
Promoting In-depth Development of Neural Net Applications for Climate Prediction and 
Services Improvement

Compared to weather forecasting, climate prediction is more difficult in terms of improvement of skill and reliability along with the development of data, models and statistical methodologies. It advances slowly not only because of the limitation of
climate predictability imposed by natural variabilities but also due to the complexity of the climate system, which is not properly handled by prediction models.

Neural Nets (NN) stemming from the character of human brain activities are designed to make nonlinear mapping without any presuppositions. It attracts more interests accompanied by data explosion and rapid advancement in parallel
computing capabilities. This presentation highlights NWS recent in-depth development of NN applications (both feedforward and recurrent networks) to assist conventional physics-based model outcomes for operational subseasonal-to-seasonal
climate prediction with promising improvement in products and services.

44th NOAA Annual Climate Diagnostics and Prediction Workshop, Durham, North Carolina, 22-24 October 2019

Jiayu Zhou, Climate Mission, Office of Science and Technology Integration
David DeWitt, Climate Prediction Center, National Centers for Environmental Prediction
National Weather Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce

Architectures and Prospectus 

How Do Neural Nets Learn?

𝒇𝒇𝑡𝑡 = 𝜎𝜎 (𝑾𝑾𝑓𝑓 ⋅ [𝑺𝑺𝑡𝑡−1, ŷ𝑡𝑡−1, 𝒙𝒙𝑡𝑡] + 𝒃𝒃𝑓𝑓)

𝒊𝒊𝑡𝑡 = 𝜎𝜎 (𝑾𝑾𝑖𝑖 ⋅ [𝑺𝑺𝑡𝑡−1, ŷ𝑡𝑡−1, 𝒙𝒙𝑡𝑡] + 𝒃𝒃𝑖𝑖)
Š𝑡𝑡 = tanh (𝑾𝑾Š ⋅ [ŷ𝑡𝑡−1, 𝒙𝒙𝑡𝑡] + 𝒃𝒃Š)

𝑺𝑺𝑡𝑡 = 𝒇𝒇𝑡𝑡 ʘ 𝑺𝑺𝑡𝑡−1+ 𝒊𝒊𝑡𝑡 ʘ Š𝑡𝑡
𝒐𝒐𝑡𝑡 = 𝜎𝜎 (𝑾𝑾𝑜𝑜 ⋅ [𝑺𝑺𝑡𝑡, ŷ𝑡𝑡−1, 𝒙𝒙𝑡𝑡] + 𝒃𝒃𝑜𝑜)
ŷ𝑡𝑡 = 𝒐𝒐𝑡𝑡 ʘ tanh(𝑺𝑺𝑡𝑡)

Biological Analogy

A typical nerve cell/neuron contains three parts, 1) dendrites carry signals in, 2) cell body contains nucleus, and 3) axon carries
signals away. A synapse is a microscopic gap between two nerve cells in a neural pathway, where the impulse traveling in the first
neuron initiates an impulse in the second neuron. The signals come into synapses are weighted and resulting quantities are summed.
If the sum ≥ threshold, the neuron fires. An artificial neuron is intended to emulate the neuron through following basic components.

Signals

• Inputs and outputs: Act as sensory receptors for input and motor neurons for output as that of the brain.
• Weighting factors: Like the varying synaptic strengths of the biological neurons, weights are adaptive coefficients as a measure of the connection strength,

determining the intensity of the input signals.
• Activation/Transfer functions: Determine the “firing rate” of a neuron in response to an input or stimulus. Introduce non-linearities in complex functional

mappings between the inputs and response variable. Sigmoid (σ) and tanh are classic activation functions used in NN.

• Optimization: The error function can be determined, after initial weights are
defined and a forward pass performed to generate the initial prediction. To
find the weights that generate the smallest error to the known true value,
backpropagation with gradient descent is commonly used for its
computational efficiency, especially when dealing with large neural
networks.

• Overfitting: Happens when the neural network is good at learning its
training set, but is not able to generalize its predictions to additional,
unseen examples. It can be avoid by methods such as regularization,
early stopping, tuning performance ratio, retraining etc.

NN Learning

NN learning is through aggregation of a variable length of causal chains of
neural computations seeking to approximate a certain simulation task through
linear/nonlinear modulation of the activation of the neurons across the
architecture. By changing the distribution of weights, each stimulation
redistributes the neural weights a little bit until the error is below a defined
lower bound. Here are the keys of the learning algorithm.
• Supervised learning: Analyzes the training data, which consists of input-

output pairs, and produces an inferred function, which can be used for
mapping new instances in forecast.

X 

Ŷ

S<0>

Ŷ <1>

S [k]<0>

Ŷ <2>

S [k]<t-1> S [k]<t> S [k]<t+1>

Ŷ <t> Ŷ <t+1>

…

X <1>

S [1]<0>

X <2>

S [1]<t-1> S [1]<t> S [1]<t+1>
…

X <t> X <t+1>

S [2]<0> S [2]<t-1> S [2]<t> S [2]<t+1>
…

…                … … …

Ŷ <1>

S <0>

Ŷ <2>

S <t-1> S <t> S <t+1>

Ŷ <t> Ŷ <t+1>

…

X <1> X <2> X <t> X <t+1>

Generalized Framework

A.

B.

C.

