Bias Correction of Global Ensemble Forecast System (GEFS) Precipitation Forecasts using AI/ML

Md Abul Ehsan Bhuiyan, Endalkachew Bekele, Wassila Thiaw

ERT, Centers for Environmental Prediction (NCEP), Climate Prediction Center (CPC), College Park, MD, USA

Introduction

Accurate estimation of extreme hydrological events, such as flood at ungaged locations, is a significant hydrological challenge for water resource management.

- The process-based models require time-consuming calibration using large number of parameters to increase the accuracy of the model predictions.
- The data-driven Artificial Intelligence (AI) models have appeared as promising tools which offer efficient alternatives without considering the physical processes.
- Evaluation of a deep learning (DL) based time series model, namely the Long Short-Term Memory network (LSTM) Recurrent Neural Networks (RNN) model, to predict climate variables.
- Transferability of the model.

Research Framework Goal Climate monitoring Final Hazard outlooks Teleconference Expert Discussion Preliminary Hazard outlook

Calibration regions

- The upper Blue Nile basin is in the mountain range of the Great Horn of Africa.
- The elevation ranges from approximately 1000 to 3000 m MSL.
- The climate varies from cool highlands to hot deserts with most of the precipitation falling from June to September
- CPC Global Unified Gauge-Based Analysis of Daily Precipitation is used as reference data

Map of terrain elevation for the study area

Determine the lead-time T for climate variable Training, validation, and test set initial value of hyperparameters and train the 1-h, 2-h, ..., T-hour LSTM networks, respectively Repeat step 3 by trial and error and determine the final value of hyperparameters for 1-h, 2-h, ..., T-hour LSTM networks, respectively. optimal model(curve is used to prevent overfitting) V Evaluate the simulated results of the LSTM model

Major Hyper-parameters

Activation function
Epoch
Loss function
Batch Size
Momentum
Decay rate
Learning rate

Optimization
Optimization

Trial and Error
Random Grid
Search
Bayesian
Randomized search
cross validation

Model Evaluation

Error Metrics

NCRMSE value of 0 indicates no random error, while 1 indicates that the random error is equal to 100 % of the mean reference rainfall.

- For an unbiased model, the BR ~ 1
- Overall, bias ratio values were closer to 1 for moderate to high rain rates for the corrected ensemble member which indicated that DL was able to reduce the systematic error in moderate to high rain rates

Error Analysis Results

Conclusions

• LSTM provided an improved precipitations estimates over Africa

20°5

30°S

- The proposed framework can be applied in any regions over the globe, where there is missing data(ungauged location) to estimate accurate climate variable.
- Finally, LSTM has the potential to climate variable for improving the predictability of extreme events.
- Explore the use of latest AI/ML to improve hazards forecasts at sub-seasonal to seasonal time scales.