

Hybrid ensemble-variational data assimilation for HWRF - ongoing efforts and plan

Mingjing Tong¹

Collaborators: David Parrish², Daryl Kleist², Russ Treadon², Wan-Shu Wu², John Derber² Xuyang Ge¹, Fuqing Zhang⁴ Zhan Zhang³, Vijay Tallapragada²

¹UCAR (NCEP/EMC), ²NOAA/NWS/NCEP/EMC, ³IMSG (NCEP/EMC), ⁴PSU

Hybrid Ensemble-3DVAR System for HWRF

- Current HWRF hybrid ensemble-3DVAR DA system is one way coupled system
- Ensemble perturbations can be either from global EnKF-3DVAR hybrid system ensemble forecasts or independent HWRF ensemble forecasts
- Ensemble perturbations in vortex area can come from a TC vortex library (Pseudo ensemble hybrid method, more later)
- Ensemble covariance is incorporated as part of the background error covariance though extended control variable method (Lorenc 2003; Buehner 2005; Wang et al. 2007)

HWRF Initialization

Ongoing efforts

• Testing and tuning the one way coupled hybrid system using global hybrid ensemble

Testing and improving the pseudo-ensemble hybrid data assimilation

Hybrid data assimilation experiments using global hybrid ensemble

GSI analysis domains 80 global ensemble members at Vortex initialization domain T254L64 resolution (spectral data) $\beta_1^{-1} = 0.2$ (static background error covariance) horizontal localization Inner domain: 300 km Outer domain: 600 km, 900 km, 9 km and 1200 km. Vertical localization Inner domain: 10, 20 and 40 grid 27 km units -30 -20 -10 Outer domain: 10 grid units Forecast domains

HWRF domains on rotated grid

Hybrid data assimilation experiments Using global hybrid ensemble

averaged 6 hour forecast rmse with respect to conventional observation

ADRIAN 01e 06 forecast 0-F

3DVAR – black, hybrid with different localization – colors

Rmse with respect to surface pressure obs (hPa)								
3DVAR	HYBA	HYBB	HYBC	HYBD	HYBE			
1.0961	1.0355	1.0368	1.0320	1.0404	1.0400			

Hybrid data assimilation experiments Using global hybrid ensemble

NCEP Hurricane Forecast Project

NCEP Hurricane Forecast Project

Pseudo-Ensemble hybrid Data Assimilation (Fuqing Zhang's idea)

• *Poterjoy and Zhang (2011)*: Wavenumber 0 storm structures have the largest influence on forecast uncertainty for TCs with category 1 or higher intensity.

• Back ground error covariance is dominated by wavenumber 0 component.

• Flow-dependent forecast covariance can be approximated from a sample of near-axisymmetric TC vortices

Pseudo-ensemble hybrid for HWRF

• TC vortices are created by running idealized 3 km resolution HWRF simulations and grouped by intensity

12.5 <vmax< th=""><th>17.5<vmax< th=""><th>22.5<vmax< th=""><th>27.5<vmax< th=""><th>32.5<vmax< th=""><th></th></vmax<></th></vmax<></th></vmax<></th></vmax<></th></vmax<>	17.5 <vmax< th=""><th>22.5<vmax< th=""><th>27.5<vmax< th=""><th>32.5<vmax< th=""><th></th></vmax<></th></vmax<></th></vmax<></th></vmax<>	22.5 <vmax< th=""><th>27.5<vmax< th=""><th>32.5<vmax< th=""><th></th></vmax<></th></vmax<></th></vmax<>	27.5 <vmax< th=""><th>32.5<vmax< th=""><th></th></vmax<></th></vmax<>	32.5 <vmax< th=""><th></th></vmax<>	
≤17.5m/s	≤22.5m/s	≤27.5m/s	≤32.5m/s	≤37.5m/s	

• TC library vortices are mapped to the background vortex region (300 km from background TC center) in inner analysis domain and perturbations are calculated

• Replace global ensemble perturbations with TC vortex library perturbations within 150 km from background TC center

• TC library perturbations are gradually blended with global ensemble perturbations from 150 km to 300 km from background TC center

Analysis increment from single obs test u obs at 0.5 degree north of storm center at 850 hPa level 3 m/s O-F, obs error 1 m/s

PEDA – hybrid DA with pseudo-ensemble

HYBB – hybrid DA with global hybrid ensemble

Hybrid Tail Doppler Radar DA test with Hurricane EARL

NCEP Hurricane Forecast Project

NCEP Hurricane Forecast Project

analysis

PEDA, EARL 071, d02, Azimuthally averaged, Init. date: 2010082900, 00 h FCST Temperature deviation (shaded), Min=-2.98245 K, Max=5.73224 K Temperature (contour), Min=192.454 K, Max=302.881 K

12 hour forecast

RMW: 28 km

Hybrid TDR DA test with Hurricane EARL

NCEP Hurricane Forecast Project

Hybrid TDR DA test with Hurricane EARL

NCEP Hurricane Forecast Project

Plans

• The one way coupled hybrid system has the potential to be implemented within the current operational environment.

• No much more computational cost is added by using PEDA. No need to worry about moving nests.

• More hybrid test and comparison will be done for interested storms.

• Will test new options in GSI hybrid code, e.g. using vertical integrated ensemble control variable α for Ps, spatially varying weighting parameter β_1^{-1} .

Plans

• Improve the TC library for PEDA, e.g. introduce size variability in the TC library.

- Will soon move on to higher resolution HWRF (27-9-3 km). Future PEDA test will be mostly done on higher resolution HWRF.
- Plan to run real-time one way coupled hybrid parallel next hurricane season
- Will start to build the two way coupled hybrid system for HWRF

Two way coupled HWRF hybrid system

