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PREFACE 

It is with great pleasure that the Climate Prediction Center (CPC) and the Office of Science and 
Technology Integration (STI) offer you this synthesis of the 46th Climate Diagnostics and Prediction 
Workshop (CDPW).  The CDPW remains a must attend workshop for the climate monitoring and 
prediction community.  As is clearly evident in this digest, considerable progress is being made both 
in our ability to monitor and predict climate.  The purpose of this digest is to ensure that climate 
research advances are shared with the broader community and also transitioned into operations.  This 
is especially important as NOAA works to enhance climate services both across the agency and with 
external partners.  We hope you find this digest to be useful and stimulating.  And please drop me a 
note if you have suggestions to improve the digest. 

 I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology Integration, for 
developing the digest concept and seeing it through to completion.  This partnership between STI 
and CPC is an essential element of NOAA climate services. 

 
David G. DeWitt 
Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service 
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OVERVIEW 

Due to the COVID-19 pandemic NOAA's 46th Climate Diagnostics and Prediction Workshop was held 
online on 26–28 October 2021. The workshop was hosted by the Climate Prediction Center (CPC) of the 
National Centers for Environmental Prediction (NCEP) and the Climate Services Branch (CSB) of the National 
Weather Service (NWS) Headquarters. 

The workshop focused on four major themes, with an emphasis on seasonal and subseasonal prediction, 
monitoring, attribution, diagnostics, and service delivery related to: 

1. The development and use of climate data records, including the impacts of updating base period climate 
normals on defining climatological base periods, verification, and trends. Topics also included the need 
for additional observational databases and improvements to existing databases, such as snowfall; 

2. Prediction, monitoring, and verification of extremes and extreme events related to the surface, ocean, 
atmosphere, land, and ice; 

3. Applications of modern technologies including geographic information system (GIS), machine 
learning, and software development at Subseasonal-to-Seasonal (S2S) time scales;  

4. Improving S2S precipitation prediction capabilities, sources of predictability, and user engagement 
practices for application in water resources. 

The workshop featured oral and poster presentations, lightning talks, invited speakers, and group 
discussions.  This Digest volume is a collection of extended summaries of the presentations contributed by 
participants. 

The workshop is continuing to grow and is expected to provide a stimulus for further improvements in 
climate monitoring, diagnostics, prediction, applications and services. 
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Do Models Generate Realistic Simulations of the North Atlantic SST? 
Timothy DelSole1 and Michael K. Tippett2 

1Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA 
2Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 

ABSTRACT 

 After a new climate model is constructed, a natural question is whether it generates realistic simulations. 
Here, "realistic" does not mean that the detailed patterns on a particular day are correct, but rather that the 
statistics over many years are realistic. Past approaches to answering this question often neglect correlations in 
space and time. This paper proposes a method for answering this question that accounts for correlations in space 
and time.  The basic idea is to fit each multivariate time series to a Vector Autoregressive (VAR) Model, and 
then test the hypothesis that the parameters of the two models are equal.  Because a VAR model uniquely 
specifies the autocorrelation function and 
the power spectra, equality of VAR models 
implies equality of autocorrelation 
functions and equality of power spectra.   In 
the special case of a first-order VAR 
model, the model is a Linear Inverse Model 
(LIM) and the test constitutes a difference-
in-LIM test.  The likelihood ratio test for 
this problem and the associated sampling 
distributions are derived. This derivation 
leads to a deviance statistic that measures 
the difference between VAR processes and 
can be used to rank models based on their 
“closeness" to the VAR process inferred 
from observations.  This test is applied to 
decide if climate models generate realistic 
internal variability of annual mean North 
Atlantic Sea Surface Temperature 
(NASST). Given the disputed origin of 
multidecadal variability in NASST (e.g., it 
could be forced by anthropogenic aerosols 
or it might arise naturally from internal 
variability), the time series are filtered in 
two different ways appropriate to the two 
driving mechanisms. In either case, only a 
few climate models out of three dozen are 
found to generate internal variability 
consistent with observations. In fact, it is 
shown that climate models differ not only 
from observations, but they also differ from 
each other, unless they come from the same 
modeling center. In addition to these 
discrepancies in internal variability, other 

Fig. 1  Deviance between ERSSTv5 1854-1935 and 82-year 
segments from 36 CMIP5 pre-industrial control simulations.    
The black and red curves show, respectively, results after 
removing a second- and ninth-order polynomial in time over 
1854-2018 before evaluating the deviance.  Also shown is the 
deviance between ERSSTv5 1854-1935 and ERSSTv5 1937-
2018 (first item on x-axis).   The latter deviance falls below 
the 5% threshold and hence indicates no significant 
difference in internal variability between two halves of 
ERSST, regardless of polynomial fit.  This result is consistent 
with the hypothesis that ERSST is a stationary VAR process 
after removing either a second- or ninth-order polynomial.     
Only one CMIP5 model is consistent with ERSST when a 
2nd-order polynomial removed, and only two CMIP5 models 
are consistent with ERSST when a 9th-order polynomial is 
removed. We conclude that the vast majority of CMIP5 
models generate unrealistic internal variability. 
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studies show that models exhibit significant discrepancies with observations in terms of the response to external 
forcing. Taken together, these discrepancies imply that, at the present time, climate models do not provide a 
satisfactory explanation of observed variability in the North Atlantic.  

This study has been published in Advances in Statistical Climatology, Meteorology and Oceanography in 
2020.  The follow-up researches can be found on Timothy DelSole’s publication website at 
http://cola.gmu.edu/delsole/publications.html.  

Reference 

DelSole, T., and M. K. Tippett, 2020: Comparing climate time series – Part 1: Univariate test, Adv. Stat. Clim. 
Meteorol. Oceanogr., 6, 159–175, doi:10.5194/ascmo-6-159-2020.  
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Preconditions for Extreme Wet Winters over the Contiguous United States 
Andrew Hoell,1 Martin Hoerling,1 Jon Eischeid,1,2 and Joseph Barsugli1,2 

1NOAA Physical Sciences Laboratory, Boulder, CO 
2Cooperative Institute for Research in the Environmental Sciences,  
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ABSTRACT 

 We identify physical factors leading to extreme wet winters over the contiguous U.S. and examine whether 
preconditions operated during winter 2019 (December 2018 to February 2019) when record precipitation 
occurred (Fig. 1) that led to billion-dollar flood disasters along the Missouri and Mississippi Rivers. Models 
and observations are used to determine the effect of slow-varying forcing that may lead to practical forecast 
skill for extreme wet winters. Atmospheric models indicate that sea surface temperatures during strong eastern 
Pacific El Niño events like 1983 and 1998 can drive extreme wet winters over the contiguous U.S. These strong 
El Niños shift the distribution of contiguous U.S. precipitation to wetter conditions with a mean wetting of 1.5-
2.0 standard deviations of the interannual variability. The shift to wetter conditions leads to a fivefold increase 
in the probability of wet winters of the magnitude observed in 2019. On longer timescales, observations indicate 
contiguous U.S. winter precipitation has increased over the last century. Analysis of historical coupled model 
simulations indicates anthropogenically-forced shifts to wetter conditions over the last century of 0.2-0.4 
standard deviations of the interannual variability. While increasing the risk of extreme wet winters like 2019, 
this effect is a limited source of predictability during any particular winter. Concerning 2019 specifically, 
preconditioning factors of the risk for extreme contiguous U.S. winter wetness were weak or absent and offered 
little practical early warning (Fig. 2). The ongoing central Pacific El Niño that winter did not significantly alter 
the risk of the wetness, and thus the extreme 2019 conditions are judged not to have been a seasonal forecast of 
opportunity. 

Fig. 1 December–February 1896–2019 contiguous U.S. average observed precipitation anomaly in mm/day 
from nClimGrid/CLIMGRID (Vose et al., 2014). Anomalies are based on 1981–2010 and percentile ranks 
are based on 1896–2019. 1989–2018 and 1921–1980 are shaded to highlight the focus eras of 
anthropogenic preconditioning in discussion. 
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This work has been published in Weather and Climate Extremes in 2021.  

References 
Hoell, A., M. Hoerling, J. Eischeid, and J. Barsugli, 2021: Preconditions for extreme wet winters over the 

contiguous United States. Weather Clim. Extrem., 33, 1-14, doi:10.1016/j.wace.2021.100333.  
Vose, R. S., and Coauthors, 2014. Improved historical temperature and precipitation time series for U.S. climate 

divisions. J. Appl. Meteorol. Climatol., 53, 1232–1251. 

Fig. 2  December–February 2019 precipitation anomaly in mm/day constructed from sequences of GEFS 
ensemble average (a) 1-day lead forecasts and (b) 15-day lead forecasts initialized daily.  Chattanooga, 
Tennessee (circle), Springfield, Illinois (square), Dubuque, Iowa (triangle), Pacific House, California 
(diamond) are indicated.  
* The map of accumulated daily precipitation anomalies based on sequences of 1-day leads closely 
resemble the observations as expected, affirming the well-known high skill of synoptically driven cold-
season precipitation at such short leads. By contrast, the 15-day leads provide no skill for the wetness. The 
severe degradation in quality of the lead-dependent weather predictions by the second week affirms that 
boundary forcing unlikely played an important role in creating America’s wettest winter.  
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MJO Impacts on Winter Weather Event Frequency  

Stephen Foskey and Naoko Sakaeda 
University of Oklahoma, Norman, OK 

1. Introduction  

Winter weather can have a major impact on society. Improving forecasting of winter weather would be 
beneficial to individuals and society by providing them with more time to prepare. The Madden-Julian 
Oscillation (MJO) has a major influence on weather and climate patterns around the globe. The MJO has been 
shown to influence the predictability of 500 hPa height patterns out to two or three weeks (Tseng et al. 2017). 
The MJO can also impact temperature patterns across the globe (e.g., Zhou et al. 2012), as well as stratospheric 
conditions (Green and Furtado 2019). If the MJO can be used to help predict winter weather, that would extend 
the forecast lead time for winter weather beyond the typical 7-10 days for synoptic scale systems (Zhang et al. 
2019). Some research has been done on how the MJO influences snowfall over eastern New England (Klotzbach 
et al. 2016), but there has been less research on the MJO and winter weather over the rest of the country. The 
goal of this research is to determine how the phase of the MJO impacts the frequency of winter weather events 
over the contiguous United States. We hypothesize that the MJO impacts winter weather over the United States 
through the changes in the flow pattern influenced by the MJO and its effect on thermodynamic and dynamic 
properties. The upper-level divergence associated with the MJO has been shown by Sardeshmukh and Hoskins 
(1988) to lead to the generation of Rossby waves, which can become amplified and lead to blocking. This 
blocking causes temperature anomalies in areas downstream from the ridging and a consistent jet pattern that 
is supportive of winter storms. 

2. Data and  methods 

We used winter storm data from the NCEI Storm Events Database. This database is a collection of extreme 
weather events from 1996 to the present. For this study, events were chosen which met winter storm warning 
criteria for local forecast offices and were divided into three categories: winter storm, ice storm, or heavy snow. 
Heavy snow events have only snow as a precipitation type, ice storms have only freezing rain, and winter storms 
have some combination of snow, sleet, and freezing rain. The most frequent months for winter weather were 
December through March. These months were selected for further analysis due to their increased frequency of 
winter weather. The strength and phase of the MJO are primarily identified using the Outgoing Longwave 
Radiation (OLR) MJO Index (OMI) (Kiladis et al. 2014). The results based the OMI were compared to the 
Real-time MJO Monitoring Index (RMM) to check consistency. 

Using the NCEI Storm Events Database, the frequency of severe winter weather events in the different 
storm categories were calculated by weather forecast office (WFO). The calculation of storm frequency by 
WFO provides consistency in storm criteria because each WFO has its unique criteria for classifying weather 
events that are reported. The frequency is defined as the number of reports per day normalized by the number 
of zones within each WFO. To determine the impact of the MJO on the frequency of severe winter weather 
events, we found the ratio of the frequency of winter weather events in a given phase of the MJO index to its 
climatological frequency. Frequency ratios greater than one indicate events are more frequent than climatology, 
while those less than one indicate events that are less frequent than climatology. 

3. Analysis  

The climatological frequency of extreme winter weather events shows that heavy snow is most frequent in 
the Northeast and Northwest U.S., winter storms are most frequent in the Northeast and North Central U.S., 
and ice storms are most frequent in the Central U.S. The maximum frequency of heavy snow and winter storms 
is around 3-4 reports per year, while it is less than 0.5 report per year for ice storms. 

Correspondence to: Stephen Foskey, University of Oklahoma, Norman, OK; E-mail: stephen.r.foskey@ou.edu 

mailto:stephen.r.foskey@ou.edu


   
  

 

Fig. 2 Geopotential height anomalies at 500 hPa and wind 
vector anomalies at 250 hPa for phase 2 (top) and 
phase 4 (bottom) of the MJO. 

 
 

 

    

 

  

 
 

 
 

 
 

 
 

  
 

  
 
 
 
 

 
  

 
  

  

 

 Fig. 1  DJFM surface temperature anomalies for OMI phase 2 (left) and phase 4 (right) of the MJO. 

9 FOSKEY AND SAKAEDA 

The MJO phases analyzed here were phase 2 and phase 4, due to their relatively large frequency of winter 
weather events. During phase 2 of OMI or RMM, which is associated with enhanced MJO convection over the 
Indian Ocean, surface temperature tends to be colder over the United States (Fig. 1, left) (Zhou et al. 2012). 
Phase 4 (which has enhanced MJO convection over the Maritime Continent) is associated with warmer 
temperatures over the southeastern half of the United States, and near-normal temperatures over the rest of the 
country (Fig. 1, right). Phase 2 featured a trough over the northern U.S. and southwesterly flow across the 
middle of the country (Fig. 2, top). Phase 4 featured a trough in the northwest corner of the country and ridging 
to the east (Fig. 2, bottom). There was a strong jet in the western half of the country, with weak flow to the 
southeast. 

There are significant variations in the frequency 
ratio of winter weather events by MJO phase. These 
variations did not always align with temperature 
anomalies. For heavy snow events, phase 2 had large 
frequency ratios in the Southern U.S., while phase 4 
had large frequency ratios in the Northern Plains 
(Fig. 3a, b). This is in spite of the Northern Plains 
having near-normal to above-normal temperatures. 
However, the areas of greatest frequency ratios are 
near the areas of sharpest temperature gradient. For 
winter storms, the pattern is different. In phase 2, the 
greatest frequency ratios are in the Northeast, while 
in phase 4, they shift to the western U.S. (Fig. 3c, d). 
The area of large frequency ratios is very pronounced 
and includes areas with both warmer and colder than 
normal temperature anomalies. Ice storm reports are 
quite frequent across the eastern half of the country 
in phase 2, but less so in phase 4 (Fig. 3e, f). There 
are fewer areas of significance for ice storms because 
of the smaller sample size. The ice storm frequency 
ratios are more closely correlated to temperature. 
When comparing the OMI and RMM, the results are 
similar, however they can vary slightly over 
particular regions. 

4.  Conclusion 

The frequency of winter weather across the United States is affected by the MJO phase. However, the 
impacts vary based on storm type and region. The original hypothesis that the impacts vary primarily on 
temperature will need to be revisited. That pattern appears to be true for ice storms, but not other storm types 
to the same extent. It appears likely that wind patterns including areas of convergence and divergence also play 



 
 

     
  

Fig. 3 Frequency ratios from 1996-2018 for winter event types. Subplots are as follows: a) heavy snow 
reports for phase 2 and b) phase 4 of the MJO, c) winter storm reports for phase 2 and d) phase 4 of the 
MJO, e) ice storm reports for phase 2 and f) phase 4 of the MJO. Crosses indicate significance at the 
90% level using bootstrapping. 
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a role. Further research since the time of the conference has focused on analyzing these topics and looking at  
other properties such as moisture. 
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Prediction Challenges Associated with Errors in Linear Trends of 
Tropical Pacific Sea Surface Temperature 

Michelle L. L'Heureux,1 Michael K. Tippett,2 and Wanqiu Wang1  
1Climate Prediction Center, NOAA/NWS/NCEP, College Park, MD 

2Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 

The research associated with the presentation is now published at Frontiers in Climate 
(L'Heureux et al. 2022), which is freely available and open-access at the website: 

https://doi.org/10.3389/fclim.2022.837483 

What follows is a brief summary, including a subset of figures that were not featured 
in the paper. 

SUMMARY 

Across the tropical Pacific Ocean, linear trends in sea surface temperature (SST) were analyzed over all 
calendar months from 1982-2020 in the observations (Fig. 1) and in predictions from the North American Multi-
model Ensemble (NMME; Fig. 2).  This period was chosen because reforecasts from the NMME are only 
available since 1982. To summarize the model data, the lead-0.5, lead-4.5, and lead-8.5 monthly forecasts are 
shown in the subpanels of Fig. 2. 

Figure 1 shows that, over 
1982-2020, the largest positive 
linear trends were observed in the 
western equatorial Pacific Ocean, 
while trends are very small and 
insignificant across the east-
central and eastern equatorial 
Pacific Ocean. In the NMME 
predictions (Fig. 2), the spatial 
distribution of these linear trends 
are generally captured at the 
shortest lead times, with the 
exception of the NCEP-CFSv2 
and CCSM4 models, which have 
immediate positive trend errors at 
the shortest lead time. This is due 
to errors arising from their initial 
condition, which are from the 

Fig. 1  Linear trend of monthly sea surface temperature from January 1982 
to December 2020. Units are in degrees Celsius change over January 
1982 to December 2020. The thin gray lines indicate the equator and 
the International Date Line. Data is based on OISSTv2. 

