More accuracy with less precision - assessing
information content for reliable weather and
climate prediction
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Abstract
Historical evidence is reviewed to show that what Ed Lorenz meant by the
iconic phrase “the butterfly effect’ isnot at all capturcd by the notion of sensitive
dependence on initial conditions in low-order chacs. Rather, as preseated in
his 1960 Tellus paper, Lorenz intended the phrase to describe the existence of
an absolute finite-time: icability barrier in certain multi-scale fluid systems,
implying a breakd initial conditions for arge
enough forecast lead times. To distinguish from ‘mere” sensitive dependence,
the effect discussed in Lorenz’s Tellus paper is referred o as ‘the real butterfly
effect”. it i uch l barmicrin a fluid described
by the three-dimensional Navier—Stokes equations 15 discussed. Whilst it is
still an open question whether the Navier-Stokes equation has this property,
idence from bothidealized o d analysizof ional
weather forecasts suggests that the real butterfly effect exists in an asymptotic
sense, i.e. for initial-time atmospheric perturbations that are small in scale and
amplitude compared with (weather) scales of interest, but still large in scale and
amplitude compared with variability in the viscous subrange. Despite this, the

real buttcrfly effect is an i in the and its
prescnce can be signalled @ priori, and hence mitigated, by cnsemble forccast
methods.

Keywords: butterfly effect, finite-time predictability, cheos, surface quasi-
geostrophic equations
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GLOBAL Distribution of all physics temperature tendencies at ~500 hPa (64 ml)
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GLOBAL Distribution of all physics temperature tendencies at ~500 hPa (64 ml)

= T1279 Range: 1.83/9.71
T159 Range: 3.86/4.12 | |

Callado-Pala

4
dT/dt (K/day)

Coarse-graining
(Shutts and Palmer, 2007)

Assume T1279 (16km) model = “truth”.

I)I

Assume T159 coarse-grain “model” grid.
Bar= Subset of total temperature
parametrisation tendencies driven by
T1279 fields coarse-grained to T159.

Curve= Corresponding “true” sub-T159-
scale tendency.

le when the parametrisations think the
sub-grid pdf is a thin hat function, the
reality is a much broader pdf.

The standard deviation increases with
parametrised tendency — consistent with
multiplicative noise stochastic schemes.

rés and Shutts,Phil Trans 2014
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Stochastic Parametrization and
Model Uncertainty

Palmer, T.N., R. Buizza, F. Doblas-Reyes,
T. Jung, M. Leutbecher, G.J. Shutts,
M. Steinheimer, A. Weisheimer

Research Department

October 8, 2000
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Hannah Christensen

Stochastic parametrisation can also improve NCAR

climate model El Nino climatology
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Regime Analysis:

k-means
clustering
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Athena: AMIP runs
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X=-0X+0Y+s1, o
Y=-XZ+rX-Y+sn,
7= XY -bZ+s1,
s=3.2
s=8
Kwasniok, 2014
0TS0 0150200 250
time

Figure 4. Lorenz ‘63 system: sample time series of x for noise levels (a) & =0, (b) & = 32 and (¢) & = 8. At intermediate
noise level, the distribution of regime residence times is shifted to larger values.



Spread L63 and L63 stoch.
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Spread decreases (not increases!) with
stochastic noise



Stochastic Parametrisation

n=—-im n=m
\\0 O © 0 0 0O 0O O 0 ©0 0 © ‘
0O 0 0 0 0 0 0 0 0 0o o oW
o 0o 0o 0 0o o
- Rartially.

O 0 O o° 0

Triangular ™ .
Truncation

o
o

o 0 o 0
o

m=-+M

~-m +m

If parametrisation is partially stochastic, are we “over-engineering” our
dynamical cores by using double precision bit-reproducible computations for
wavenumbers near the truncation scale?

Are we making inefficient use of computing resources that could otherwise be
used to increase resolution towards convective scales?



State-dependent precision....

