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Motivation Statistical post-processing procedure (SPP) for precipitation forecasts

The predictability of precipitation is hindered by finer-scale processes not captured explicitly in global

numerical models, such as convective interactions, cloud microphysics, and boundary layer dynamics.

However, there is growing demand across various sectors for medium- (3–10-day) and extended-range

(10–30-day) quantitative precipitation forecasts (QPFs) and probabilistic QPFs (PQPFs). Therefore, the

goal of this study is to predict the conditional climatology of precipitation given the forecast of the large-

scale circulation conditions, which still retain predictability in the extended range.

In addition, most ensemble prediction systems are characterized by under-dispersion that limits the utility

of probabilistic predictions. Here we use analog post-processing (AP; Hamill and Whitaker 2006; Hamill

et al. 2015) to produce posterior ensembles with reasonable spread to effectively mitigate the problem of

under-dispersion. Frequency counting and PM are then separately applied to the posterior ensemble to

produce calibrated and downscaled PQPFs and bias-reduced QPFs, respectively.

Data Sources and Validation 

➢ Forecast : SubX EMC-GEFS 

• period:  Jan 1999- Dec 2016 (reforecast, 10 members) ; Aug 2017- Sep 2020 (forecast, 20 members)   

• update frequency: once per week, with forecasts initialized at 00 UTC every Wednesday. 

• horizontal resolution : 1° x 1° lat/lon

➢ Observation : gridded precipitation analysis based on rain gauge data  

• period: Jan 1999 – Sep 2020    

• horizontal resolution: 1 km x 1 km 

• analysis technique: Simple Kriging method 

➢ Validation period: Jan 1999 – Sep 2020 

• leave-one-out cross validation
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Methodology

Distance-based Similarity Criterion D(t)

ensemble spread

x : forecast variable (precipitation)

tc :  current date

t :  chosen date in the archive

L：number of grid points for 

pattern matching    

M : number of ensemble members
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Analog Post-processing (AP) 

Probability 
Matching (PM)

20 sets of observations, each 
corresponding to 

1 analog case (AP ensemble)

observation      raw forecast              AP single forecast      

frequency counting

observation indicator                 raw PQPF   AP-based PQPF       
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A northeast monsoon case in 2016
probabilistic 7-day accumulated 

precipitation forecasts
7-day accumulated 

precipitation forecasts 

(precip > 95th percentile for winter half year)

• Reliability

Raw forecast has obvious over-forecasting, while calibrated one has good reliability.

• Discrimination

Calibrated PQPF has higher skill in discrimination than raw forecast.

• Economic vale

users with a much wider spectrum of cost/loss ratio can obtain more benefit from the

calibrated forecast as compared to the raw forecast. .

⚫ Ensemble distribution

✓ Raw ensemble is under-dispersive with an obvious wet bias, while AP ensemble is

calibrated with most of the bias removed.

✓ For frequency distribution of precipitation, AP ensemble is much closer to observation

than raw ensemble.

⚫ AP-based probabilistic precipitation forecast, compared to raw PQPF, has

✓ better reliability and higher skill in discrimination

✓ higher economic value for a much wider spectrum of cost/lost ratio
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Analog Post-processing (AP)

Search area for pattern matching 

Evaluation of ensemble distribution Evaluation of PQPF (precipitation > 100 mm/wk) 

Reliability Discrimination Economic value

Frequency distribution of precipitation

Conclusions Acknowledgement and references

• AP ensemble is much closer to observation than raw ensemble.
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Jan 1999 ~ Dec 2016

(10 reforecast members)

Aug 2017- Sep 2020 

(20 forecast members)

Aug 2017- Sep 2020 

(20 forecast members)

Jan 1999 ~ Dec 2016

(10 reforecast members)

Raw ensemble AP ensemble 

week 1  week 2 

Raw ensemble forecast is under-dispersive with an obvious wet 

bias. 

AP ensemble spread well 

represents forecast uncertainty. 
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