CFSR, which has a discontinuity in ~1999 so that forecasts are warmer after 1999 than before (Xue et al., 2011; 
Kumar et al. 2012).  In operations, this is addressed by removing two different monthly mean climatology 
periods (e.g. 1982-1998 and 1999-2010) prior to computing an anomaly. However, here, we are examining total 
SSTs and therefore do not correct for this error.    
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Fig. 2  For each model in the NMME, linear trend (forecasted coefficient minus observed coefficient) in 
monthly sea surface temperatures from January 1982 to December 2020. The bold number in each panel 
shows the forecast lead time (0.5-, 4.5-, and 8.5-month leads). Units are in the degrees Celsius change 
over January 1982 to December 2020. The thin gray lines indicate the equator and the International Date 
Line. 

  
  

 

Fig. 3   Schematic of positive SST trends superimposed on models with a colder or warmer mean SST bias. 
Vertical grey lines show the increase in error with time for warm mean biased models and decrease in 
error for cold mean biased models. 

 
 

 

 

  

13 L’HEUREUX ET AL. 



 
 

 
 

 

   
   

 

Fig. 4 The error (forecast minus observations) of central Pacific 
precipitation anomalies for the NMME model average across monthly 
lead-time (y-axis).  The x-axis displays El Nino years (middle and 
bottom panels) and El Nino false alarm years (top panel).  Along the x-
axis, there are twelve squares between the vertical red lines, which 
represent January-December target times for the first (onset) calendar 
year of the El Nino or El Nino false alarm case. The middle panel 
shows error for El Nino cases after 2000 and the bottom panel shows El 
Nino cases prior to 2000. The top panel includes El Nino false alarm 
cases after 2000. 

 
 

 

 

 

 

 

 
 

 
 
 

 

 

 

 

 

   

 
 

14 SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

At longer monthly lead times, 
which become apparent after the 
~4.5-month lead time, there are 
positive trends in the eastern and 
central Pacific Ocean across all 
models, which is in stark contrast 
to the observed linear trends 
presented in Fig. 1. These positive 
trends grow with lead-time, so that 
all models have substantial 
positive trends in the central and 
eastern Pacific Ocean by lead-8.5.  

These linear trend errors in the 
NMME are also associated with 
linear trends in squared errors 
(forecast minus observations), so 
that some models predictions are 
improving over time (1982-2020), 
while other models worsen (not 
shown). It turns out that the 
direction of the error is determined 
by the sign of the model’s mean 
bias, which is shown as a 
schematic in Fig. 3. Some models 
have a cold mean bias (blue line) 
and so positive trend errors result 
in forecasts that are closer to the 
observations over time (black 
dashed line), and subsequently, 
smaller errors over time (dashed 
grey lines).  In contrast, other 
models have a warm mean bias 
(red line) and positive trend errors 
result in predictions that are farther 
from the observations over time.  

In addition to the SST trend 
errors over the 1982-2020 period, 
there are precipitation trend errors 
over the same period (not shown). 
Accompanying the too warm SST 
predictions, the precipitation 
predictions have trended in the 
direction of being too wet.  Overly 
warm and wet predictions are 
accompanied by an increase in El 
Niño False Alarms, or cases when 
El Niño was predicted and did not occur. 

Averaging precipitation anomalies in the equatorial central Pacific Ocean, we examined the precipitation 
anomaly errors during the first calendar year of El Niño events between 1982-2020 (Fig. 4 — bottom two panels) 
and also five El Niño false alarm events (Fig. 4 — top panel).  It is clear that predictions of precipitation 
anomalies during El Niño events after 2000 (middle panel) are biased wetter than predictions before 2000 
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(brown shading in bottom panel).  However, the largest positive precipitation anomaly errors (forecasts were 
too wet) occur during El Niño false alarms (top panel).  Interestingly, four of the five El Niño false alarms have 
occurred since 2010 (Tippett et al., 2020), which implies the forecast trends toward a warmer and wetter tropical 
Pacific may be increasing the false alarm frequency (see additional analysis in Frontiers in Climate). 
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1. Introduction 

The hazardous impacts of heavy rainfall on agriculture and the economy in the US Midwest cannot be 
overstated (Ray et al. 2015). These heavy rainfall events are generated in atmospheric circulation patterns 
distinct from moderate or light rainfall, which challenges heavy rainfall prediction (e.g., Doblas-Reyes et al. 
2013; White et al. 2017). Previous attempts to predict Midwest heavy rain based on pre-season sea surface 
temperature anomaly (SSTA) (e.g., McCabe et al. 2004; Schubert et al. 2016) hardly generated skill that met 
the forecast accuracy for socioeconomical needs (Li et al. 2018; Carter et al. 2021). We are motivated to search 
for more skillful predictors for summertime heavy rain in the Midwest.  

These predictors can be sought from the oceanic water cycle, as the ocean is the ultimate moisture source 
for precipitation on land (Gimeno et al. 2010), and the oceanic influence amplifies as rainfall intensity increases 
(e.g., Jana et al. 2018; Liu et al. 2021). The oceanic moisture export is also a forcing mechanism on sea surface 
salinity (SSS), an ocean state variable highly sensitive to moisture flux over the ocean (Schanze et al. 2010; 
Gordon 2016; Vinogradova et al. 2019). The close connection between SSS, oceanic moisture, and terrestrial 
precipitation suggests that the upstream SSS anomaly (SSSA) could be a skillful predictor of precipitation on 
land. Encouraging skill of SSSA-based seasonal rainfall forecasts was shown for the African Sahel (Li et al. 
2016a), the US (Li et al. 2016b; Liu et al. 2018), China (Zeng et al. 2019), and Australia (Rathore et al. 2021). 
Here, we present an additional line of evidence that springtime SSSA in the tropical Pacific and subtropical 
North Atlantic are skillful predictors of summertime heavy rain in the US Midwest. 

2.  Data and methods 

2.1 Bayesian inference on summer-season heavy rainfall events over the US Midwest 

A Bayesian 3-cluster Gaussian mixture model (GMM; Li and Li 2013) is implemented to objectively 
categorize Midwest daily precipitation into light, moderate, and heavy rainfall: 

𝑦𝑦𝑖𝑖|𝜋𝜋, 𝜇𝜇,𝜙𝜙~∑ 𝜋𝜋hGauss�𝑦𝑦i�𝜇𝜇h,𝜙𝜙h
−1�3

h=1 ,       (1) 

where 𝑦𝑦𝑖𝑖 = ln𝑃𝑃𝑃𝑃𝑖𝑖 is the natural log of precipitation in the 𝑖𝑖th day, 𝜋𝜋 is cluster weight (i.e., rainfall frequency), 
𝜇𝜇 is cluster mean (i.e., rainfall intensity), and 𝜙𝜙 is the precision parameter. ℎ ∈ {1,2,3} is the cluster index, 
respectively representing light, moderate, and heavy rainfall cluster. The distribution parameters (𝜋𝜋, 𝜇𝜇,𝜙𝜙) are 
sampled using Markov Chain Monte Carlo algorithm (Gelfand 2000). The code for the Bayesian model is 
available at: https://doi.org/10.5281/zenodo.5389218. 

2.2 Logistic regression 

To assess the predictive skills of preseason SSTA and SSSA in forecasting US Midwest heavy rainfall 
frequency (𝜋𝜋3 in the GMM), we construct a logistic regression model:  

𝜋𝜋3 = 1
1+𝑒𝑒−𝜃𝜃𝑇𝑇𝑥𝑥+𝜀𝜀

.        (2) 
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In Eq. (2), 𝑥𝑥 is the predictors, and 𝜃𝜃 is the regression coefficients. 𝜀𝜀~𝑁𝑁(0,𝜎𝜎2) is the residual of the regression 
which is normally distributed with zero mean and variance of 𝜎𝜎2. 

In constructing the regression model, we randomly draw half the data as training samples and the remaining 
half are independent samples for validation. The regression coefficients are first derived from the training 
sample and then applied to the validation samples to estimate the prediction errors. This training-validation 
process is repeated 1000 times. The parameter set that minimizes the prediction errors of the validation samples 
is selected to create the final logistic regression model that is applied to the entire dataset.  

3.  Results 

3.1 Heavy precipitation explains the majority of the US Midwest summer precipitation variance 

According to the GMM (Eq. 1), the US Midwest receives an accumulation of 261.7 mm of precipitation, 
with 38.5 (±7.2) mm from light rainfall, 121.9 (±23.7) mm from moderate rainfall, and 101.3 (±43.3) mm 
from the heavy rainfall cluster during the summer season (Fig. 1a). At an interannual time scale, the variation 
of summer precipitation is almost exclusively explained by heavy rain. The 𝑅𝑅2  between the heavy rainfall 
cluster and season-total precipitation is 0.81 (Fig. 1a). In contrast, the variance explained by moderate (light) 
rainfall is lower at 𝑅𝑅2 = 0.29 (negative at𝑅𝑅2 = −0.21) (Fig. 1a). Our analysis suggests that heavy rainfall, 
despite weather event, exerts climatic impacts on water resources in the summer. Further, heavy rainfall 
frequency is overwhelmingly more important than heavy rainfall intensity to interannual variation of seasonal 
precipitation, i.e., the correlation between seasonal-mean precipitation and heavy rainfall intensity is 0.18 (𝑝𝑝 =
0.13) but reaches 0.90 (𝑝𝑝 ≤ 0.00) with heavy rainfall frequency (Fig. 1b-c).  
3.2 Springtime salinity provides 
predictive values to US Midwest 
heavy rainfall 

We explore oceanic precursors 
of US Midwest heavy rainfall by 
regressing March-April-May 
(MAM) SSTA and SSSA upon 
summertime heavy rainfall 
frequency ( 𝜋𝜋3  in Eq. 1). More 
frequent heavy rainfall would be 
expected following an 
anomalously warm (cold) tropical 
central Pacific (Gulf of Mexico 
(GOM)) (Fig. 2a). Corresponding 
to the SSTA, the center of tropical 
convection is shifted near the 
dateline, resulting in a dipole 
SSSA pattern with anomalously 
low salinity along the equator and 
high salinity to the south (Fig. 2b; 
Guimbard et al. 2017). The low 
SSSA along the equator reaches -
0.1 PSU (Fig. 2b). With the typical 
SSS (33PSU) in this region, and mixed layer depth of 15m, the observed SSSA could correspond to an 1.8 mm 
day-1 increase in precipitation (𝑃𝑃′~− 𝜌𝜌0ℎ𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆̅Δ𝑡𝑡
) in the spring, forcing atmospheric teleconnection and thus the 

response in extratropical precipitation (Horel and Wallace 1981; Liu and Alexander 2007). In the North Atlantic, 
the preseason SSSA is most significant off the Eastern coast of the US (Fig. 2b). The SSSA pattern is consistent 
with our previous studies linking a saltier subtropical North Atlantic to increased summer precipitation over the 
Midwest (Li et al. 2016b, 2018).  

Fig. 1 a) Contribution of the light (red dots), moderate (black dots), and 
heavy (blue dots) rainfall to summer season cumulative precipitation 
in the Midwest. The lines are the linear regression of cluster total 
precipitation against cumulative precipitation in summer. b) and c) 
are, respectively, the scatter plots of summer-season precipitation 
versus heavy rainfall intensity and frequency. (from Li et al. 2022, in 
review with GRL) 
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Based on MAM SSTA and 
SSSA in Fig. 2a-b, we define four 
predictors: Niño 3.4 SSTA, GOM 
SSTA, Tropical western Pacific 
SSSA dipole index, and North 
Atlantic SSSA. These four 
predictors are supplied to the 
logistic regression model (Eq. 2) to 
predict summertime heavy rainfall 
frequency (Fig. 2c-e). The R2 value 
between the observations and the 
prediction is 0.46 (Fig. 2c). In 
particular, the model predicts a 
doubling of heavy rainfall in the 
wettest summer of 1993 and 
reduced heavy rainfall in the dry 
summer of 2012 (Fig. 2c), 
suggesting the capability of the 
logistic regression model to 
forecast extreme events one season 
ahead. Overall, SSSA-based predictors are almost twice as skillful (R2 = 0.27; Fig. 2e) than SSTA-based 
predictors (R2 = 0.14; Fig. 2d). It is noteworthy that the Pacific SSSA dipole significantly correlates with Niño 
3.4 but is more skillful in predicting Midwest heavy rainfall. The superior skill of the North Pacific SSSA dipole 
is attributable to tropical convection as the dominant forcing on the SSSA (Sean-Martins and Stammer, 2015). 
Without a damping mechanism, the SSSA reflects cumulative tropical convection and latent heating released 
into the atmosphere, a driver of atmospheric teleconnection (Gill et al. 1980; Scaife et al. 2017). Via tropical-
extratropical teleconnection, the SSSA dipole turns out to be a more skillful predictor of precipitation on land. 

4.  Conclusion and discussion 

According to the Bayesian GMM applied to summertime daily precipitation in the US Midwest, heavy 
rainfall events are primarily responsible for the year-to-year variation of cumulative seasonal precipitation, a 
meteorological variable that significantly impacts yields in this important crop production region. Here, we 
explore pre-season oceanic state variables for predicting summer-season heavy rainfall in the US Midwest. 
Based on the logistic regression, skillful prediction of US Midwest heavy rain is achieved one season ahead 
with the knowledge of SSTA over the Niño 3.4 region and GOM and SSSA over the tropical western Pacific 
and subtropical North Atlantic. The combination of the four predictors leads to prediction with R2 = 0.46, in 
which the SSSA-based predictors provide superior skill compared to SSTA-based predictors (Fig. 2).  

The potential mechanisms underlying the SSSA’s predictive skill could involve both atmospheric 
teleconnection and soil moisture feedback. Specifically, the Pacific salinity dipole is indicative of tropical 
convection and the resultant tropical-extratropical teleconnection. Through the long memory of extratropical 
SSTA, and the coupling between SSTA, pressure, and precipitation, a quasi-barotropic wave train that 
resembles the typical circulation during US Midwest heavy rainfall events is triggered and maintained. In 
addition, the subtropical North Atlantic SSSA is skillful in predicting summer-season heavy rain mainly due to 
a positive soil moisture feedback mechanism as identified previously (Li et al. 2016b, 2018). With the 
cumulative effects of soil moisture feedback and tropical-extratropical teleconnection, the combination of 
Pacific SSSA dipole and North Atlantic SSSA provides indispensable value to predict US Midwest heavy 
rainfall, complementing the current statistical forecasting based solely on pre-season SSTA.  

Furthermore, the newly identified pre-season SSSA patterns could become more valuable as the climate 
warms: ENSO teleconnections are sensitive to a changing background state in response to natural and 
anthropogenic forcing (McPhaden et al. 2011; Yeh et al. 2019). In addition, the oceanic water cycle is predicted 
to intensify in the future (Durack et al. 2012; Levang et al. 2015), and the oceanic moisture export to more 

Fig. 2 MAM SSTA (a) and SSSA (b) regressed upon Midwest heavy 
rainfall frequency. Grid cells with regression coefficients significant 
at 𝛼𝛼 = 0.05 level are stippled; c-e) are US Midwest heavy rainfall 
frequency predicted by the logistic regression model: c) all predictors; 
d) SSTA-based predictors; e) SSSA-based predictors. The red curves 
are the observations. (from Li et al. 2022, in review with GRL)  
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significantly influence the water balance on land (Findell et al. 2019). SSS is a standard ocean state variable 
that has been routinely measured back to the late 19th century. The long observational records provide an 
enriched data source to train and validate prediction models, a critical step towards improved operational 
forecasts of high-impact hydroclimatic events. Thus, sustained measurement and monitoring of SSS will greatly 
benefit the prediction of heavy rainfall and early warning of flooding events for the US Midwest. 
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1. Introduction 

Atmospheric blocking has long been recognized as an important phenomenon that manifests at large, quasi-
stationary anticyclones that block the storm track and reverse the typical climatological westerlies in the mid-
latitudes (Rex 1950; Miller and Zhou 2019 and references therein). The impacts of blocking on both upstream 
and downstream temperature and precipitation anomalies are well known and are profound due to the prolonged, 
several week timescale over which blocking can persist, often extending into Week 3-4. For example, persistent 
drought and heat in California has been linked to blocking over the northeastern Pacific Ocean (e.g., Wise 2016), 
while these same blocks can lead to atmospheric river landfalls in Alaska (Baggett et al. 2016). Persistent 
extreme cold conditions over the eastern United States have been linked to blocking over the western Atlantic 
(e.g., Wang et al. 2010), and blocks are capable of steering tropical systems such as Hurricane Sandy into the 
East Coast in 2012 (Mattingly et al. 2015). Also, blocking is known to have a strong relationship with the 
stratosphere and sudden stratospheric warmings (Martius et al. 2009; Butler et al. 2017).  Any potential 
forewarning of the occurrence of a sudden stratospheric warming and its subsequent impacts would be 
beneficial. Thus, a greater understanding of blocking and its impacts has the ability to improve subseasonal 
outlooks, including CPC’s Week 3-4 temperature and precipitation outlooks. 

