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• Mean Squared Error (Brier Score) of CESM2 probabilistic forecasts for extreme cold in weeks 1-2 (top row), 3-
4 (middle row), and 5-6 (bottom row). A lower score indicates higher skill in whether extreme cold happened.

• The smaller figures show contributions to Brier Score from overestimating cold (left) and from 
underestimating cold (right).

• Brier Skill Score of experimental runs, compared to the standard hindcasts. A positive score (red) is an 
improvement over the control, while a negative score (blue) is worse than the control.

• The smaller figures show contributions to Brier Skill Score from overestimating cold (left) and from 
underestimating cold (right).
• Note that since Brier Skill Score has a denominator, some regions may have divide by zero errors where 

there is no over- or under-estimate in the control run.

Discussion
• Predictability of extreme cold decreases with forecast time as 

expected.
• Most error in the northern midlatitude/Arctic land is from 

overestimating extreme cold, and this is true at all weeks.
• ClimoATM greatly overestimates extreme cold in the Arctic 

Ocean in weeks 1-2, with better skill afterwards.
• ClimoATM also underestimates extreme cold over land, but 

this difference fades for weeks 3-6.
• ClimoOCN has very little change from standard hindcasts, 

suggesting that ocean initial conditions play very little role in 
extreme cold in most regions for most events.

• ClimoLND is better than standard hindcasts over high-latitude 
land at predicting extreme cold.
• This suggests that the land model may be problematic in 

high-latitude coniferous forests.
• This is true over all weeks checked.

• Since climoATM is worse than standard over the Arctic Ocean 
but only for weeks 1-2, while climoLND is better in high-
latitude land for all weeks, climoALL is on average better than 
standard for weeks 3-6, mainly due to problems with the land 
model.

• Results may be sensitive to thresholds from reanalysis 
differing from climate model output, so next we will repeat 
this analysis with thresholds from within CESM2 itself.

Mean Squared Error (Brier Score)
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• How far in advance can we predict extreme cold and why?
• How much skill does each component of a climate model 

contribute, specifically for extreme cold?
• How does this skill change over time?
• Is the atmosphere most important for weeks 1-2, followed 

by the ocean beyond 2 weeks?
• What role does the land model have for cold events?

• Is extreme cold easier to predict in some regions than others?
• How does each component’s contribution vary by region?

Introduction

• Daily mean 2m-air temperatures from MERRA-2 at every point 
in the Northern Hemisphere, interpolated onto a 1-degree 
grid to match CESM2, 1999-2020.

• Richter et al. (2024) ran 11-member ensemble hindcasts of 
CESM2 out to 45 days.

• Experimental runs with climatological initial conditions for the 
atmosphere, land, and ocean were run to find forecast skill 
contributed by each component at each timescale.

• Hindcasts from Richter et al. (2024)
• climoATM is initialized with climatological atmospheric 

conditions
• climoLND is initialized with climatological land conditions
• climoOCN is initialized with climatological ocean conditions
• climoALL is initialized with all the above

Data

• Find occurrence of extremely cold days in reanalaysis using 
the coldest 10% of temperatures for each calendar day.
• For each of 11 ensemble members at every lead time, find 

how many have temperatures below the 10th percentile 
from MERRA-2.

• Divide by 11 to get the forecast probability of extreme cold 
at that time and grid point.

• Brier Score is the mean squared error of a probabilistic 
forecast (Brier 1950). 

• N is the number of forecasts, 1148 in this case
• f is the forecast outcome, in this case 0/11, 1/11, 2/11, etc.
• o is the actual outcome, a 1 if extreme cold occurred, or a 0 if 

not.
• We further divide this into the contribution from 

overestimates of extreme cold (where f > o) and 
underestimates of extreme cold (where f < o)

• Brier Skill Score measures the improvement in Brier Score 
from some reference forecast, in this case the standard 
hindcasts.

• As with the regular Brier Score, we also divide this into 
over- and under-estimates of extreme cold.

• A positive skill score is an improvement, with a maximum 
possible value of 1. A negative skill score is a worse forecast 
than the control run.

Methods • Brier, G. (1950). Verification of Weather Forecasts Expressed in Terms 
of Probability. Monthly Weather Review.
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