Stochastic Parametrisation Quérfter
precision?
s ». Half
Triangular Stachastic precision?
Truncation '

Single precision
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More accurate “weather forecasts” with less precision
Reading Spectral Model

Diiben and Palmer, 2014. Monthly Weather Review
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The stochastic chip / reduced precision emulator is used on 50% of numerical workload:
All floating point operations in grid point space

All floating point operations in the Legendre transforms between wavenumbers 31 and 85.
T85 cost approx that of T73
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Matthew Chantry, Oxford — Peter Diiben, ECMWF.
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Highly uncertain
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Using FPGA resources for resolution rather than precision yields 28.9%

forecast improvement and 10x energy reduction (Stephen Jeffress)

Lorenz '96: Coarse Exact Medium Fine Inexact
Forecast Accuracy FPGA Resources
10 ‘
—— Coarse Exact
5 8 Medium Chip area
= —— Fine Inexact
] 6L
0 5.2
qv]
o 4 Gridpoints
o
w2y Precision Double Single Int16
0 ~ = .| Clock Cycles 355 355 34
10 10 10
Forecast time (mtu) Energy (W) 8.2 15.1 0.9

Forecast error is with respect to a 64 gridpoint double precision model. The FPGA
for each model calculates one 4t order Runge Kutta time step. Energy is per model
time unit. FPGAs (Altera Stratix V) designed with tools from Maxeler Technologies.

Jeffress et al (2017) Proc. Roy. Soc.




What is the real information content in each of
the billions of bits that represent variables in a
weather/climate model?

Only communicate (on and off chip) the bits that
contain real information.



- 2 a

Model.

ng |

Build

d by tha C

e

imprecise

supercomputers

Energy-optimized hybrid computers with a range of processor accuracies will
advance modelling in fields from climate change to neuroscience, says Tim Palmer.

oday’s sepercompulers lack the

power 10 modd accurately many

aspacts of the real world, from (e
Impact of dorad systems on E2rids cdimate
10 ¢ processing abllity of the human
brain. Ha@er than wall decades for s
clently powerful supercompulers — wilh
thetr polentiaily unsustaizable encrgy
demands — I is Ume for rescarchers o
recomsider the basic concept of Lthe com-
peter. We mest move beyond the idaa ofa
competor 25 2 fast bt other wise traditfonad
“Turtag maching cherming Surosgh calos-
azons ML by bil In 2 soquential preciscand
reproducitie manzer.

I particedar, we shouid question wicther
all schentifc competations noad Lo be peT-
foemed deterministically — Uhat Is, Sways
producing the same oulpul given B¢ same
17 | NATURK
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018

Inpet — and with the samie high level of
precision. | argee that for many applictions
they do noL
Encry-offcent Rybeid sepe

Wit 2 rznge of processor aocuracks need 1o
e devalioped. Thase woudd combine con.-
ventioral eneryy-Inlensive procassons with
ow-eneTgy. non-Seterminidic procesors,
abie 1o amatyse data A wrtabic levels of prod.-
son The demand for sech machines could
be sehetantial, across averse sectors of the
scientific communiy.

MORE WITH LESS

Take dimate change, for csample. Btmales
of Earti's fstere climate are basod on solv-
g nonknar (partial diferonttd) equations
for (:6d Now 1o Se etmosphere and oomss.
Cerrenl dimate stimetdors — typtcaily with

© 2005 Narulen tbdwes | mtind. AS ghts rared

#rid cofls of 100 kfiometres In wid® — an
resolve the karge, low-pressere weather
sysiems typical of mid- latRudes, bt not
Individual clouds. Yel modelling doud
syslems accuralely is crecial for reftable
estimates af (e impact of anthropogenic
emisions on ghobal temperaun’.

The resclation of (his computational grid
1s determined by the availabic compuling
power. Current fop compulers can
perform up %o 10" addittons or mullapil-
cations — floating-point operations —
per second (Nops). By the carly 2020s,
next-generation exaflop supercompeters,
capatie of 10" operations per second, will
e abike Lo sescive the lgest and most vig
orous types of thunderstorm™. But dowd
physics ca scales smaller than a grid cell
will still have Lo be approximaied, or