2. Methods 

In this work, we investigate the extent to which Week 3-4 prediction skill can be improved by adding 
blocking as a predictor to CPC’s statistical suite of tools. In particular, we focus on improving CPC’s multiple 
linear regression model (MLR; Harnos et al. 2022), whose present version uses as predictors the current state 
of ENSO and the MJO along with the long-term trend to forecast above or below normal outlooks of Week 3-
4 temperature and precipitation. We test several formulations of blocking as a predictor, including traditional 
indices based on the latitudinal reversal of geopotential height gradients (Tibaldi and Molteni 1990; Barnes et 
al. 2012) along with more common indices such as the North Atlantic Oscillation (NAO) and the Pacific-North 
American pattern (PNA; Barnston and Livezey 1987), which are known to be associated with blocking (Croci-
Maspoli et al. 2007). Furthermore, we analyze the ability of the dynamical models, including the GEFSv12, to 
forecast blocking at extended leads with the purpose of using forecasted blocking predictors in a hybrid-
statistical-dynamical approach. In section 3, results will focus on the use of forecasted values of the NAO and 
PNA, as they provided the greatest overall increase in skill compared to the other indices when being tested in 
the framework of the statistical MLR. 

In this framework, the MLR is trained using observed data from the 1981-2010 period and verified during 
the 2011-2019 period. Observed values of temperature from CPC’s Global Temperature data set (Fan et al. 
2008) and precipitation from CPC’s Global Unified Gauge-Based Analysis of Daily Precipitation (Chen et al. 
2008) are used for both training and verification. Several experiments with the MLR were constructed and 
tested: the original-MLR, the MLR-NAO, the MLR-PNA, and the merged-MLR. The original-MLR serves as 

Correspondence to: Cory F. Baggett, Climate Prediction Center, NOAA/NWS/NCEP, 5830 University Research Court, 
College Park, MD 20740;  E-mail: cory.baggett@noaa.gov 
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the control experiment and mimics 
the MLR currently being used in 
operations. For predictors, the 
original-MLR uses the prior two 
week-averaged value of ENSO3.4, 
the long-term trend, and recent 
values of the Real-time 
Multivariate MJO index (RMM; 
Wheeler and Hendon 2004). The 
MLR-NAO uses the same 
predictors as the original-MLR but 
also incorporates the NAO. A 
range of lead-time-specific NAO 
values are tested as predictors from 
Day 0 through Day 15. Actual 
observed values of the NAO are 
used during the training period, 
whereas forecasted, ensemble- Fig. 1  A schematic diagram of the merged-MLR is shown. The merged-MLR 
mean values of the NAO from the consists of two separate models, the MLR-NAO which is used to forecast 

GEFS are used during the for CONUS and the MLR-PNA which is used to forecast for AK. Each 
of these models is trained over the 1981-2010 period with the following verification period1. An analogous 
predictors: prior two week-averaged value of ENSO3.4, the most currentexperimental design was created 
RMM indices, the long-term trend, the NAO at Day +14 for the MLR-for the MLR-PNA. After 
NAO, and the PNA at Day +12 for the MLR-PNA. The observed values extensively testing a range of lead-
of the NAO and PNA are used during the training period, whereas bias-time-specific predictors, it was 
and variance-corrected, ensemble mean values from the GEFSv12 are

found that the Day +14 NAO leads used during the 2011-2019 verification period. The predictands are 
to the greatest improvement in skill anomalous values of Week 3-4 temperature and precipitation, where 
of the MLR-NAO over the anomalies for temperature and precipitation are defined against their
original-MLR, while the Day +12 climatological means and medians, respectively. 
PNA leads to the greatest 
improvement in skill of the MLR-PNA over the original-MLR. The merged-MLR makes use of the MLR-NAO 
and MLR-PNA by using each individual model to forecast for CONUS and AK, respectively. A schematic 
diagram of the merged-MLR is provided in Figure 1. 

3. Results 

We verify temperature and precipitation forecasts by the aforementioned MLR models for Thursday 
initializations during November-April over the 2011-2019 verification period. We only focus on Thursday 
initializations in order to make a comparison with skill scores derived from the weekly-issued reforecasts of the 
extended-GEFSv12. Further, we concentrate on November-April initializations, as no improvement in skill was 
found during the summer months – likely a result of two factors: 1) The teleconnections of ENSO, the MJO, 
the NAO, and PNA to surface impacts over CONUS are weaker in summer than winter, and 2) We found that 
the GEFSv12 has less skill in forecasting the NAO and PNA at extended leads during summer. In fact, during 
winter, correlations between the observed and GEFSv12-forecasted values of the indices exceed 0.5 through 
lead times of +12 to +14 days, while they were substantially lower during the warmer half of the year (not 
shown). 

An overall summary of two-category temperature and precipitation Heidke Skill Scores (HSS) for each of 
the MLR statistical models and the GEFSv12 is provided in Tables 1-4. While unfortunately precipitation skill 
scores were not improved, temperature skill scores from the merged-MLR show notable improvement over the 

1 Before being used as predictors during the verification period, the ensemble-mean values of the NAO from the GEFS 
have had their lead-time-specific bias and variance corrected to match the observed NAO. 
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Table 1  Heidke skill scores for temperature for the GEFSv12, the original-MLR, the MLR-NAO, the MLR-
PNA, and the merged-MLR aggregated over the domains of CONUS/AK, CONUS, and AK that have been 
averaged over the verification period of January 6, 2011 through August 29, 2019 for all Thursday issuances 
of the Week 3-4 forecast during November through April (n = 224). Positive values indicate forecast skill 
and added value as compared to a climatological baseline. 

Temperature HSS (All Initializations) 

Region GEFSv12 original-MLR MLR-NAO MLR-PNA merged-MLR 

CONUS & AK 24.3 12.7 14.9 10.7 17.2 

CONUS 23.9 11.5 15.3 7.6 15.3 

AK 26.1 19.2 12.7 26.6 26.6 

Table 2 As in Table 1, but for precipitation. 

Precipitation HSS (All Initializations) 

Region GEFSv12 original-MLR MLR-NAO MLR-PNA merged-MLR 

CONUS & AK 6.9 3.6 2.6 2.6 2.4 

CONUS 6.5 2.4 1.4 1.6 1.4 

AK 9.1 10.2 9.2 8.0 8.0 

Table 3 As in Table 1, but averaged only over forecast issuances when the NAO was amplified on Day 0. 

Temperature HSS (Amplified NAO Initializations) 

Region GEFSv12 original-MLR MLR-NAO MLR-PNA merged-MLR 

CONUS & AK 22.7 13.2 21.2 11.0 22.7 

CONUS 21.9 11.5 21.5 7.5 21.5 

AK 26.9 21.9 20.0 29.0 29.0 

Table 4 As in Table 3, but for precipitation. 

Precipitation HSS (Amplified NAO Initializations) 

Region GEFSv12 original-MLR MLR-NAO MLR-PNA merged-MLR 

CONUS & AK 8.4 4.7 5.8 3.4 5.7 

CONUS 7.7 3.5 5.0 2.3 5.0 

AK 11.8 10.8 10.2 9.3 9.3 

original-MLR. Thus, the remaining figures will highlight the results for temperature only. Figure 2 displays the 
HSS over 224 forecast initializations for the original-MLR, the MLR-NAO, the MLR-PNA, the merged-MLR, 
and the GEFSv12 for the CONUS/AK domain. The original-MLR scores a 12.7 for the entire CONUS/AK 
domain. In comparison, the MLR-NAO scores 14.9, an improvement of 17.3%. Upon closer examination, this 
improvement derives from the MLR-NAO scoring a 15.3 over CONUS compared to the original-MLR’s 11.5, 
an improvement of 33.0%. In contrast, the MLR-NAO’s score over AK decreases. With respect to the MLR-
PNA, it scores 10.7 over CONUS/AK, which is worse than the original-MLR. However, despite this decrease 
in skill score, the MLR-PNA improves upon the original-MLR over AK with a score of 26.6 compared to 19.2, 
an improvement of 38.5%. Thus, because the improved forecast skill of the MLR-NAO and MLR-PNA over 
the original-MLR are spatially complementary to each other, we combine them into a merged-MLR, which 
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Fig. 2   HSSs for the original-MLR, the MLR-NAO, the MLR-PNA, the merged-MLR, and the GEFSv12 for 
all Thursday forecast initializations during November-April from 2011-2019 (n = 224). Scores averaged 
over the entire CONUS/AK domain, CONUS only, and AK only are shown for each model. 

Fig. 3  As in Figure 2, but only forecast initializations with an amplified NAO are considered (n = 83). 

scores a 17.2 over the CONUS/AK domain, an improvement of 35.4% over the original-MLR’s 12.7. Finally, 
as a point of reference, the GEFSv12 scores a 24.3 over the CONUS/AK domain, which is 41% better than the 
merged-MLR. 

However, the advantage of the GEFSv12 over the merged-MLR considers all forecast initializations, 
regardless of whether blocking is currently active or not. Indeed, this advantage vanishes when only considering 
forecast initializations when the NAO is amplified (either greater than 1 standard deviation or less than -1 
standard deviation; Fig. 3). While the sample size of these initializations decreases to 83, both the merged-MLR 
and the GEFSv12 have identical HSSs of 22.7, significantly better than the original-MLR’s score of 13.2, an 
improvement of 72%. The improved skill of the merged-MLR under amplified NAO conditions is likely due to 
the GEFSv12’s ability to more accurately forecast the NAO at extended lead times given a strong NAO at 
forecast initialization (Feng et al. 2021). In a hybrid-statistical-dynamical framework, having an accurate 
forecast of the NAO at Day +14 by the GEFSv12 leads to an improved forecast of temperature over CONUS 
by the merged-MLR.  

4. Discussion and conclusion 

Given the improvement of the merged-MLR over the original-MLR, an experimental, web-based tool has 
been created and made available to the Week 3-4 operational forecasters at CPC2. The tool provides forecasts 
of Week 3-4 temperature, precipitation, and 500-hPa heights derived from the original-MLR, the MLR-NAO, 
the MLR-PNA, and the merged-MLR along with their verifications over time. Currently, the tool is being 
monitored and enhancements are being made given feedback by the forecasters. 

2 http://cpcintradev.ncep.noaa.gov/~cbaggett/Wk34_Blocking/blocking.html 

http://cpcintradev.ncep.noaa.gov/~cbaggett/Wk34_Blocking/blocking.html
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In conclusion, we list below some features of the merged-MLR that are being monitored and possibly 
improved upon during its experimental phase: 

1) While the merged-MLR shows substantial improvement over the original-MLR, most of this 
improvement occurs during so-called forecasts of opportunity (Mariotti et al. 2020). For example, 
we showed that during amplified NAO conditions, the merged-MLR outperforms the original-MLR 
by 72.0% and is on-par with the GEFSv12. Thus, the greatest value of the merged-MLR is likely 
limited to less than one half of forecast initializations during November-April. 

2) Precipitation skill remains elusive by both statistical and dynamical models. By its nature, 
precipitation is both temporally and spatially noisy with highly skewed and ill-defined distributions. 
Thus, linearly fitting non-Gaussian precipitation anomalies to Gaussian predictors within the MLR 
framework is a challenging statistical endeavor. To tackle this challenge, the experimental tool has 
been designed to test additional precipitation forecasting schemes as ideas emerge. 

3) The method via which CPC’s teleconnection indices are calculated are undergoing an extensive 
review at CPC. From this review, it is possible that the method will change. At this time, it is 
unknown what impact this change will have on the merged-MLR.  

4) CPC’s Week 3-4 outlooks will begin transitioning from a two-category forecast to a three-category 
forecast over the coming years. The merged-MLR will need to be reformulated to accommodate 
this change. 

5) Finally, while this project was conceived to identify “blocking” indices, we settled on using the 
NAO and PNA as predictors given the enhanced skill they provided over more traditional blocking 
indices. While both the NAO and PNA are known to be related to blocking (e.g., the negative NAO 
is related to North Atlantic blocking) they are continuous indices and represent a range of 
atmospheric flows, some of which constitute the complete absence of blocking. Regardless, using 
continuous indices such as the NAO and PNA are useful as they facilitate the ability to forecast at 
each initialization rather than when a rare, strong signal, such as blocking, emerges.  
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1. Introduction 

This work seeks to improve the Climate Prediction Center’s (CPC) week 3-4 temperature and precipitation 
outlooks using a new forecast tool based on a dynamically-weighted blend of the subseasonal dynamical models 
conditioned on climatic states at their initialization. It has been documented that dynamical models have forecast 
skill that varies as a function of grid point and season along with climatic states at their initialization such as 
the El Niño-Southern Oscillation (ENSO; Yamagami and Matsueda 2020) and the Madden-Julian Oscillation 
(MJO; Vitart et al. 2017). When climatic conditions arise such that one model has performed historically better 
than another, this can be considered a forecast of opportunity (Mariotti et al. 2020). In our experiment, we seek 
to identify and take advantage of these forecasts of opportunity to produce dynamically-weighted forecast 
blends that not only improve upon the individual dynamical models but also improve upon a static, equally-
weighted blend. 

2. Methods 

Figure 1 provides a brief 
description of the blends and the 
dynamical models that are used in 
this experiment. As a control, we 
create a static, equally-weighted 
blend where each model is given 
the same weight regardless of grid 
point, season, or climatic state at 
initialization. In our experiment, 
we test three dynamically-
weighted blends: 1) a seasonal 
blend, where the models are 
weighted as a function of grid point 
and season at initialization, 2) a 
seasonal-ENSO blend, where the 
models are weighted as a function of grid point, season, and ENSO state at initialization, and 3) a seasonal-
ENSO-MJO blend, where the models are weighted as a function of grid point, season, ENSO, and MJO state at 
initialization. 

We derive the weights to be used in the blends from the hindcasts of the dynamical models that CPC uses 
operationally in real-time: the ECMWF, the GEFSv12, the ECCC, the CFSv2, and the JMA. In the hindcasts, 
we calculate the two-category Heidke Skill Score (HSS) for each model’s week 3-4 probabilistic forecast of 
temperature and precipitation against observed values of temperature from CPC’s Global Temperature data set 
(Fan et al. 2008) and precipitation from CPC’s Global Unified Gauge-Based Analysis of Daily Precipitation 
(Chen et al. 2008). Having calculated the HSSs of the models in the hindcasts, these HSS values are then 
normalized and used to weight the probabilistic forecasts from the dynamical models in real-time to create the 

Fig. 1  A schematic diagram showing the dynamical models and the blends 
that are derived from them. 
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Fig. 2 Weights used in the 
seasonal-ENSO-MJO blend 
for the week 3-4 temperature 
forecast issued on February 18, 
2022. 
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dynamically-weighted blends 1 . These real-time forecast blends are then verified against observations to 
determine their skill relative to the equally-weighted blend and the individual models.  

In Section 3, we will provide an example of a real-time week 3-4 temperature forecast issued on February 
18, 2022 to demonstrate the weights and the creation of the blends. We will also provide bulk verification 
statistics for both temperature and precipitation forecasts issued weekly on Fridays from November 6, 2020 
through February 18, 2022, totaling 68 forecasts. 

3. Results 

Figure 2 provides the weights used in the seasonal-ENSO-MJO blend for the week 3-4 temperature forecast 
issued on February 18, 2022. This particular forecast was issued during January-February-March, during 
ongoing La Niña conditions, and during an active MJO period in phases 2-3-4. The weights used correspond to 
the historical, hindcast performance of the models under these conditions. For example, the ECMWF scores 
well in Alaska and the Central Plains where the JMA does not. Also, the GEFSv12 and ECCC score relatively 
well from Texas to the Midwest. The real-time Week 3-4 probabilistic forecasts from each dynamical model 
are provided in Fig. 3. In general, the ECCC, the ECMWF, the GEFSv12, and the CFSv2 were forecasting 

Fig. 3  Week 3-4 probabilistic 
forecasts of temperature from 
each of the dynamical models 
issued on February 18, 2022. 

1 All HSS values that fall below zero are set to zero before calculating the weights. 
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warmth across Alaska and cold in 
CONUS across the Northern 
Plains into the Midwest and 
Northeast. However, the JMA was 
not as confident in this depiction, 
having more cold across Alaska 
and warmth in CONUS. Applying 
the weights from Fig. 2 directly to 
the probabilistic forecasts from 
Figure 3, one can derive the bottom 
right panel of Fig. 4, the seasonal-
ENSO-MJO blend. The equally-
weighted, seasonal, and seasonal-
ENSO blends are shown in the 
remaining panels. In this example, 
each of the blends looks similar to 
each other because of the overall 
consistency amongst four of the 
five dynamical models. However, 
in the seasonal-ENSO-MJO blend, 
Alaska and the Central Plains 
resemble more closely the 
ECMWF, which is to be expected 
given ECMWF’s higher weighting 
in those regions. 

Figure 5 provides average 
HSSs calculated from CONUS and 
AK for each forecast issuance date 
from November 6, 2020 through 
February 18, 2022. In general, the 
skill scores of the blends are very 
similar across all forecasts, with 
skill scores generally falling within 
an ~15 point range from each other 
for any given forecast issuance 
date. When averaged across all 
forecast issuance dates, the 
equally-weighted blend has a score 
of 26.8, which slightly 
outperforms the dynamically-
weighted blends. Thus, a null 
hypothesis that the equally-
weighted blend has higher skill 
scores than the dynamically-
weighted blends cannot be rejected 
at this point. 

