postulate that physics is geographically and 

temporally agnostic. A postulate which led to fruitful results 

when applied by Hewson and Pilosu (2020) at ECMWF.

 The human expert chooses a subset of predictors 

(features) from the model column that are relevant to the target 

variable thus reducing the problem’s dimensionality. The 

unconditional distribution of the target variable is then 

progressively split into nodes based on optimization criteria, 

e.g., entropy and variance. Splitting continues up to the leaves 

of the decision tree, each one of which associates the state of a 

model column to the distribution of the target variable.

 The decision tree grows to a fully explainable ML 

surrogate model, which can be disaggregated at each grid 

point and time step of a model simulation. Discrepancies 

between the numerical model and the decision tree provide 

evidence of the importance of the decision chains and, thus, of 

physical processes.

Correlations for each calendar month between ERA5 and the 

decision tree predictions at St. Louis, MO. During summer, all 

models perform well. In winter, the more complex models (32- and 

64-leaf) perform better, but improvements are minimal between 

the 32- and 64-leaf trees. Better performance in winter is obtained 

by adding the snow depth to the set of predictors. 
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Physical parameterizations 

act on each of the model’s 

columns, but their formulation 

does not depend on the grid 

point's geographical location 

or the simulation's time step 

(physics is geographically 

and temporally agnostic).

Example: 2-meter temperature tendencies from ERA5

Aggregation of ERA5 
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Decision tree induction by maximizing the variance of the 

split (regression tree)

Disaggregation: The values of the 

predictors are determined at each column 

and at each time step and thus a Column 

State can be assigned. 
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Tree Leaves or Column States. Each CS 

contains a distribution of the target variable.  

• We use hourly 2-meter temperature tendencies on land grid points from 2006.

• We choose the following predictors: T2M, SD, SH, LH, BLH, TCC, ORO, SWVL, and TSOIL.

• We train three decision trees with 8, 32, and 64 leaves.

• We train a fourth 64-leaf tree with the additional variable DSN (snow depth)

• We compute the mean temperature tendency of the Column State for each grid point and at each hourly 

time step.

• We evaluate the trees by comparing (correlation) the tendencies from ERA5 and the mean tendencies of 

the corresponding CS. 

Distribution of correlation between ERA5 

tendencies and mean tendencies from each Column 

State at all land grid points for the three decision 

trees.

 These distributions have four poles, with 

correlations ranging from very low to very high.

As the tree's complexity increases, these poles shift 

to the right, indicating that the model improves.  
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Geographical location of grid points with (a) high correlation, 

(b) good correlation, (c) low correlation, and (d) no correlation. 

Best correlations are obtained in desert areas where there is 

no hydrological cycle and thus the physics are simpler.

Application: Heat waves
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These plots compare the number of times a given Column 

State appears within the FFC WFO (Atlanta, GA) in (a) winter, 

(b) summer, and (c) during an excessive heat wave warning 

issued by the WFO. We note a significant increase in the 

relative frequency of CS 28, 50, and 52, and decrease of CS 

40. The mean value of the temperature tendency for CS-40 is 
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Conclusion

We introduce a novel technique that combines observational and 

model-generated data and human expertise using explainable ML 

models. The methodology aggregates a target variable into a 

distribution within the root node of a decision tree. Based on a set 

of predictors chosen using human expertise, the root node is split 

progressively until the leaves of the tree, or Column States, are 

reached. Each Column State contains a distribution of the target 

variable. 

Using tendencies as a target variable allows studying processes, 

as demonstrated here, in the case of 2-meter temperature and 

heat waves. 

Using errors in the forecast of the target variable can provide (a) a 

conditional bias correction system and (b) the study of the 

misrepresented physics.

In addition, we may be able to improve physical parameterizations 

by forcing single-column models with conditions compatible with 

selected Column States.   
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