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the MJO by Training with Large Ensemble Climate Simulations
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I1. Data and Methods

- Observations: Winter (DJF) CPC Unified Gauge-Based
Analysis of Daily Precipitation over CONUS; RMM and MRS
ENSO indices (1982-2022)
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IV. CESM2-LE Biases in Teleconnections Contours: Observed ENSO/MJO teleconnection V. Conclusions
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- Increasing the amount of training data improves the skill in predicting
subseasonal precipitation, even 1f the training data 1s biased. About 2000
seasons of data are required to saturate the prediction skill.

- The scarcity of observational data may lead to significant uncertainties

Shadings: Differences in teleconnection between
observation and CESM2-LE (1982-2022)
Crossed-hatched: Differences in teleconnection which
cannot be solely explained by internal variability

L . when evaluating prediction skills. Approximately 1500 seasons of
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training data 1s important to reach high prediction skill methods.
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