Table 1 provides a summary of 
skill scores for both temperature 
and precipitation across each of the five dynamical models and the four blends. For temperature, each blend 
outperforms all of the individual dynamical models except for the GEFSv12, which has a score of 28.1. For 
precipitation, the equally-weighted blend scores 14.6, which is higher than the dynamically-weighted blends.  

Fig. 4 Week 3-4 probabilistic forecasts of temperature from the equally-
weighted and the  dynamically-weighted blends issued on February 18, 
2022. 

Fig. 5  HSSs of the week 3-4 temperature forecasts from the equally-
weighted and dynamically-weighted blends for each forecast issuance 
date, issued weekly on Fridays from November 6, 2020 to February 18, 
2022. HSSs averaged across all forecast issuance dates are provided 
beneath the figure. 
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Table 1. HSSs for temperature and precipitation for each of the five dynamical models and each of the blends, 
averaged across 68 Week 3-4 forecasts issued weekly on Fridays from November 6, 2020 to February 18, 2022. 

Temperature Precipitation 

Dynamical Model 

ECCC 16.4 9.5 

ECMWF 24.5 12.6 

GEFSv12 28.1 12.5 

JMA 14.6 8.5 

CFSv2 23.1 10.7 

Blend 

Equal 26.8 14.6 

Seasonal 26.4 13.1 

Seasonal-ENSO 26.5 12.7 

Seasonal-ENSO-MJO 24.9 13.5 

However, in contrast to temperature, each precipitation blend outperforms all of the individual dynamical 
models.  

4. Discussion and conclusion 

In this work, we have constructed dynamically-weighted week 3-4 forecasts blends from the real-time 
probabilistic forecasts of five dynamical models and their corresponding, climate-specific weights derived from 
their hindcasts. In general, the dynamically-weighted blends outperform the individual models, while they 
underperform the equally-weighted blend. However several major caveats must be made: 

1) The real-time sample size is quite small with only 68 forecast issuances. Such a small sample size 
makes it challenging to determine if a given blend has a statistically significant difference in score 
compared to the individual dynamical models or the other blends. The difficulty of such a significance 
test is exacerbated by a large amount of autocorrelation due to the prevalence of one major climatic 
state, La Niña, during the real-time period. 

2) The hindcast sample sizes are quite small. For example, the JMA has hindcasts that are issued only 
twice per month over a 30 year period. One can imagine that conditioning on season, ENSO, and MJO 
will lead to untenably small sample sizes for the JMA, thus making its weights likely dependent on just 
a handful of hindcasts. 

3) Each dynamical model has a different hindcast period with different initialization dates. Because of 
these differences, it is difficult to make a direct comparison of the skill amongst the models given a 
particular climate state because we cannot rule out the impact of the initial, non-climate related 
conditions on the eventual hindcast skill. 

4) Related to the prior point, in this study, we made an assumption that when a model was more skillful 
than another model during a certain climatic state, the skill is attributable to the climate state.  In fairness, 
this assumption may not be wholly valid and it should be noted that this assumption was not tested in 
this study. However, we can offer an interpretation of the results, namely, the fact that the equally-
weighted blend scores higher may reflect that the sources of skill in subseasonal forecasting are not 
solely resting on large-scale climate signals such as ENSO or the MJO. There are "weather signals" in 
subseasonal forecasting and the results of this study could be indicating that these signals need to be 
explored further for attributable sources of skill. 

5) During the real-time period, new model versions for the ECCC and JMA have been released. The 
ECMWF has also had regular minor updates with a major update occurring during the period as well. 
Thus, new weights must be derived each time a new model version is released. In this experiment, we 
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have not derived new weights on-the-fly, opting to use the weights derived from the earlier versions of 
the models, which may not be optimal. 

6) As demonstrated by Fig. 4 and implied by Fig. 5, the probabilistic forecasts from the dynamically-
weighted blends are nearly indistinguishable from each other. This results from either the dynamical 
models themselves having similar forecasts or from the weights being nearly identical across models. 
Regardless, a weighting scheme that actually produces discernibly different forecasts would likely be 
more desirable to the operational forecaster. 

Ideally, the above caveats will be addressed in a future iteration of this work in order to gain more 
confidence in whether or not a dynamically-weighted blend based on forecasts of opportunity can outperform 
an equally-weighted blend. However, initial results are encouraging that the dynamically-weighted blends can 
outperform the individual dynamical models. Given that CPC’s operational forecaster is presented with a large 
amount of information to digest when creating the official week 3-4 outlook, skillful tools that can condense 
model information into a more digestible quantity are greatly desired. 
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P5‐Final 

Fig.1 September SIC hindcasts initialized from June 1, 2015 for UFS-P5 (Control run and Final setting with 
cloud parameters adjusted and using constant freezing temperature) and CFSm5 compared with NSIDC 
CDR SIC. 
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1. Introduction 

In support of NOAA’s sea ice forecasts in week 3-4 time-range, the Climate Prediction Center (CPC) has 
been using an experimental sea ice prediction system, CFSm5, to provide weekly and seasonal Arctic sea ice 
predictions. The CFSm5 was developed based on the Climate Forecast System (CFS) with the Modular Ocean 
Model version 5 (MOM5) as oceanic component. Sea ice forecasts from CFSm5 initialized from CPC sea ice 
system (CSIS) have been shown to significantly improve over that from the operational CFS. In 2021, CPC 
started to prepare a transition from the use of CFSm5 to a new GFDL Finite-Volume Cubed-Sphere Dynamical 
Core (FV3) based Unified Forecast System (UFS) framework. In this work, we evaluate the multi-week Arctic 
sea ice forecast skill of the UFS system during the melt season and investigate the impacts of cloud related 
parameters for an improved representation of sea ice in the coupled system. Analysis of a suite of retrospective 
45-day forecasts with four ensemble members spanning 2012-2020 shows the prediction skill of multi-week 
Arctic sea ice is generally comparable to CFSm5, and better than the operational CFSv2 hindcasts. The skill 
comparisons of CFSm5, CFSv2, UFS and Multi-Model Ensemble (MME) hindcasts are also presented. 

2. The coupled UFS model 

The coupled UFS Subseasonal to Seasonal model (S2S) model in this study consists of an FV3 atmospheric 
component, a MOM6 oceanic component and a CICE6 sea ice component. All model components are coupled 
using the Community Mediator for Earth Prediction Systems (CMEPS) infrastructure. The UFS version we use 
is Prototype 5 (UFS-P5). The atmospheric model has a horizontal resolution of 1degree (C96) and includes 64 
vertical levels. The ocean and sea ice model resolutions are 0.25o. The UFS-P5 uses atmospheric initial 
conditions from the Climate Forecast System Reanalysis (CFSR, Saha et al. 2010). The ocean and sea ice initial 
conditions come from CSIS, which assimilates NASA Team sea ice concentration (SIC) and National Centers 
for Environmental Information (NCEI) sea surface temperature (SST) analyses. The UFS-P5 hindcasts are 
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initialized from each day of April-September, 2012-2020 and cover 45 target days with four ensemble members. 
The sea ice prediction skill of UFS-P5 is compared with that of CFSm5, CFSv2 and MME hindcasts. The 
National Snow and Ice Data Center (NSIDC) Climate Data Record (CDRv4) sea ice concentration (SIC) is used 
for verification. 

3. Initial comparison and parameter adjustments 

Figure 1 compares a 4-month 
hindcast of September SIC from 
UFS-P5 using the default 
configuration (Ctrl) with the 
observational analyses from 
NSIDC CDR SIC. The hindcasts 
were initialized from June 1, 2015. 
As shown in Fig. 1, there is a large 
negative sea ice bias in parts of the 
central Arctic with the default 
configuration (P5-Ctrl). Further 
analysis indicated that this bias is 
related to the positive downward 
SW radiation bias due to the 
negative cloud fraction bias in the 
central Arctic (not shown). To 
reduce this negative sea ice bias, 
three cloud parameters are 
adjusted, including the critical 
cloud drop radius (rthresh), cloud 
condensation nuclei over ocean 
(ccn_o) and auto conversion 
coefficient from cloud water to 
rain (c_paut). A series of twenty-
three experiments were performed 
for different combinations of these 
three cloud parameters. The three 
adjusted parameter values for 
rthresh, ccn_o, and c_paut are 
selected as 12.0 µm, 120.0 cm–3, 
and 0.45, compared to 10.0 µm, 
100 cm–3, and 0.5 in the Ctrl 
configuration, respectively. 
Additionally, the constant freezing 
temperature option is used in the 
CICE6 to further reduce the bias. 
With those parameter adjustments, 
September sea ice cover is largely 
improved compared with the Ctrl 
run (Fig. 1). 

The downward shortwave 
radiation (DSW) is further 
examined for the UFS-P5 
experiments. As shown in Fig. 2, 
the positive DSW bias in P5-Final Fig. 3  Climatology week 4 SIC mean bias (initial dates =Aug 1-31, 2012-
is reduced around the Bering Strait 2020) for UFS-P5, CFSm5, CFSv2 and MME hindcasts. 

Fig. 2 June Downward shortwave radiation bias relative to EBAF for P5-
Ctrl and P5-Final hindcasts (Jun 1, 2015, initial conditions) 



                       

                       

  
 

Init date: Apr 1‐30 Init date: May 1‐31 Init date: Jun 1‐30 

Init date: Jul 1‐31 Init date: Aug 1‐31 Init date: Sep 1‐30 

Fig. 4 Arctic sea ice Heidke Skill Score from 1 week to 6 weeks for selected initial dates. Each panel is for the 
initial date from May 1, June 1, July 1, August 1, September 1 and November 1 of 2012-2019. 

 
 

 

 

   

 

 

 

  

 
 

 

  

 

 

 

 

34 SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

and the North Pacific compared with the P5-Ctrl run. The error reductions are confirmed in the experiments for 
other years (not shown). Therefore, the UFS-P5 configuration with cloud parameter adjustments and constant 
water freezing temperature (P5-Final) is selected for the final configuration for UFS 45- day hindcasts. 

4. Sea ice prediction skill assessment 

The mean bias of UFS-P5 hindcasts is compared with that of CFSm5, CFSv2 and MME hindcasts. As 
shown in Fig. 3, for August 1-31 2012-2020 initial conditions, the climatology ensemble mean week 4 SIC in 
UFS-P5 and CFSm5 have comparable mean bias. There is relatively larger bias in CFSv2 hindcasts. The MME 
hindcasts (ensemble mean of UFS-P5, CFSm5 and CFSv2) has smallest bias. The UFS-P5 hindcasts initialized 
from other months suggest the similar conclusions (not shown). 

The Heidke skill score (HSS) is used to assess the Arctic sea ice forecast performance. The HSS is 
calculated based on the forecast of presence or absence of sea ice. Sea ice is considered to exist in the forecast 
or observation if the SIC is greater than 15%.  The HSS is defined as: 

AC  AC eHSS  
AT  AC e 

where AC is the total area of correct forecast, ACe the total area of expected correct forecast based on observed 
climatology, and AT the total area of all grid boxes being considered. It is shown that for the melt seasons, there 
is comparable skills for the UFS-P5 and CFSm5 (Fig.4). The UFS-P5 and CFSm5 have significantly higher 
skills than the operational CFSv2 hindcasts and persistent forecasts. MME hindcasts generally have the highest 
skill. 

For winter seasons, the Arctic sea ice cover in UFS-P5 is much closer to the observed estimates than CFSm5, 
especially around the Bering Sea, and in Atlantic (Fig.5). 

5. Summary and discussions 

There are biases in the UFS-P5 control configuration in the downward shortwave radiation and cloud 
fraction, causing less sea ice coverage in the central Arctic during the boreal summer. The adjustments to the 
three cloud parameters and the use of constant freezing temperature reduce the model bias in terms of DSW 
and SIC. The selected configuration (P5-Final) shows comparable or better performance than CFSm5 for 



 

Fig. 5 Climatology month-3 SIC (January) initialized from Nov01 2012-
2020. Left: UFS-P5. Right: CFSm5. The 2012-2020 January 
climatology of 15% CDR SIC is contoured in red. 
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selected initial dates for sea ice 
melt/freeze up seasons. In 
particular, a reduction in SIC mean 
bias in Bering Sea and Atlantic for 
winter seasons is found. We will 
continue to perform 45-day 
hindcasts from 2012-2020 for sea 
ice freeze-up seasons, and compare 
with CFSm5 and CFSv2 hindcasts. 
We will also develop the bias 
correction algorithms (e.g. mean 
bias correction or cumulative 
distribution function mapping) for 
UFS based real-time sea ice 
weekly forecasts. The current 
CSIS only assimilates the observed 
NASA Team SIC and the NCEI 
SST. Additional information of 
observational estimates of NSIDC CDRv4 SIC and Operational Sea Surface Temperature and Ice Analysis 
(OSTIA) SST may provide more accurate initial sea ice and ocean conditions for the sea ice predictions. 
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ABSTRACT 

Persistent sea surface temperature anomalies in the eastern North Pacific (ENP) have strong impacts on 
marine ecosystems, regional climate, and public health. We investigated negative and positive sea surface 
temperature anomalies events in the ENP, which we refer to as cool and warm events. We studied 17 cool 
and 17 warm events (the lower and upper tercile events) during 1970-2020, with a focus on summer events. 
Our objectives were to: (1) characterize the spatial and temporal anomalies prior to and during cool and 
warm events; and (2) determine the regional and global processes involved in generating sea surface 
temperature anomalies in the ENP. The processes that lead to cool events are approximately opposite to 
those leading to warm events, and appear to be driven by: 1) sea surface temperatures and atmospheric 
convective anomalies in the tropical Indian-Pacific oceans region; 2) atmospheric wave trains that 
teleconnect the tropics to the ENP; and 3) resulting anomalous dipoles in ENP sea level pressure and wind 
forcing of the upper ocean. 

1. Introduction 

Marine heat waves (MHWs) and their impacts have been increasing in frequency and intensity globally in 
the last several decades (e.g., Holbrook et al. 2019; Hayashida et al. 2020; Kohlman et al. 2020; Laufkötter et 
al. 2020; Sen Gupta et al. 2020). It is important to understand the dynamical processes leading to cool and warm 
because they impact marine ecosystems, nutrient transport, regional climate, and public health (e.g., Amaya et 
al. 2016; Rogers-Bennett and Catton 2019; Smale et al. 2019; Holbrook et al. 2020). We studied 17 periods of 
persistent anomalously cool SSTs and 17 periods of 
persistent anomalously warm SSTs in the eastern 
North Pacific (ENP) during June-August 1970-
2020 (Fig. 1), including some events identified as 
MHWs in prior studies (e.g., Bond et al. 2015, 
Amaya et al. 2016, 2020). We refer to the periods 
with persistent summer negative (positive) SSTAs 
in the ENP as cool (warm) events. We examined 
both regional and global atmosphere-ocean 
anomalies to characterize the set of processes that 
lead to cool and warm events. 

2. Data and methods 

The primary data used were monthly mean 
values of atmospheric and oceanic variables from 
the NCEP/NCAR Reanalysis (R1; Kalnay et al. 
1996) for 1970-2020 at a 2.5-degree resolution. Our 
focus study area in the ENP is located between 43 - 
53°N and 215 - 228°W (black box in Fig. 2). The 

Fig. 1 Detrended SST anomalies (SSTAs; C°) for Jun -
Aug 1970-2020 in the ENP box.  Cool (warm) events 
are identified by the blue (red) shading. 
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Fig. 2  Composite SSTAs (°C) for the (a) 17 coolest events and (b) the 17 warmest events during June-August 
1970-2020.  The black box shows our study region within the ENP (43-53°N, 215-228°E). This box 
encompasses the largest magnitude SSTAs for both ENP cool events and warm events. 

location of this area was optimized to represent the most common location for extremes in SSTAs in the ENP. 
Cool (warm) events were characterized as the 17 coolest (warmest) June, July, and August (JJA) periods in the 
ENP study box based on detrended SSTAs between 1970 and 2020 (Fig. 1). 

3. Results 

Figures 1 shows that, after removing the multidecadal trend, the magnitude of the SSTAs associated with 
both cool and warm events increased from 1970 to 2020. Figure 2 shows that cool and warm events have spatial 
patterns that are approximately opposite over most of the North Pacific, with the most extreme SSTAs occurring 
within the ENP study box for both events. 

Figure 3a (Figure 3b) shows the composite sea level pressure anomalies (SLPAs) in December - May prior 
to JJA of the 17 cool (warm) event years. Winter and spring SLPAs for cool and warm events have opposite 
north-south dipoles that are centered on the ENP box. The SLPA gradients for cool (warm) events indicate 
increased (decreased) eastward winds in the ENP focus area compared to the long term mean eastward flow in 
the winter and spring (Peixoto and Oort 1992). Increased (decreased) eastward wind flow for cool (warm) 
events located to the east and through the ENP box creates optimal conditions for 1) anomalously strong (weak) 
sensible and latent heat fluxes from the ocean and 2) increased (decreased) wind driven ocean mixing. Both of 
these processes are favorable for the development of negative (positive) SSTAs, corresponding to cool (warm) 
events. 

