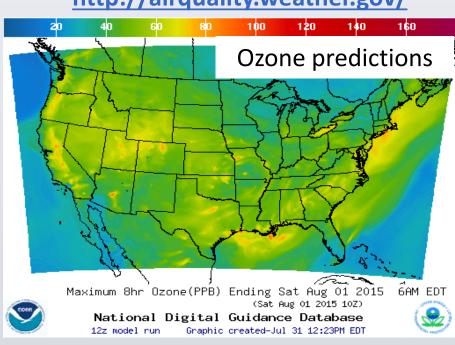
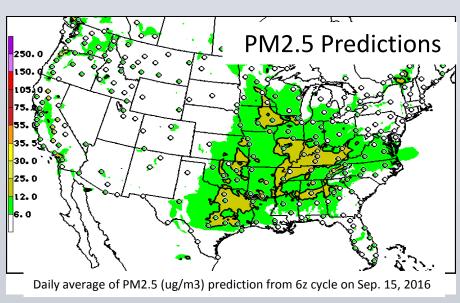


Prediction of fine particulate matter (PM2.5) by the NAQFC

Ivanka Stajner¹, Jeff McQueen², Pius Lee³, Jianping Huang^{2,4}, Li Pan^{3,5}, Ho-Chun Huang^{2,4}, Daniel Tong^{3,5}, Ariel Stein³, Phil Dickerson⁶, Sikchya Upadhayay^{1,7}

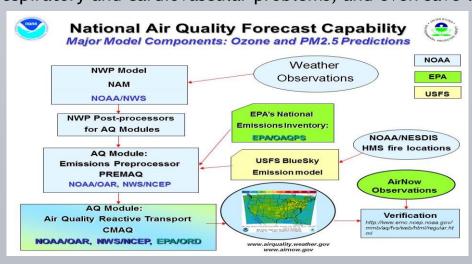
yay^{1,7}

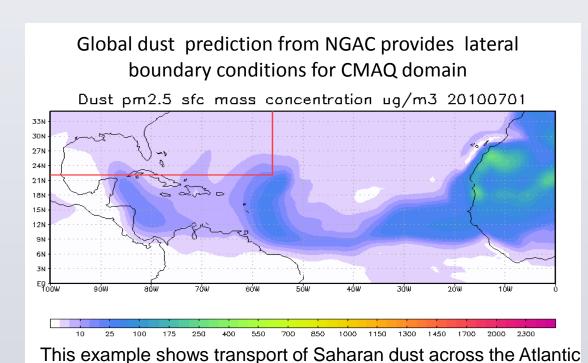

ius Lee, dialipling flualig , Liff all , flo-blian flualig , ballier folig , Affer otelli, i fill blekerson , bikeriya opadilaya

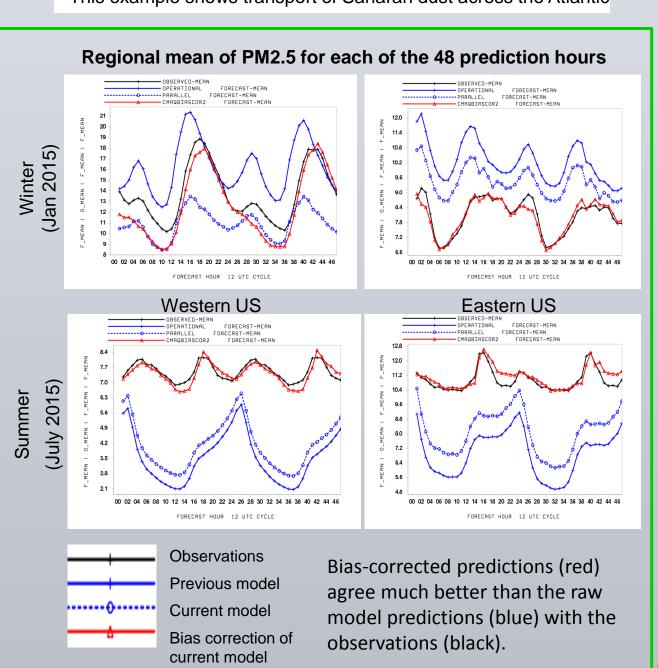

¹ NOAA/NWS/STI, ² NOAA/NWS/NCEP, ³ NOAA ARL, ⁴IMSG, ⁵CICS, ⁶EPA and ⁷Syneren Technologies

National Air Quality Forecast Capability (NAQFC) operational predictions

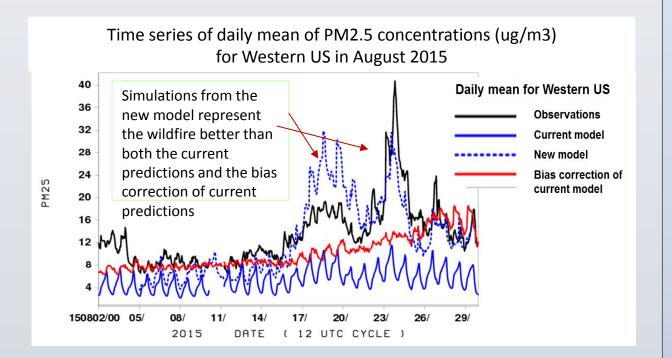
- PM2.5 nationwide from CMAQ-NAM since February 2016
- Ozone nationwide from CMAQ-NAM
- Smoke nationwide from HYSPLIT-NAM
- Dust for 48 states from HYSPLIT-NAM