A. Feedforward: The simplest type of NN.
Connections between the nodes do not form a cycle.

B. Recurrent: A chain of repeating modules (unrolled
from the basic module is shown), activations not
only depend on current input but also earlier inputs.

C. Deep Recurrent:  Recurrent network, activations 
not only at earlier times but also in previous hidden 
layers.

…

tanh tanhtanh …

…

𝑾𝑾𝑑𝑑

𝑾𝑾𝑜𝑜

Ŷ

X

t

Ŷ = 𝑁𝑁𝑁𝑁 𝑿𝑿,𝑾𝑾𝑑𝑑 ,𝑾𝑾𝑜𝑜,𝒃𝒃𝑑𝑑 ,𝒃𝒃𝒐𝒐 = 𝑾𝑾𝑜𝑜⋅ 𝒕𝒕+ 𝒃𝒃𝑜𝑜

𝒕𝒕 = tanh(𝑾𝑾𝑑𝑑⋅ 𝑿𝑿 + 𝒃𝒃𝒅𝒅)

ii) Recurrent   - Long Short Term Memory (LSTM)

𝑊𝑊Š𝑥𝑥

tanh

𝑊𝑊𝑖𝑖𝑖𝑖 𝑊𝑊𝑓𝑓𝑓𝑓

σ

𝑊𝑊𝑜𝑜𝑜𝑜

𝑊𝑊Šŷ 𝑊𝑊𝑖𝑖ŷ 𝑊𝑊𝑓𝑓ŷ 𝑊𝑊𝑜𝑜ŷ

Š𝒕𝒕 𝒊𝒊𝒕𝒕

ŷ𝒕𝒕−𝟏𝟏

𝒙𝒙𝒕𝒕

σ

𝑊𝑊𝑖𝑖𝑖𝑖 𝑊𝑊𝑓𝑓𝑓𝑓 𝑊𝑊𝑜𝑜𝑜𝑜

𝒇𝒇𝒕𝒕 𝒐𝒐𝒕𝒕

𝑺𝑺𝒕𝒕−𝟏𝟏 𝑺𝑺𝒕𝒕

ŷ𝒕𝒕

ŷ𝒕𝒕

tanh

σ

•

•

•

i)  Feedforward

NN Modules

Hyperparameters
Numbers of hidden neurons and layers:  Empirically determined and trimmed. 
Weights initialization:   Prevents layer activation outputs from exploding or 
vanishing during the course of a forward pass through a deep neural network.
Batch size: Number of parts that the dataset is divided to feed to the computer.
Training epochs: The number of times all of the training vectors are used once 
to update the weights, which goes from underfitting to optimal to overfitting as 
the number of epochs increases.
Learning rate:  Controls the amount that the weights are updated with respect to 
the loss gradient during training.

ʘ denotes the element-wise multiplication 
between two vectors.
Gates are used to remedy the vanishing gradient 
problem to capture long term dependencies.Cost/Error function:  C (Ŷ, Y ) = 1

𝑇𝑇
∑𝑡𝑡=1𝑇𝑇 𝐸𝐸 (Ŷ < t >, 𝒀𝒀< t >)

Time series (Jan 2017 - Oct 2018) of spatial anomaly correlation between observation and week 3-4 T2m forecast by
Feedforward NN, Multiple Linear Regression (MLR), and NCEP Climate Forecast System (CFS) indicated by red solid,
green dotted and black dotted line, respectively. Each four-panel inset shows the anomaly of forecast by CFS (lower left),
MLR (upper right) and NN (lower right) in comparison with that of observation (upper left) at a specific time. It shows
some CFS forecasts and corresponding observations are out of phase, which are reversed by NN, but not by MLR,
prompting the value of NN. (by courtesy of Yun Fan et al.)

Week 3 – 4 Forecast

ENSO Prediction

Nino 3.4 SST predictions at 1-month to 11-month lead (from top to bottom) by Recurrent LSTM network (left) with 20
nodes, 3 layers and 1000 epochs and by Linear Regression (right). The LSTM inputs are Niño 3.4 SST full values, Niño 3.4
SST anomalies, Markov model PC 2, and surface wind at 3 months back. The linear regression predictors are SST anomaly,
CTP, WWV, WPAC, EPAC, and Markov model PC 2 with lags of 6 months. Predictions are indicated by contours and
observations by shadings. The figure shows the prediction skill (measured by r and RMSE) of Recurrent LSTM network
surpasses Linear Regression beyond 6 months. (by courtesy of Kyle MacRitchie)

3 Month Forecast   r = 0.85 RMSE = 0.38

7 Month Forecast   r = 0.61 RMSE = 0.56

1 Month Forecast   r = 0.97 RMSE = 0.17

5 Month Forecast   r = 0.74 RMSE = 0.47

9 Month Forecast   r = 0.46 RMSE = 0.66

11 Month Forecast   r = 0.35 RMSE = 0.64

3 Month Forecast   r = 0.91 RMSE = 0.34

5 Month Forecast   r = 0.8 RMSE = 0.49

9 Month Forecast   r = 0.28 RMSE = 0.9

7 Month Forecast   r = 0.59   RMSE = 0.69

7 Month Forecast   r = 0.59 RMSE = 0.69

1 Month Forecast   r = 0.98 RMSE = 0.19

11 Month Forecast   r = -0.05 RMSE = 1.07

unroll

unroll unroll

unroll

NOTE:  The bias parameter b has been 
omitted in both network figures for brevity.


	Slide Number 1