Not shown are the conditional composites of global 200 mb eddy geopotential height anomalies (ZA200) 
for the winter and spring preceding cool and warm events, which show approximately the same opposite dipoles 
centered on the ENP box as the SLPA. The ZA200 dipole creates positive (negative) wind speed anomalies that 
result in strong (weak) eastward flow when compared to normal (Peixoto and Oort 1992). These ZA200 dipoles 
are part of global atmospheric wave trains that constructively interfere over the ENP. Atmospheric wave trains 
for warm and cool events are approximately opposite. One wave train is an arcing wave train that appears to 
originate from near the central tropical Pacific (CTP), and the other is an approximately zonal wave train that 
spans the entire northern hemisphere and appears to originate from near the Maritime Continent region. We 
inferred the origins of these wave trains from the ZA200 patterns and from corresponding outgoing longwave 
radiation anomalies (not shown). 

4. Discussion and conclusion 

We have found that cool and warm events in the ENP during the summer are a result of complex interactions 
involving: 1) SST and atmospheric convective anomalies in the Maritime Continent and CTP regions; 2) winter 
and spring atmospheric wave trains that transport energy from the tropics to the ENP; and 3) anomalous dipoles 
in upper and lower tropospheric geopotential heights in the ENP that create anomalous ENP surface winds. The 
dynamical processes associated with cool and warm events are approximately opposite, illustrated by opposite 
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Fig. 3  Sea level pressure anomalies (SLPAs; mb) in December-May preceding (a) Cool events and (b) Warm 
events.  Implied surface wind anomalies are shown schematically by the black arrows. 

anomalies, spatial patterns, and temporal patterns in all variables discussed. Additionally, the dynamical 
processes that lead to these events begin at least six months prior, indicating that anomalous tropical and ENP 
conditions in winter and spring strongly determine summer SSTAs in the ENP. We also found that both cool 
and warm events have become more common and extreme, with frequent interannual variations between the 
two events. In on-going research, we are investigating: (1) methods for monitoring ENP warm and cool events; 
(2) the use of predictors in the tropical Indo-Pacific region to predict ENP SSTs at subseasonal to seasonal lead 
times; and (3) the atmospheric-oceanic dynamics in the ENP associated with the development of cool and warm 
events. 
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ABSTRACT 

 A cold blob, manifested as a centennial cooling trend in sea surface temperature (SST), is observed in the 
mid-latitude North Atlantic. The presence of the cold blob is hypothesized as an evidence of a slowdown of 
Atlantic Meridional Overturning 
Circulation (AMOC), based on 
paleoclimate proxies and global 
climate models (GCMs). However, 
the performance of GCMs in 
simulating the cold blob remains 
unsatisfactory in terms of the SST 
cooling rate and the spatial extent. 
This study investigates the forcing 
mechanism of the cold blob using 
the Flexible Global Ocean-
Atmosphere-Land System Model 
Grid-point version 2 (FGOALS-
g2), a GCM that reasonably 
simulates the observed cooling 
trend in the subpolar North 
Atlantic and its spatial pattern. 
Surface heat budget analysis 
suggests that the cold blob is 
largely a result of the imbalance 
between changes in the heat 
storage and surface turbulent heat 
fluxes, exhibiting a cooling and 
warming effect, respectively. 
Investigation of ocean heat content 
indicates that heat advection into 
the cold blob region has decreased, 
mainly due to ocean circulation 
changes. However, in the 
FGOALS-g2, both the AMOC 
slowdown and the reduced 

Fig. 1 Sea surface temperature anomaly (SSTA) regressed on the trends of 
(a) meridional heat transport (MHT) and (b) AMOC. Statistically 
significant (p < 0.01) regression coefficients are dotted. (c) Total SSTA 
trend simulated by FGOALS-g2. (d) The difference between (c) and (a). 
(e) and (f) Coefficient of determination between MHT and SST and 
between AMOC and SST, respectively. 
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meridional heat transport explain a limited portion (less than 50%) of the cold blob sea surface temperature 
anomaly trend (Fig. 1). Overall, complementing existing studies that attribute the cold blob to an AMOC 
slowdown, our results suggest that additional processes, including subpolar gyre circulation and a synergy 
between the atmosphere and the ocean, are at work in the formation of the cold blob.  

This study was published in the Journal of Geophysical Research: Oceans in 2021.  
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1. Introduction 

Extending global climate prediction past the currently operational 9-month outlooks is of significant 
scientific and societal importance. Currently, the most promising source of multi-year predictive skill comes 
from the El Niño-Southern Oscillation (ENSO), the dominant source of seasonal and interannual climate 
variability. The 2021 food crisis in the Horn of Africa highlights the need for, and potential of, multi-year ENSO 
predictions. Consecutive La Niña events often cause drought in the Horn of Africa (Hoell and Funk 2014, 
Lenssen et al. 2020) leading to reduced crop yields (Iizumi et al. 2014), which contributes to food crises 
(FEWSNet 2021). In this example, translation of the known predictability of consecutive La Niña events 
(DiNezio et al. 2017) into a skillful operational forecast would have provided critical early information to 
humanitarian organizations responding to the food crisis. 

Key features of ENSO, particularly its duration, are theoretically predictable several years in advance 
(Gonzalez and Goddard 2016, DiNezio et al. 2017, Ham et al. 2019, Dunstone et al. 2020, Wu et al. 2021). 
Potential physical mechanisms leading to multi-year ENSO predictability include the subsurface heat content 
in the tropical Pacific Ocean (McPhaden 2003, Zhao et al. 2021), basin-scale Pacific Ocean dynamics (Vimont 
et al. 2003; Joh and DiLorenzo 2019), and cross-basin interactions with the Indian (Mayer and Balmaseda 2021) 
and Atlantic Oceans (Ham et al. 2013). Despite our understanding of the dynamical processes leading to 
extended ENSO predictability, multi-year skill in traditionally initialized dynamical forecast systems has 
remained elusive. 

Possible reasons why multi-year predictability does not always translate into predictive skill in initialized 
dynamical forecasts include model bias and errors due to initialization. Nearly all coupled general circulation 
models (CGCMs) exhibit bias in the tropical Pacific mean state and variability, leading to unrealistic ENSO 
behavior (Li and Xie, 2014, Planton et al. 2021). The link between ENSO bias and predictive skill is still poorly 
understood with some studies finding no relationship (Scaife et al. 2019), while others find a conclusive 
relationship (Ding et al. 2020). In addition, initialization shock, or rapidly increasing forecast error due to the 
initial observed state being incompatible with the CGCM’s dynamics, results in drifts in the mean state and 
variability of ENSO (Mullholland et al. 2015), including a westward shift of the predicted ENSO anomaly that 
results in poor forecast skill in the western tropical Pacific (Newman and Sardeshmukh 2017). This loss of skill 
due to initialization shock can be seen through the superior long-lead skill of empirical-dynamical forecast 
methods that take advantage of CGCM simulations, but do not use traditional initialization techniques, such as 
model-analogues (Ding et al. 2018), neural networks (Ham et al. 2019), and linear inverse models (Penland and 
Sardeshmukh 1995). Understanding, reducing, and correcting initialization shock is necessary to improve our 
climate forecast systems. However, there has not been a comprehensive study on the effect of initialization on 
ENSO predictability in initialized dynamical prediction systems.  

Here, the potential multi-year ENSO skill currently not captured in initialized prediction systems due to 
CGCM bias and initialization shock is investigated. This work identifies systemic biases in CGCM ENSO 
dynamics that must be reduced to improve long-lead prediction by comparing metrics of CGCM bias with 
predictive skill across models. The potential skill to be gained in initialized forecast systems will be assessed 
                                                
† Deceased 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

42 

through a comparison of traditionally initialized forecasts with model-analogue forecasts, an empirical-
dynamical model based on CGCMs output. 

2.  Data and methodology/experimental design 
Observed monthly sea-surface temperature (SST) is taken from HadISST1.1 (Rayner et al. 2003). Observed 

sea-surface height (SSH) is from the ECMWF Ocean Reanalysis System 4 (ORAS4) (Balmaseda et al. 2013). 
All model and observational data is regridded to a 2 × 2 degree grid prior to any analyses. ENSO events are 
defined as seasonal Niño3.4 anomalies that exceed the upper or lower quartile of the seasonal Niño3.4 index 
following (Gonzalez and Goddard 2016).  

The initialized predictions come from the CMIP6 Decadal Climate Prediction Project (DCPP) Component 
A hindcasts with annual initializations from 1960 - 2016 (Boer et al. 2016). This study was limited to the three 
models with complete data and corresponding control runs of sufficient length on the Google Cloud CMIP6 
archive: CanESM5, CESM1-1-CAM5-CMIP5 (CESM1.1), MIROC6. CESM1.1 and MIROC6 are both 
initialized in November and CanESM5 is initialized in January. The Niño3.4 indices for the initialized hindcasts 
are bias corrected to account for both lead-dependent mean-state bias as well as trend bias following Kharin et 
al. (2012). In addition, ENSO event thresholds in the initialized models are defined as the upper and lower 
quartile for each lead following Gonzalez and Goddard (2016). After bias correcting, probabilistic forecasts of 
ENSO state are made for JFM for years 0-5 for each model and lead time. 

Model-analogue hindcasts are made over the same 1960-2016 period using control runs from the same 
CGCM configuration as the traditionally initialized forecasts. A model-analogue forecast is made by 
determining which state in a library of model output best matches the observed climate state. The forecast is 
the evolution of these closest matching library states, following the assumption that a pair of states that is 
initially similar will evolve along similar trajectories (Lorenz 1969). Here, ENSO forecasts are made by 
matching observed Indo-Pacific SST and SSH to states in a library of CGCM control run output following Ding 
et al. (2018). Though the model-analogue forecasts are able to issue forecasts with CGCM output while 
avoiding initialization shock, they have the disadvantage of larger error than traditionally initialized forecasts 
in the first month due to the analogues not perfectly matching the observed state. 

Hindcasts are verified against the observed evolution of ENSO as calculated through the Niño3.4 Index 
from HadISST1.1. The forecasts of interest are probabilistic forecasts of ENSO events for which forecast skill 
is assessed by the area under the receiver operating characteristic (ROC) curve (Mason 1982; Hogan and Mason 
2012). The ROC area is a measure of forecast discrimination, a skill measure relative to a climatological forecast, 
and can be generalized as a U-Statistic providing useful statistical properties (Mason and Graham 2002). In 
particular, statistical significance of skillful ROC scores is assessed using the assumption that the U-statistic is 
Gaussian, which holds for large sample sizes (Mason and Graham 2002).  

3.  Results and discussion 

The two major goals of this preliminary work are to quantify the GCM ENSO climatologies and assess the 
ENSO prediction skill at leads of multiple years. First, the ENSO evolution in mean state and variability is 
assessed in the uninitialized pre-industrial control experiment (piControl) runs of the three CGCMs (Fig. 1). 
The seasonal cycle of each of the models roughly matched that of observations with temperature peaking in 
boreal summer and reaching minimum during boreal winter. However, the timing of the winter minimum is 
early in all three models suggesting a mismatch in ENSO timing when compared to observations. Here, each 
of the three models shows an ENSO climatological amplitude that is larger than observations, in agreement 
with other studies of CMIP5 and CMIP6 ENSO amplitude (Bellenger et al. 2014, Planton et al. 2021). The 
evolution of the seasonal cycle of the initialized models shows the signature of errors arising from initialization 
(Fig. 1). In particular, the initialized CanESM5 model shows a large and growing departure from observations 
in the critical winter months. 

The variability of Niño3.4 temperatures is assessed to determine if the ENSO variability is properly 
represented in the models. CESM1.1 and MIROC6 both show quite realistic variability in the uninitialized 
piControl runs, but CanESM5 shows dramatically reduced ENSO variability in the key boreal winter months  



LENSSEN ET AL. 
 

 

43 

Fig. 1  The climatology of the initialized and uninitialized ENSO simulations as compared with observations 
with the lead time zeroed at January of the first year. Shown is (top) the mean cycle of monthly Nino3.4 
mean absolute temperature with the 12-month running mean removed and (bottom) variability of monthly 
Niño 3.4 absolute temperature. The observations (solid black line) are calculated over 1960-2016 and do 
not depend on lead time. The piControl climatologies (colored dashed lines) are calculated over the entire 
length of the piControl and also do not depend on lead time. The initialized model climatologies (colored 
solid lines) vary with lead time, reflecting the lead-dependent biases in mean and variability. 

Fig. 2  The ROC skill for ENSO event detection at 0-3 year leads. Climatological skill is 0.5 and marked by 
the solid black line. Statistically significant positive skill is marked with a circle for initialized forecasts 
or triangle for model-analogue forecasts. 
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suggesting that CanESM5 struggles to simulate a diverse range of ENSO amplitudes in agreement with Planton 
et al. (2021). When the models are initialized, each of their ENSO variabilities grow as a function of lead time 
while preserving a similar seasonal cycle to that of the uninitialized versions. This behavior is potentially a 
signature of initialization shock-caused dynamical corrections in the ENSO system and is to be investigated 
further.  

The initialized models all show significant skill in predicting La Niña events at 1-year leads, extending the 
findings of DiNezio et al. (2017) to multiple CGCMs (Fig. 2). However, the uninitialized model analogues do 
not show this same skill at 1 year. Curiously, these model analogue forecasts are more skillful at 2 years than 
at 1 year, a finding which warrants further investigation. There is less skill for El Niño events at 1 year, with 
only the initialized CESM1.1 showing significant discrimination when compared to climatology (Fig. 2). Again, 
the increase in skill from lead 1 to lead 2 is observed in many of the initialized and model-analogue predictions, 
though the individual increases are not statistically significant. Notably, both initialized and model-analogue 
MIROC6 show significant skill in lead-2 El Niño despite not showing skill in lead 1. No link between the 
CGCM ENSO climatology and predictive skill was found, but such investigations will be revisited as more 
models are added into the analysis 

4.  Conclusions and future work 
This work is a promising initial investigation of multi-year prediction of ENSO events using CMIP6-class 

initialized models as well as model-analogue predictions using existing control run simulations. Here, evidence 
for the effect of initialization on CGCM ENSO dynamics is presented. However, the hypothesis that these 
growing errors due to initialization shock would make model-analogue predictions superior at longer leads was 
not shown. While the initalized forecasts show more discrimination in forecasting ENSO events at most leads, 
there is promise in the significant two year lead predictive skill shown by model-analogue forecasts for both La 
Niña and El Niño events.  

Looking forward, this work will continue by expanding the number of models analyzed up to the 11 CGCMs 
that plan to submit runs to the Decadal Climate Prediction Project (DCPP), allowing for a more rigorous 
investigation of the link between model ENSO dynamics and predictive skill. In addition, the model-analogue 
methods will be compared with the predictions from linear inverse models (LIMs), which have comparable 
skill to initialized predictions (Newman and Sardeshmukh 2017). Finally, an investigation of successful long-
lead forecasts will be conducted to determine if there are certain characteristics of ENSO events and/or CGCM 
systems that lend themselves to greater predictive skill.  
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1. Introduction 

Since the pioneering work by Horel and Wallace (1981), the tropical-extratropical atmospheric 
teleconnection excited by El Niño-Southern Oscillation (ENSO) has been recognized as a predominant source 
of short-term climate predictability (Anderson et al. 1998; Shukla et al. 2000; Hoerling and Kumar 2002).  

In the past two decades, efforts extended to finding possible tropical-extratropical teleconnections 
originating from other sectors of tropical oceans, such as the impact of tropical Indian Ocean warming onto the 
positive trend in the North Atlantic Oscillation (NAO) (Bader and Latif 2003; Hurrell et al. 2004), and rainfall 
anomalies over the western and central Indian Ocean onto height anomalies over Alaska and North Atlantic 
regions (Moltoni et al. 2015). 

These studies have advanced our knowledge on the relationships between extratropic atmospheric 
anomalies and tropical SST and rainfall variability. Despite that, there are still issues needing to be resolved. 
For example, what teleconnection pattern originates from Indian Ocean and Maritime Continent if ENSO is not 
involved? More generally, are there any teleconnections from the tropics that were not identified in previous 
studies?  

This study aims at addressing these questions. The analysis starts with mode decomposition for the tropical 
rainfall and then calculates the atmospheric patterns associated with the rainfall modes. The reason for choosing 
rainfall rather than SST in the analysis is that the rainfall represents vertically integrated latent heating, which 
is the direct forcing of the tropical atmosphere.  In addition, there seems no definite relationship between rainfall 
and SST in the west Pacific and Indian Ocean (Chen et al. 2012; Kumar et al. 2013; Moltoni et al. 2015). 

A straightforward method of mode decomposition is the empirical orthogonal function (EOF) analysis 
(Wallace and Gutzler 1981; Barnstone and Livezey 1987).  However, when it is applied to tropical rainfall, the 
obtained modes are found not quite clean, that is, the ENSO signal tends to be mixed with other modes. The 
improvement is limited even when using the rotated EOF (REOF). Following the study of Peng et al. (2014), 
in which the Pacific and North America (PNA) pattern was successfully separated from the ENSO 
teleconnection pattern by applying REOF analysis to the data with ENSO signal removed, here we apply the 
same technique to tropical rainfall data.  For the sake of simplicity, we focus on the seasonal mean of northern 
winters when teleconnection patterns have the strongest amplitude in the Northern Hemisphere (NH) (Barnston 
and Livezey 1987). 