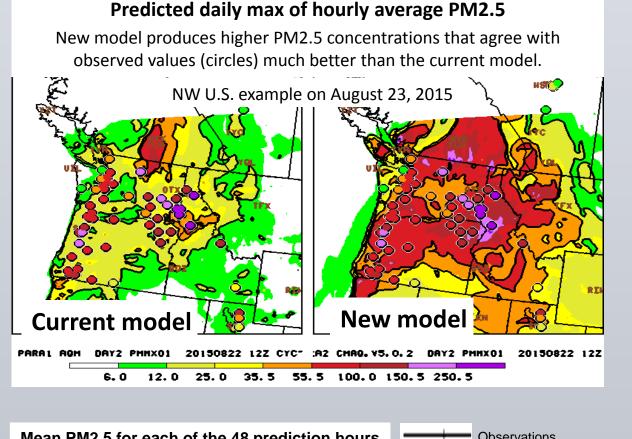

Ozone, smoke and dust predictions are available at http://airquality.weather.gov/

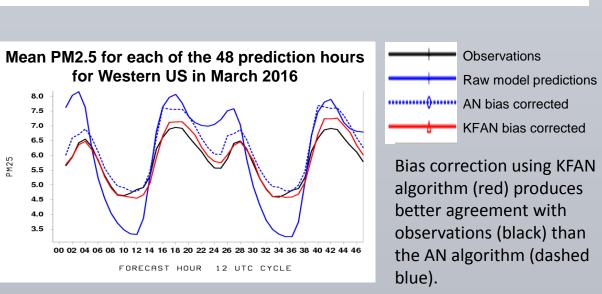

Importance of Air Quality Predictions


- Air Quality effect on health: 60,000 premature deaths annually in the US
- Air quality predictions provide advance information to help people limit their exposure to poor air quality, reduce respiratory and cardiovascular problems, and even save lives.

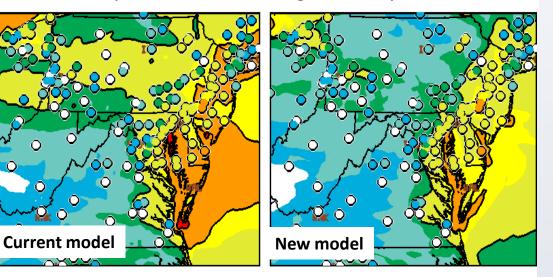
CMAQ Model Upgrade in February 2016 - currently operational model


- First public release of raw model predictions and biascorrected PM2.5 predictions from CMAQ based on v4.6
- Lateral boundary conditions from a global dust model and a GEOS-Chem climatology for gaseous species
- Increased vertical resolution from 22 to 35 levels
- Analog forecast technique for PM2.5 bias correction (*Djalalova et. al. and Huang et. al.*)





FY17 Plans - new model in testing


- Update to CMAQ v5.0.2
- Better representation of wildfire smoke emissions (updated BlueSky system and 24-hour "analysis cycle" to include emissions when they were observed)
- Updated mobile NOx emissions
- Update of bias correction method to KFAN (Kalman Filter Analog)
- Use updated NAMx meteorology

Daily maximum of 8 hour average ozone concentrations Example for Midatlantic region on July 8, 2016

PROD DAY1 0ZHX08 20160708 12Z CYC :A2 CHAO. Y5. 0. 2 DAY1 0ZHX08 20160708 12Z High ozone biases are reduced in the new model along the east coast.

40. 0 45. 0 50. 0 54. 5 65. 0 70. 5 86. 0 106. 0

Summary

- First public release of operational PM2.5 predictions
- Updated BlueSky and inclusion of wildfire emissions using 24-hour "analysis cycle" provide improved PM2.5 predictions especially near forest fires
- CMAQ 5.0.2 with updated NOx emissions reduces ozone overpredictions in the eastern U.S.
- Initial testing with KFAN bias correction method shows further improvements over the operational analog forecast technique

Plar

- Continued testing of CMAQ 5.0.2 for potential transition to operations
- Update display, dissemination and web presence
- Linkage with additional aerosols from global predictions
- Extend predictions to 72 hours
- Finer resolution of predictions (longer term)

References

- Lee et al. (2016): NAQFC developmental forecast guidance for PM2.5, Weather and Forecasting. http://journals.ametsoc.org/doi/abs/10.1175/WAF-D-15-0163.1
- Djalalova et. al. (2015): PM2.5 analog forecast and Kalman filter post-processing for CMAQ model, Atmospheric Environment, 108, 76-87.
- Tong et. al. (2015): Long-term NOx trends over large cities in the United States during the 2008 Recession, Atmospheric Environment, 107, 70-84.
- Huang et. al. (2016): Improving NOAA NAQFC PM2.5 predictions with a bias correction approach, manuscript submitted to Weather and Forecasting.
- Lu et. al. (2016): The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP, Geosci. Model Dev., 9, 1905-1919.