2.  Data and analysis procedures 

2.1 Data 

The data used in this study are northern winter [December-January-February (DJF)] mean precipitation, 
200hPa geopotential height (Z200) and sea surface temperatures (SSTs). The precipitation data are from the 
CPC merged analysis of precipitation (CMAP, Xie and Akin 1997), Z200 data from NCEP/NCAR reanalysis 
(Kalnay et al. 1996), and SSTs are based on Hurrell et al. (2008).  Because of the availability of rainfall data 
over the oceans, the analysis period is from 1979/80 to 2020/21, thus, there are 42 DJF seasons in total. Seasonal 
mean anomalies are computed with respect to the climate mean over the whole data period. The Nino 3.4 SST 
index (Nino 3.4 index hereafter), widely used as an ENSO proxy, is calculated as the averaged SST anomalies 
over the Nino 3.4 region (120oW-170oW, 5oS-5oN). 
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2.2 Analysis procedures  

a) Mode decomposition for tropical rainfall 

To avoid the mixing of ENSO signal with other variability, the mode decomposition is done in two steps. 
The first step removes the ENSO signal from the rainfall data. This is done by regressing the Niño 3.4 index to 
the rainfall anomalies, and then removing the product of the obtained regression pattern and the Nino 3.4 index 
from the rainfall anomalies for each DJF season. The second step applies the EOF analysis to the residual data 
in the deep tropics (10°S-10°N). Confining the EOF analysis to the deep tropics is to avoid mixing middle 
latitude variability. The EOF analysis is based on the covariance matrix to have more variance explained with 
fewer leading modes. REOFs are calculated with seven EOF modes. The cutoff number is chosen for an optimal 
use of REOFs (O’Lenic and Livezey 1988).  The time series associated with the REOF patterns are referred to 
as the rotated principal components (RPCs).  

b) Teleconnection patterns associated with the tropical rainfall modes 

The global teleconnection patterns associated with these tropical rainfall modes are obtained by regressing 
their time series to the global fields of Z200 and other variables.   
3.  Results 

3.1 Dominant modes of tropical rainfall residual and associated SST patterns 
Figure 1 shows the four 

leading non-ENSO modes of the 
DJF mean rainfall in the deep 
tropics. Starting from the top, these 
modes are ranked with their 
explained percentages of the total 
variance in the deep tropics.   

The first mode, explaining 
13.0% of the total variance, has a 
dipole pattern near the dateline. 
The variation in the time series 
(RPC1) is basically interannual. 
Interestingly, the two largest 
negative values in the time series 
are in 1997/98 and 1982/83 
winters, corresponding to two of 
the three strongest El Nino events 
in the data period.   As will be seen 
later (Fig. 2), this rainfall mode is 
associated with a tropical SST 
mode called El Niño Modoki 
(Ashok et al. 2007).  

The second mode, explaining 
6.2% of the total variance, has its 
spatial loading mainly in the Indo-
Pacific warm pool region, but also 
with some features of opposite sign 
in the western and central tropical 
Pacific and the western tropical Indian Ocean. Its time series (RPC2) shows an upward trend in addition to the 
interannual variability. 

The third mode, explaining 5.3 % of the total variance, has its spatial loading mainly in the southern tropical 
Indian Ocean.  Its time series (RPC3) contains interannual variability and a downward trend. 

Fig. 1 Dominant non-ENSO modes of DJF mean rainfall in the deep tropics 
(15°S-15°N). The spatial patterns (left column) are the regressions of 
the rainfall data (30°S-30°N) to the time series of the modes (right 
column). Percentage numbers are the fractions of total variance 
explained by the corresponding modes. Hatches indicate the significant 
level exceeding 95% in the t-test. Dotted lines show the linear trend of 
the time series. 
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The fourth mode, explaining 
5.0% of the total variance, has a 
tripole structure in the tropical 
Pacific, with the central pole on the 
dateline. Its time series (RPC4) has 
a small downward trend and some 
inter-decadal variability, with 
positive values dominating the 
earlier and recent periods and more 
negative values in between. 

To examine the SST anomalies 
associated with the rainfall 
patterns, Fig. 2 presents the 
regressions of DJF SSTs for the 
four rainfall modes. The pattern in 
the first panel looks the same as the 
El Niño Modoki, that is, the second 
EOF mode of the tropical SSTs, 
reflecting differences between the 
eastern Pacific (EP) ENSO and the 
central Pacific (CP) ENSO (Ashok 
et al. 2007; Kao and Yu 2009). Its 
corresponding rainfall pattern 
(Fig.1) is westward shifted with 
respect to SST, implying that SST 
anomalies mostly influence 
rainfall over climatologically high 
SST regions (He et al. 2018).  

The SST anomalies 
corresponding to the second 
rainfall modes are in the Pacific 
warm pool region, while the 
rainfall anomalies extend to the 
entire Maritime Continent, this may be due to the thermal and topographical effect of the Maritime Continent 
(Yang et al. 2019). 

For the third mode, the SST and rainfall patterns in the Indian Ocean are only partially matched, suggesting 
the SST pattern may not be an only forcing of the rainfall pattern. 

For the fourth mode, the SST pattern is consistent with its corresponding rainfall pattern in a tripole 
structure.  

 Overall, the relationship between the non-ENSO seasonal SST and rainfall patterns is not quite definite. 
The reason is that SST variation is not the only factor influencing the atmospheric stability in the tropics, upper 
tropospheric temperature anomalies also have influence on gross moist stability (Neelin and Held 1987; Izumo 
et al. 2019). In addition, a seasonal mean rainfall anomaly can be a residual of intraseasonal variability (Moltoni 
et al. 2015), which may originate either from the tropics or from the extratropics (Stan et al. 2017).  

3.2 Teleconnection patterns 

To give a conventional view of the teleconnection patterns in middle and high latitudes, Fig. 3 displays 
regression patterns of DJF Z200 for the four tropical rainfall modes on the north-polar projection maps.  A 
positive anomaly over the polar region and Alaska and a tripole structure over North America and North Atlantic 
correspond to the ENSO Modoki (Fig. 3a); a positive anomaly over the polar region, a PNA-like pattern and a 

Fig. 2 Regression of tropical (30°S-30°N) SST (K) onto the time series of 
the rainfall modes shown in Fig. 1. Hatches indicate the significant level 
exceeding 95% in the t-test. 
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trough over the Europe are 
associated with the Indo-Pacific 
warm pool rainfall pattern (Fig. 
3b); a ridge over the west coast of 
North America and a positive 
NAO are related to the rainfall 
pattern in the tropical Indian Ocean 
south of the equator (Fig. 3c); a 
WPO pattern and a similar tripole 
structure over North Atlantic are 
related to the tripole rainfall 
pattern in Pacific (Fig. 3d). 

4.  Summary 
This study clarifies seasonal 

tropical-extratropical atmospheric 
teleconnection patterns beyond 
ENSO using tropical rainfall 
modes for northern winters. The 
mode decomposition is done by 
first removing the ENSO signal 
from tropical rainfall data and then 
applying the REOF analysis to the 
residual variability. This procedure 
effectively separates ENSO signal 
from other variability. The four 
dominant teleconnection patterns 
obtained by regressing global 
atmospheric fields against the time 
series of the rainfall modes include 
those related to El Niño Modoki 
and other rainfall patterns in 
various sectors of tropical oceans, 
respectively. The examination of 
the relationship between the rainfall and SST patterns helps understanding the sources.             

The advantage of using rainfall rather than SST in the mode analysis is that rainfall represents vertically 
integrated latent heating, which is the direct forcing of the tropical atmosphere, while SST may have no definite 
relationship with rainfall in the western Pacific and Indian Ocean (Chen et al. 2012; Kumar et al. 2013; Moltoni 
et al. 2015). Therefore, tropical SST modes beyond ENSO and ENSO Modoki may not be important for 
representing tropical forcing.  

Most teleconnection patterns exhibited in Figs. 3 consist of some familiar patterns (i.e. PNA, NAO and 
WPO) found in previous analyses of mid-latitude height field (Wallace and Gutzler 1981; Barnston and Livezey 
1987) and known as originating from atmospheric internal dynamics (Straus and Shukla 2002; Linkin and 
Nigam 2008). Their occurrence in the tropical-extratropical teleconnection patterns implies these intrinsic 
modes of the mid-latitude atmosphere can be tropically triggered as well.  

The results of this study are applicable to the analyses of climate prediction and attribution. Specifically, 
one can decompose the forecasted or observed tropical rainfall anomalies into the independent modes, obtain 
the corresponding teleconnection patterns, and identify the modes contributing significantly to the target climate 
anomalies through a reconstruction procedure (Peng et al. 2018). In addition, climate models can be evaluated 
by comparing their tropical rainfall modes and the associated teleconnection patterns with that from 
observational data. 

Fig. 3 Regression of 200hPa geopotential height (m) onto the time series of 
the rainfall modes shown in Fig. 1. White dots indicate the significant 
level exceeding 95% in the t-test. 
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A more practical question is that if these teleconnections can help improve seasonal predictions for the 
extratropics. To answer this, the predictability of these tropical rainfall modes needs to be investigated. 
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ABSTRACT 

 Marine heatwaves (MHWs) – periods of exceptionally warm ocean temperature lasting weeks to years – 
are now widely recognized for their capacity to disrupt marine ecosystems. The dramatic ecological and 
socioeconomic impacts of these extreme events present significant challenges to marine resource managers, 
who would benefit from forewarning of MHWs to facilitate proactive decision making. However, despite 
extensive research into the physical drivers of MHWs, there has been no comprehensive global assessment of 
our ability to predict these events. Here, we use a large multi-model ensemble of global climate forecasts to 

Fig. 1  Skill of global marine heatwave (MHW) forecasts. Maps indicate MHW forecast skill, as measured 
using the Symmetric Extremal Dependence Index (SEDI), for the 73-member ensemble of forecasts 
obtained from six global climate forecast systems for the period 1991-2020. SEDI scores range from -1 
(no skill) to 1 (perfect skill). Scores above (below) zero, indicated by gray contours, indicate skill better 
(worse) than chance, and skill that is significantly better than random forecasts at the 95% confidence level 
is indicated by black contours. MHW forecasts were initialized every month, with lead times up to 11.5 
months; a subset of lead times is shown here: (a) 1.5 months, (b) 3.5 months, (c) 6.5 months, and (d) 10.5 
months. Areas with permanent or seasonal sea ice coverage are masked in white. 
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develop and assess MHW forecasts that cover the world’s oceans with lead times of up to a year. Using 30 
years of retrospective forecasts, we show that the onset, intensity, and duration of MHWs are often predictable, 
with skillful forecasts possible from 1 to 12 months in advance depending on region, season, and the state of 
large-scale climate modes such as the El Niño-Southern Oscillation (ENSO). We discuss considerations for 
setting decision thresholds based on the probability that a MHW will occur, empowering stakeholders to take 
appropriate actions based on their risk profile. These results highlight the potential for operational MHW 
forecasts, analogous to forecasts of extreme weather phenomena, to promote climate resilience in global marine 
ecosystems.  

The paper for this study has been  published in Nature in 2022.  
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ABSTRACT 

 The sources of predictability for the February 2021 cold air outbreak (CAO) over the central United States 
that led to power grid failures and water delivery shortages are diagnosed using a machine learning-based 
approach called a linear inverse model (LIM). The flexibility and low computational cost of the LIM allows it 
to be used as a forecast for identifying and assessing the predictability of key physical processes, and as a 
climate model used for sensitivity and risk analysis. As a forecast model, the LIM indicates that the February 
2021 CAO was a forecast of opportunity, as it accurately predicted both the onset and duration of the CAO four 
weeks in advance, up to two weeks earlier than leading initialized numerical forecast models (Fig. 1). A LIM-
based ‘dynamical filter’ indicates that the February 2021 CAO was principally caused by predictable La Niña 
teleconnections and unpredictable internal atmospheric variability, with nominally predictable contributions 
from the Madden-Julian Oscillation and the sudden stratospheric warming the month prior (Fig. 2). As a climate 
model, the LIM estimates that the February 2021 CAO was in the top 1% of CAO severity, and suggests that 
similarly extreme CAOs are expected to occur approximately every 20-30 years.  

verification color scale is three times larger than the LIM and IFS color scales. Units are geopotential meters for 
geopotential height and degrees Celsius for 2m temperature. 

Fig. 1  JRA-55 verifications (left 
column), ECMWF IFS 
forecasts (middle column), 
and LIM forecasts (right 
column) of 500 mb 
geopotential height 
anomalies (top row) and 2m 
temperature anomalies 
(bottom row). The JRA-55 
verification is shown for 8-
21 February 2021. The LIM 
forecast is initialized on 24 
January 2021 and verifies 8-
21 February 2021. The IFS 
forecast (model version 
CY47R1, operational 2021) 
is initialized on 25 January 
2021 and verifies 9-22 
February 2021. Note that the  
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Fig. 2  JRA-55 verifications (top row) and LIM forecasts (bottom row) filtered into contributions from (left 
to right): internal variability, tropical SSTs, the MJO, and downward propagating stratospheric 
anomalies. Note the color scale for the internal variability and tropical SST anomalies is two times larger 
than that of the MJO and stratospheric anomaly color scales. Units are in degrees Celsius. 
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1. Introduction 

The verification of seasonal outlooks for December-January-February (DJF) for 2018/19 and 2019/20 made 
by Climate Prediction Center (CPC) against the observed seasonal mean anomalies presented a contrasting 
picture. While the Heidke Skill Score (HSS) for DJF 2018/19 was -20, for DJF 2019/20 it was +72 (Fig. 1). 
Despite the fact that the sea surface temperature (SST) anomalies in the equatorial tropical Pacific were similar, 
and both were categorized as weak El Niño conditions, the extratropical circulation anomalies (Fig. 2), and 
surface temperature anomalies over the CONUS had appreciable differences. Upper-level circulation anomalies 
for DJF 2018/19 in the extratropical latitudes were weak and had a wavy structure; anomalies for DJF 2019/20 
had a zonal structure and projected strongly on the Arctic Oscillation (AO) (Fig. 2). 

Given similarities between the SST anomalies in the equatorial tropical Pacific across two winters, and 
differences in the performance of CPC’s seasonal surface temperature outlooks raises following questions: (i) 
What was the role of ocean SST anomalies in shaping the observed seasonal mean anomalies? (ii) What 
guidance led to differences in CPC outlooks (Fig. 1)? (iii) What was the guidance from multi-model ensemble 
forecast systems? and (iv) What was the role of the influence of atmospheric initial conditions in DJF mean 
seasonal forecasts? To explore these questions, a suite of model simulations and forecasts from initialized 
predictions are used. 

2.  Analysis procedure 

To quantify the contribution of 
SST anomalies, an ensemble of 
AMIP simulations forced with 
observed SSTs are analyzed. As 
the ensemble mean of AMIP 
simulations is the atmospheric 
response to SSTs, this analysis 
addresses the question of the role 
of ocean (SST) anomalies in 
shaping the observed seasonal 
mean anomalies. To quantify the 
role of initial conditions in 
determining the DJF seasonal 
mean, multi-model ensemble 
forecasts from the WMO Lead 
Center for Long-Range Forecasts 
Multi-Model Ensembles (LC-
LRFMME) (https://wmolc.org/) 
are used.  
3.  Results 

Shown in Fig. 3 are the 
atmospheric responses for two 
DJFs inferred from the ensemble 

Fig. 1  CPC’s outlook for surface temperature for (a) DJF 2018/19, and 
(b) DJF 2019/20. The category for the verifying observed seasonal 
means for (c) DJF 2018/19, and (d) 2019/20. 
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mean of 18-member AMIP simulations with NCEP’s GFS atmospheric model. For DJF 2018/19, the height 
response is like one expected during El Niño winter (Fig. 3, left panel). The response, however, differs from 
the observed anomalies (Fig. 2). Resemblance of atmospheric response during DJF 2019/20 with the expected 
response during El Niño is less so but the elements of the El Niño signature can still be discerned. A comparison 
with the observed anomalies (Fig. 2), however, once again shows no similarities in extratropical latitudes. This 
analysis indicates that atmospheric responses during two El Niño winters, if used as the seasonal prediction, 
would not have been a good predictor for upper-level heights.  

Possible contribution of atmospheric initial conditions can be inferred from initialized seasonal predictions. 
For this purpose, seasonal mean predictions from the WMO LC-LRFMME are used. These predictions are 

Fig. 2 Observed 200 hPa height anomalies for (a) DJF 2018/19, and (b) 2019/20. Units are in meters. Observed 
SST anomalies for (c) DJF 2018/19, and (d) 2019/20. Units are in oC. 

Fig. 3 Ensemble mean 200 hPa height anomalies based on AMIP simulations for (a) DJF 2018/19, and (b) 
2019/20. Units are in meters. 
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based on averaging forecasts from 14 seasonal prediction systems, each one of which itself is an ensemble 
prediction system. It is noted that predictions for DJF are initialized at the beginning of November. 

The multi-model ensemble (MME) predicted anomalies for DJF 2018/19 (Fig. 4, left panel) has large 
similarities with the atmospheric response in the AMIP simulations (Fig. 3, left panel). This indicates that the 
role of atmospheric initial conditions for this winter was not significant. As was the case for AMIP simulations, 
upper-level height anomalies from initialized predictions would not have been a good prediction either. 

For DJF 2019/20 MME predicted anomalies (Fig. 4, right panel) differed significantly from the 
corresponding anomalies in the AMIP simulations (Fig. 3, right panel) indicating possible influence of 
atmospheric initial conditions contributing to seasonal mean anomalies. Further, there is also a good similarity 
between predicted upper-level height anomalies and the observed anomalies. Therefore, although the predicted 
anomalies did not resemble the El Niño response, they were a good forecast for the observed height anomalies 
in DJF 2019/20. 

CPC’s seasonal outlooks are based on the various tools that include guidance from MME predictions as 
well as guidance from various empirical prediction tools. A prognostic discussion also accompanies the release 
of seasonal outlooks and summarizes the rationale behind the outlook. The prognostic discussion for DJF 
2018/19 noted that “–THIS SET OF OUTLOOKS UTILIZED TYPICAL IMPACTS ASSOCIATED WITH 
EL NINO EVENTS_” The basis of developing the DJF 2018/19 seasonal outlook, therefore, was consistent 
with the atmospheric response to SSTs (both in the AMIP simulations and in the initialized predictions). This, 
however, was not the case for the observed anomalies and led to a poor performance for the seasonal outlook. 

For DJF 2019/2020 the prognostic discussion noted that “...THE DJF 2019-2020 TEMPERATURE 
OUTLOOK IS INFORMED BY THE OBJECTIVE CONSOLIDATION, BUT HEAVILY ADJUSTED TO 
ACCOUNT FOR THE LATEST CFSv2 RUNS, THE INTERNATIONAL MODEL SUITE…” CPC outlook 
for this winter, therefore, relied heavily on the MME predictions, which were influenced by the atmospheric 
initial conditions. Predicted anomalies, however, departed appreciably from the expected atmospheric response 
to El Niño, but had a good resemblance with the observed anomalies. As a consequence, the skill of the CPC’s 
surface temperature outlook during this winter was much better than it was for DJF 2018/19.  

4.  Discussion 
A summary of the inferences drawn from the analysis is shown in Table 1. For DJF 2018/19, AMIP 

simulations, initialized predictions, and CPC surface temperature outlook were consistent with the El Niño 
response. However, seasonal mean observed anomalies, likely due to the contribution from the atmospheric 
internal variability, deviated from the El Niño response. This led to low forecast skill. For DJF 2019/20, while 
AMIP simulations were consistent with the El Niño response, initialized predictions, either because of the 
lingering influence of initial conditions or because of the influence of SST anomalies in ocean basins other than 
the tropical Pacific, deviated from the El Niño response. CPC outlook for surface temperature relied heavily on 
MME guidance. The observed anomalies for DJF 2019/20 had good resemblance with the initialized predictions 
leading to a better performance for the CPC outlook. 

Fig. 4  Same as for Fig. 3 but for initialized MME forecasts from the WMO LC-LRFMME. 
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The analysis also raises following questions: (i) What the potential role of SST anomalies was in the ocean 
basins other than in the equatorial tropical Pacific, e.g., in the Indian Ocean where SST anomalies over two 
winters had appreciable differences? (ii) Were the initial conditions in 2019/20, particularly related to the 
positive phase of the AO, unusually persistent that led to a better prediction? 
 

Analysis 2018/19 2019/20 
AMIP El Niño response Somewhat like El Niño response. 
ensemble mean 
Initialized El Niño response Not like El Niño response but has similarity with 
MME Small influence from initial observed anomalies. 
predictions conditions Initial condition information or influence of SSTs 

in another ocean basin, e.g., Indian Ocean? 
CPC outlooks El Niño factored in the El Niño did not factor in the outlook…informed 

outlook …also the MME by MME. 
outlook 

Observations Not like El Niño response. Not like El Niño response BUT like MME 
Likely due to atmospheric forecasts 
noise/internal variability. 

CPC outlook Worse Better 
performance 

Table 1  A table with the synthesis of various analyses. 
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1. Introduction 

Historic drought conditions developed across the southwestern United States (U.S.) in late summer 2020 
and persisted through summer 2021. According to the U.S. Drought Monitor (USDM, 
https://droughtmonitor.unl.edu/) (Fig. 1), the U.S. Southwest experienced a rapid drought intensification and 
expansion from July to November 2020. For the subsequent months through summer 2021, nearly the entire 
(~97%) Southwest was in drought (D1-D4), with ~70% of the area having severe and exceptional drought 
conditions (D3-D4), making the event the most severe southwestern drought in the USDM record. The rapid 
drought development during July-August-September (JAS) 2020 is particularly noteworthy, as the Southwest 
experienced the record driest and warmest conditions since 1895 (NCEI, 
https://www.ncei.noaa.gov/access/monitoring/us-maps/), due to the record low North American monsoon 
rainfall and extreme heat. In the following months through summer 2021, below-normal precipitation and 
above-normal temperature anomalies continued, which, while not as severe as those in JAS 2020, helped sustain 
the severe drought conditions (Mankin et al. 2021). The 2020-21 southwestern drought has been reported to 
cause substantial socioeconomical impacts, including those on local water supplies, energy production, farming, 
livestock operations and increased wildfire risks.  

Fig. 1 The 2020-21 southwestern U.S. drought in the U.S. Drought Monitor (USDM, 
https://droughtmonitor.unl.edu) 
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In this study, we performed a preliminary investigation on the causes and prediction of the 2020-21 
southwestern U.S. drought, with the focus on the rapid drought development during July-October 2020. The 
findings are applied to better understand the predictability of the drought and the performance of CPC drought 
outlooks (DOs). 

2.  Data and method 

The proximate causes of the drought were investigated by assessing the separate effects of observed 
precipitation (P) and temperature (T) anomalies during July-October 2020 on concurrent and subsequent 
evolution of land surface anomalies. Three land surface model experiments, consisting of a control experiment 
and two anomaly experiments, were performed using the Variable Infiltration Capacity (VIC) hydrology model 
(v4.0.6, Wood et al. 2002; Mo et al. 2012). The control experiment (PT_Anom) was forced with observed daily 
P and T from CPC unified observations (Chen et al. 2008), and ran from January 1, 1979 through March 31, 
2021. The two anomaly experiments (P_Anom, T_Anom) started from June 30, 2020, initialized using the land 
state of the same date from the control experiment, and ran through March 31, 2021. The experiment P_Anom 
was forced with observed daily P and daily climatological T, whereas the experiment T_Anom was driven by 
observed daily T and daily climatological P. The comparison of the three experiments focuses on their daily 
soil moisture percentiles (SMPs) during July 2020-March 2021. Here the SMPs were computed using a 15-day 
moving window of soil moisture values, they were based on the empirical probability density function (PDF) 
built using the control simulation for the period of 1979-2019. 

The causes of the southwestern U.S. drought were further investigated by diagnosing the 
maintenance of observed drought-inducing atmospheric circulation anomalies during JAS 2020 and 
identifying key regional forcings, using a stationary wave model (SWM) and the NCEP/NCAR 
reanalysis. Here the SWM is based on the three-dimensional (3-D) primitive equations in sigma 
coordinates. It is time-dependent and resolves stationary nonlinearity (Ting and Yu 1998). The model 
has rhomboidal wavenumber-30 truncation in the horizontal and 14 unevenly spaced sigma levels in 
the vertical. The NCEP/NCAR reanalysis was used to compute observed atmospheric circulation 
anomalies as well as basic state and stationary wave forcing inputs for the SWM.  

For understanding contributions from different factors, stationary wave forcing anomalies, 
consisting of those of diabatic heating and transient flux convergences, were first computed (Wang 
and Ting 1999). The SWM was then used to diagnose the relative roles of regional diabatic heating 
and transient forcing anomalies in maintaining the drought-inducing circulation anomalies. 
Additionally, an optimal forcing pattern analysis was performed to identify forcing regions and 
patterns that are most effective in driving the observed drought-inducing circulation anomalies 
(Schubert et al. 2011). This proceeded by performing a set of 1188 SWM runs, in which idealized 
heating sources were introduced every 10° longitudes and 5° latitudes across the globe. The horizontal 
structure of the idealized heating anomaly has a sine-squared function form, with horizontal scales of 
20° longitudes and 10° latitudes and its vertical profile having a peak of 1.4 K/day in the middle 
troposphere. The three-dimensional JAS climatological flow was used as the background state in the 
SWM runs. To obtain the optimal forcing pattern, the inner products between each of the low-level 
SWM responses and the observed low-level meridional wind anomaly in the monsoon region was 
computed and placed at the forcing location. 

To study prediction of the southwestern U.S. drought, we focused on NOAA official drought and 
precipitation outlooks produced and issued by the Climate Prediction Center (CPC). These outlook 
products are produced by integrating short-term and long-term dynamical model forecasts, statistical 
tools, climatologies and analogs, as well as feedback from stakeholders. The verifications of the 
outlooks are routinely performed using their respective observations. It is worth noting that the CPC 
DOs are initialized using the weekly U.S. drought monitor (USDM). They are presented using national 
maps showing drought tendency at monthly and seasonal lead times for four categories: drought 
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persists, drought remains but improves, drought removal likely, and drought development likely. The 
skill performance of the DOs is evaluated using the temporal changes of the USDM.   
3.  Results 

The causes of the 2020-21 southwestern U.S. drought were first investigated by assessing the separate 
effects of precipitation deficits and extreme heat during July-October 2020 on the evolution of soil moisture 
percentiles. It is evident from Fig. 2 that the precipitation deficits play a predominant role in rapidly drying 
local soil moisture, intensifying and shaping the southwest U.S. drought. While the temperature warming 
contributes as well, its effect is modest.  

Given the importance of the precipitation deficits in driving the drought, we next focused on low-level 
atmospheric circulation anomalies, as they play a dominant role in regulating atmospheric moisture transport 
and hence precipitation. Figure 3a shows that JAS 2020 features substantially weakened low-level southerlies 
in the North American monsoon region. These southerlies are known to be crucial in transporting abundant 
moisture northward inland from the Gulf of California and the Gulf of Mexico as well as nearby oceans, 
facilitating the formation of 
thunderstorms in the southwestern 
U.S. The substantial weakening of 
the southerlies during JAS 2020 
would reduce the frequency of 
occurrence of the thunderstorms, 
leading to monsoon rainfall 
deficits.  

Because of the importance of 
the low-level southerlies, we used 
the SWM to diagnose their 
maintenance and assess the 
separate roles of regional 
stationary wave forcings. Figure 3 
shows that the main forcing 
contributors are the diabatic 
heating anomalies in the monsoon 
and nearby regions. By 
comparison, the heatings in the rest 
of the global regions and transient 
flux convergence play secondary 
roles.  

Through the optimal forcing 
pattern analysis, Fig. 4 further 
identifies heating regions and 
patterns that are most effective in 
driving the weakened southerlies. 
Figure 4a shows that the most 
effective regional heating 
anomalies consist of the cooling 
anomalies along the southwest 
coast of North America and the 
heating anomalies in the south-
central US and the Gulf of Mexico. 
Since the optimal forcing pattern 
analysis assumes the magnitudes 
of idealized heating anomalies in 

Fig. 2  VIC land surface model experiments to assess the separate roles of 
observed precipitation and temperature anomalies during July-October 
2020 in contributing to the 2020-21 southwestern U.S. drought 
development.  (a) Soil Moisture Percentile (SMP) for June 30, 2020 in 
the control experiment (PT_Anom) forced with observed precipitation 
and temperature. (b) SMP for November 3, 2020 in the control 
experiment (PT_Anom). (c) Same as (b) but for the VIC experiment 
forced with observed precipitation for July 1-October 31, 2020 
(P_Anom). (d) Same as (b) but for the VIC experiment forced with 
observed temperature for July 1-October 31, 2020 (T_Anom). (e) The 
comparison of the three VIC experiments in the percent area of the 
western U.S. (125°W-95°W, 28°N-46°N, black box in panel a) for D2-
D4 drought categories (SMP<=10%). 
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the SWM runs to be identical for 
all forcing locations, the optimal 
forcing pattern in Fig. 4a was 
further scaled using the observed 
diabatic heating anomalies (Fig.3f) 
to identify the actual regional 
heating anomalies that contribute 
(Fig. 4b). Figure 4b highlights the 
dominant importance of diabatic 
heating anomalies in the monsoon 
region, eastern tropical Pacific off 
the west coast of U.S. southwest 
and Mexico, as well as the Gulf of 
Mexico, in driving the low-level 
weakened southerlies. Work is 
currently underway to investigate 
the observed subseasonal physical 
processes that led to these regional 
diabatic heating anomalies.  

Turning to drought prediction, 
an examination of CPC Seasonal 
Drought Outlooks (SDOs) shows 
that the biggest challenge lies in 
predicting the development phase 
of the drought. The drought 
development was primarily driven 
by the record low monsoon 
precipitation and excessive heat. 
Its prediction thus critically 
depends on the forecast skills for 
these extreme precipitation and 
temperature anomalies. The DOs 
would not be able to capture the 
rapid drought development if the 
precipitation deficits and warming 
anomalies are not skillfully 
forecast. 

As exemplified by the SDO for 
August-October 2000, the SDO 
missed the rapid drought 
development in Arizona and New 
Mexico (cf. Fig. 5a with Fig. 5b, 
also see the SDO verification in the 
right panel of Fig. 5a), due to the 
limited skills in capturing the 
precipitation deficits in these 
regions, as shown in the seasonal 
precipitation outlook (Fig. 5c). The 
limited forecasting skills of the 
monsoon rainfall deficits could be 
in part due to their driving physical processes being inherently unpredictable at seasonal lead-time, and in part 

Fig. 3 Stationary wave modeling diagnosis of the low-level weakened 
southerly in the monsoon region during July-August-September (JAS) 
2020.  (a) Zonally asymmetric meridional wind anomaly (m/s) at 
sigma=0.866 in the NCEP/NCAR reanalysis. (b) Stationary wave 
model (SWM) response at sigma=0.866 to the sum of anomalous 
diabatic heating and transient flux convergences. (c) Same as (b) but for 
the SWM response to anomalous heating only. (d) Same as (b) but for 
the SWM response to anomalous transient forcing only. (e) Same as (b) 
but for the SWM response to the anomalous heating east of 150°W. (f) 
Residually derived diabatic heating (K/day) at sigma=0.5. 

Fig. 4  (a) Optimal pattern of diabatic heating forcing for the observed JAS 
2020 low-level weakened southerly in the monsoon region (black box 
in Fig. 3a). (b) Scaled optimal forcing pattern, obtained by multiplying 
(a) with the residual diabatic heating anomaly at sigma=0.5 in Fig. 3f. 
Units are arbitrary. 
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due to the limitations of forecast tools (e.g., biases in the NMME forecast models). The predictability of the 
JAS 2020 monsoon rainfall deficits and their driving physical processes requires further investigation. By 
comparison, after drought conditions are established, the SDOs became more skillful, as they can draw a 
considerable portion of the skill from the persistence of dry land initial states (Fig. 5d).  

4.  Summary and discussion 
This study performed a preliminary investigation of the causes and prediction of the 2020-21 southwestern 

U.S. drought. The focus is on the rapid drought intensification in July – October 2020, during which the region 
experienced record driest conditions and extreme heat. The rapid drought development, as manifested in soil 
moisture decline, was found to be primarily driven by the record low North American monsoon rainfall and 
secondarily by the extreme heat. The strong precipitation deficits are closely linked to the considerably 
weakened low-level southerlies in the monsoon region, which reduced the northward inland moisture transport 
from the Gulf of California and the Gulf of Mexico, and hence, monsoon rainfall. Through a stationary wave 
modeling diagnosis, we found that the weakened southerlies are mainly driven by diabatic cooling anomalies 
in the monsoon region and regions off the southwest coast of North America as well as diabatic heating 
anomalies in the Gulf of Mexico.  

Turning to drought prediction, the main challenge of CPC SDOs lies in predicting the rapid drought 
development in JAS 2020. The limited forecast skill for the drought development results from the difficulty in 
skillfully predicting its meteorological drivers, particularly the record low monsoon precipitation. While the 
low skill for precipitation may be due in part to the limitations of forecast tools (e.g., biases in dynamical 
forecast models), it is likely that some fraction of monsoon precipitation variability is inherently unpredictable 
at seasonal lead-time. With the existing outlook product resources at CPC, the forecast challenges of SDOs can 
be in part remedied by considering drought and precipitation forecasts at shorter lead-time (e.g., Monthly 

Fig. 5  (a) NOAA CPC Seasonal Drought Outlook (SDO) for August-October 2020, and its verification using 
the U.S. Drought Monitor (USDM). (b) The comparison of USDM maps between July 14, 2020 and 
October 27, 2020. (c) NOAA CPC Precipitation Outlook for August-October 2020, and its categorical 
verification using observations. (d) Same as (a) but for September-November 2020.  The CPC outlook 
maps are taken from CPC website.  The USDM maps are downloaded from 
https://droughtmonitor.unl.edu/ 
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Drought Outlook - MDO). Work is also currently underway at CPC to develop probabilistic DOs to provide 
users and stakeholders with probability information of drought forecasts and facilitate their decision-making. 
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1. Introduction 

The Madden-Julian oscillation (MJO) is a dominant mode of tropical subseasonal variability 
(Madden and Julian 1971) and is also known to influence severe weather over the United States (e.g., 
Baggett et al. 2018). A dynamical-statistical model has been developed at the NOAA Climate 
Prediction Center (CPC) for forecasting week-2 severe weather (Wang et al. 2021).  Here we examine 
the impact of the MJO on both weekly severe weather activity over the U.S. and week-2 forecast skill. 

The goals of this study are (1) to document weekly (7-day total) severe weather activity conditional 
to the phase of the MJO, (2) to examine the forecast skill of week-2 severe weather during different 
phases of the MJO, and (3) to identify the regions where tropical heating associated with the MJO may 
favor severe weather over the U.S. 

2. Data and methods 

The data used in this study 
include both observational data and 
model forecasts.  For observations, 
the NCEP Climate Forecast System 
Reanalysis (CFSR) and NWS local 
storm reports (LSRs) are used.  The 
LSR consists of hail, tornado, and 
damaging wind reports, as well as 
their location, time, and intensity. 
The sum of the LSRs for hail, tornado 
and damaging wind are referred to as 
LSR3 hereafter. All data are re-
gridded to a 0.5o×0.5o grid. 

The forecast model used in this 
study is a hybrid dynamical-
statistical model (Wang et al. 2021). 
It uses the dynamical model (NCEP 
GEFSv12) predicted environmental 
variables as a predictor to forecast 
severe weather (LSR3) based on the 
statistical relationship between the 
predictor and actual LSR3 in 
historical records. We use the 
GEFSv12 16-day hindcasts to train 
the model for week-2 severe weather. 
The hindcast period is from 2000 to 
2018 with 5 members daily.  The 

Fig. 1 (a) Composites of weekly OLR anomalies for eight MJO phases, 
(b) phase-space diagram of the PC time series of two leading EOFs 
with combined OLR, U200 and U850 averaged over 15oS–15oN 
along the equator, (c) pie chart of sample size for each MJO phase, 
also listed in (d).  The numbers (1–8) denote the MJO phases. 
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Fig. 2  Composites of weekly LSR3 anomalies for each MJO phase during 
MAM 2000–2018. 
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analysis is performed using the 5-member ensemble mean forecasts. Following Carbin et al. (2016), the 
predictor, supercell composite parameter (SCP), is defined as 

SCP = (CAPE/1000 J kg1) × (SRH/50 m2 s2) × (BWD/20 m s1), 

where CAPE is convective available potential energy, SRH storm-relative helicity, and BWD bulk wind 
difference. The three constants are used to normalize SCP such that when SCP is greater than one, severe 
weather is likely to occur. Both forecasts and analysis focus on the spring season from March to May (MAM). 

The MJO is represented by two leading EOFs of combined OLR and 200 and 850-hPa zonal winds averaged 
over 15oS–15oN along the equator (e.g., Kessler 2001), taken from the CFSR.  A time-dependent linear 
barotropic model (e.g., Ting 1996) is applied to the 200-hPa level to test the sensitivity of the extratropical 
circulation response to tropical heating associated with the MJO. 

3. Results 

The characteristics of the MJO are examined first.  Figure 1a shows the composites of weekly OLR 
anomalies associated with each phase of the MJO during MAM.  A negative OLR anomaly indicates enhanced 
convection, which is related to a heating anomaly for the atmosphere.  As the MJO propagates eastward from 
phase 1 to phase 8, the location of the heating also shifts towards the east.  The sample size of each MJO phase 
is summarized in both a phase-space diagram (Fig. 1b) and a pie chart (Fig. 1c), as well as in a table (Fig. 1d), 
and ranges from 6.5% to 9.2% of the total events.  Among all cases, 35.5% are weak MJO events, which are 
excluded from the analysis. 

Figure 2 shows the composites 
of LSR3 anomalies associated with 
the eight MJO phases.  Overall, 
there is enhanced severe weather 
activity in the eastern and central 
U.S. from phase 1 to phase 4 and 
suppressed storm activity from 
phase 5 to 8. The anomaly 
correlation skill of the hybrid 
model for week-2 severe weather 
is shown in Fig 3 (top panel) for the 
entire MAM 2000–2018. 
Relatively high skill values are 
found along or near the Tornado 
Alley.  The bottom panels are the 
changes in the skill from the top 
panel for each MJO phase. 
Compared to Fig. 2, the forecast 
skill is generally increased 
(decreased) over regions with the 
enhanced (suppressed) severe 
weather activity linked to the MJO. 

Figure 4 shows the 200-hPa 
streamfunction in the linear 
barotropic model response to 
heating over the tropical Indian 
Ocean from day 1 to day 15.  The 
tropical heating (Fig. 4, the 
separate panel on the right) is 
prescribed as an anomalous divergence field in the barotropic vorticity equation.  It takes about 10 days for the 



 
  

 

Fig. 3  Anomaly correlation (AC) skill of week-2 severe weather for entire 
MAM 2000–2018 (top panel) and changes in the AC skill from the top 
panel for each MJO phase (bottom panels). 
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extratropical circulation to reach a 
nearly steady response over North 
America. Therefore, an 
extratropical circulation 
concurrent with MJO phase 2 may 
be forced by MJO phase 1, because 
of this delayed response. 

The circulation anomalies 
associated with the enhanced 
severe weather activity (Fig. 2) are 
examined in Fig. 5, which shows 
the composites of weekly LSR3 
during MJO phase 2 (Fig. 5a) and 
the associated 200-hPa height 
anomalies (Fig. 5b). A well-
defined wave train crosses East 
Asia and North America. 
Downstream, there is an 
anomalous ridge near the U.S. 
southeast coast (Fig. 5b, red box), 
which can enhance a low-level jet 
and transport moisture from the 
Gulf of Mexico, favorable for 
severe weather over the central and 
eastern U.S. (Fig. 5a). 

Whether the tropical heating 
associated the MJO can generate 
such a circulation pattern is tested 
using the barotropic model forced 
by an idealized heating prescribed 
in the model.  Figures 6a and 6b are 
two examples of the circulation 
response to a point heating (red 
dot). The response over the red 
box area near the southeast coast is 
positive when the heating anomaly 
is over the tropical Indian Ocean (Fig. 6a), but negative when the heating is over the eastern tropical Pacific 
(Fig. 6b). 

An influence function is used to determine the locations where tropical heating may generate circulation 
anomalies favorable for severe weather over the central and eastern U.S.  The influence function is a spatial 
map derived from individual circulation responses to heating at each grid point. The value of the influence 
function at a grid point is the value of the circulation anomalies over a specific region in response to the point 
heating at the same grid point.  Here, the specific region is the area near the southeast coast (red box in Figs. 
5b, 6a, 6b).  To obtain a global distribution of the influence function, the barotropic model is run each time with 
a point heating specified at one grid point and repeated for all grid points. 

Figure 6c shows the influence function for the area we are interested in (red box in Figs. 5b, 6a, 6b).  The 
influence function indicates that heating over the western Indian Ocean can generate positive streamfunction 
anomalies near the southeast coast but heating over the eastern Indian Ocean and western Pacific generates 
negative anomalies. Based on the distribution of the influence function (Fig. 6c), both the tropical heating 
(negative OLR anomalies, warm color in Fig. 6d) and cooling (positive OLR anomalies, cold color in Fig. 6d) 



        
 

Fig. 4 200-hPa streamfunction response to the tropical heating from day 1 to day 15. The heating is prescribed 
as divergence anomalies in the linear barotropic model. 

(a)  (b)  

    
    

Fig. 5 Composites of (a) weekly LSR3 anomalies and (b) 200-hPa height anomalies for MJO phase 2 during 
MAM 2000–2018.  The red box denotes the region of an anomalous ridge. 
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associated MJO phase 1 can produce positive height anomaly near the southeast coast, favorable for the severe 
weather over the central and eastern U.S. 

4. Summary 

The impact of the MJO on weekly severe weather activity and week-2 forecast skill was examined in this 
study.  The composite analysis indicates that weekly severe weather over the eastern and central U.S. is 
enhanced during MJO phases 1–4.  The week-2 forecast skill can be increased in the areas of enhanced severe 
weather related to the MJO.  A linear barotropic model is used to illustrate that it takes about 10 days for the 
extratropical circulation to reach a steady response to tropical heating.  The influence function identifies the 
specific regions where tropical heating can force the extratropical circulation pattern that is favorable for severe 



(c) 

(a) (b) 

(d) 

Fig. 6 (a, b) Responses of 200-hPa streamfunction to a point heating (red 
dot), (c) influence function for the red box in (a, b) and Fig. 5b derived 
from individual circulation responses to 1920 points of heating globally 
(R15 resolution: 48 × 40 grid points) and (d) composite of weekly OLR 
anomalies for MJO phase 1. 
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weather over the U.S.  The results 
are consistent with both the 
relationship between severe 
weather activity and MJO phase 
and the location of the tropical 
heating associated with the MJO 
phase. 
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1. Introduction 

High-amplitude ridges can enforce heat-trapping 
systems that persist through an entire season, 
contributing to drought events. While the strength of the 
seasonal-mean atmospheric ridge has increased, as 
previously documented, the impact of day-to-day 
weather system changes at the meso- and synoptic-scale 
on drought events are not yet clear. Here, we examine the 
day-to-day ridge and trough patterns from the 
perspective of weather types within a transient 
framework (Zhang et al. 2022).  
2.  Data and methodology 

Daily precipitation data over the continental United 
States is obtained from the Climate Prediction Center at 
0.25 spatial resolution. The 500-hPa geopotential height 
data for deriving the weather types/regimes are obtained 
from the National Aeronautics and Space Administration 
(NASA)’s Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-2) at 
0.5° × 0.625° spatial resolution for 1980-present; the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF)’s ERA-5 at 0.25° × 0.25° spatial resolution 
(1979-present); the National Centers for Environmental 

a) 

Fig. 1  a) trend in annual total precipitation (shading: unit: 
mm/decade) over the continental US during 1980-
2018. The hatched regions are statistically significant 
at the 0.05 level. b) 500-hPa geopotential height 
anomaly (unit: gpm), d) composite precipitation (unit: 
mm/day) and f) fractional contribution of WT3 (the 
western trough pattern) precipitation to total 
precipitation. c) 500-hPa geopotential height anomaly, 
e) composite precipitation and g) precipitation fraction 
for WT4 (the western ridge pattern). 
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Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data at 2.5° × 2.5° spatial 
resolution (1948-present); and the Japanese 55-year ReAnalysis (JRA-55, 1958-present) at 1.25° × 1.25° spatial 
resolution (Kobayashi et al., 2015). The daily temperature data set is obtained from Berkeley Earth 
(http://berkeleyearth.org/data/). We use daily 500-hPa geopotential height data from the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) project and CESM large ensemble run with 42 members. We use k-
means cluster analysis to obtain weather regimes. 

3.  Results 

Following previous studies that examine weather types (WT) (Zhang and Villarini 2019, 2021), we apply 
K-means clustering to daily 500-hPa geopotential height anomalies based on reanalysis data, resulting in five 
distinct WT over the continental United States. Each WT represents a unique, large-scale pattern that modulates 
precipitation and temperature on a day-to-day basis. Weather Type 3 (WT3) is associated with a deep trough in 
the western U.S. (Fig. 1b), while WT4 represents a strong ridge pattern similar to the amplified and semi-
permanent ridge associated with severe drought conditions in California (Fig. 1c). Five WTs exhibit distinct 
characteristics of composite precipitation and fractional contribution in the western U.S. and this is also true 
across different seasons. WT3 exhibits higher precipitation and fractional precipitation contribution than WT4 
(Fig. 1d-g), as well as colder temperatures, an effect that is particularly pronounced in the winter season, which 
is similar to the Central and Midwestern regions of the U.S. (Zhang and Villarini 2019, 2021). 

Using Poisson regression, we detect a significant decreasing trend (Beta = -0.0147, p-value < 0.01) in the 
annual frequency of WT3 from 1980 to 2018 that is consistent across different reanalysis data sets. No such 
trend can be detected for WT4 (Fig. 2). The results are consistent at the seasonal scale, exhibiting significant 
decreasing trends for WT3 and insignificant trend for WT4 during March-May (MAM), June-August (JJA), 
September-November (SON) and December-February (DJF). Assessing the relative roles of the different 

Fig. 2  Top: Frequencies (unit: events) and fitted trends (unit: events/yr) for weather types 3 and 4 during 
1980-2018. Bottom: precipitation trend (unit: mm/decade) in the western US associated with WT1-5. 
The shading in the top panel represents the 95% confidence interval of the fitted trend using Poisson 
regression. The hatched regions are statistically significant at the 0.05 level. 
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weather types in shaping the change of annual total precipitation, we see the decrease in WT3-associated 
precipitation has a magnitude and pattern (Fig. 2), similar to that of the annual total precipitation declines from 
1980-2018 (Fig. 1a) while the change in WT4 exhibits a much weaker and insignificant trend. 

4.  Concluding remarks 

While an amplified seasonal-mean ridge may play a partial role in explaining recent California droughts 
and warming, our analysis indicates that it is the decreasing trend in transient western troughs that has 
contributed the most to the downward trend in the annual and seasonal precipitation totals across the western 
U.S. These findings highlight the importance of improved understanding of time-mean features (i.e. stationary 
waves over North America) and transient weather patterns (e.g., cold fronts), their respective trends, and 
possible external forcings. Our study also points to the need to improve the underlying atmospheric and oceanic 
drivers of western U.S. drought to aid drought prediction.  
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1. Background and motivation 

The skillful prediction of monthly scale rainfall at the regional/local level is one of the challenges of the 
meteorological scientific community. The present existing forecast systems across the world can simulate the 
year-to-year variation. However, the variability on month-to-month during a year is tricky due to the 
considerable ambiguity associated with aberrant internal low-frequency fluctuations. The monthly scale is the 
bridge between medium-range and seasonal/long-range weather forecasts. It is a difficult time range for weather 
forecasting because much of the memory of the initial atmospheric conditions on this time scale is lost, affecting 
the forecast prediction skill. 

Taiwan is one of the sub-tropical islands in Asia. It experiences rainfall extremes regularly, leading to 
landslides and flash floods in/near the mountains and flooding over low-lying plains, particularly during the 
summer monsoon season (June through September; JJAS). Although Taiwan has a lot of water scarcity due to 
steep topography that hardly holds rainwater, it is the 18th rank of the water-scarcity countries in the world. 
Therefore, there is high demand for accurate prediction of monthly rainfall and associated extreme rainfall 
events over Taiwan.   

In September 2020, NOAA NCEP implemented Global Ensemble Forecast System version 12 (GEFSv12) 
to support stakeholders for sub-seasonal forecasts and hydrological applications. The NOAA NCEP generated 
consistent GEFSv12 reforecast data for 2000-2019 and the reforecasts were initialized at 00 UTC once per day 
out to 16 days with 5 members ensemble, except on Wednesdays when the integrations were extended to 35 
days with 11 members. In this study, the performance of GEFSv12 monthly scale rainfall and associated 
extreme events during JJAS over Taiwan for the period (2000-2019) has been evaluated. 

2.  Data and methodology 

In this study, the NCEP GEFSv12 rainfall products over Taiwan based on every Wednesday 00 UTC initial 
conditions up to 35-day forecast lead times with 11 members during JJAS for the reforecast period 2000-2019 
have been considered. These products are available at Amazon Web Services (AWS, 
https://registry.opendata.aws/noaa-gefs/) in grib2 format at 3 (6) hour intervals at 0.25° (0.5°) resolution for the 
first 10 days (beyond 10 days) of the forecast. For uniformity, day-1 to 10 forecasts are also considered on the 
same grid points of day-11 to 35 forecasts. The reforecast products are based on the current operational Global 
Forecast System version 15.1 (GFSv15.1). It uses the Geophysical Fluid Dynamics Laboratory (GFDL) FV3 
Cubed-Sphere dynamical core. The GEFSv12 model horizontal resolution is ~25 km (C384 grid) with 64 
vertical hybrid levels. The top layer is centered around 0.27 hPa (~55 km). The scale-aware parameterization 
convection scheme is used instead of Simplified Arakawa-Schubert (SAS) shallow and deep convection scheme. 
The scale-aware parameterization convection scheme was further modified to reduce excessive cloud-top 
cooling for the model stabilization. The hybrid Eddy-Diffusivity Mass-flux (EDMF) scheme is used for the 
vertical mixing process of the planetary boundary. The cloud microphysics scheme used from GFDL includes 
five predicted cloud species (cloud water, cloud ice, rain, snow, and graupel. The shortwave and longwave 
radiative fluxes are estimated from the rapid radiative transfer model (RRTM) developed at Atmospheric and 
Environmental Research (Clough et al. 2005). The convective gravity wave drag estimation uses the schemes 
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developed by Chun and Baik (1998). The GFS orographic gravity wave drag and mountain blocking schemes 
follow that developed by Alpert (1988). A two-tiered Sea Surface Temperature (SST) and Near Sea Surface 
Temperature (NSST) approach (Zhu et al. 2017, 2018) is used for estimating the SST boundary condition, 
which accounts for the day-to-day variability and diurnal variation of SST, respectively. The stochastic kinetic 
energy backscatter (SKEB) and stochastically perturbed parameterization tendencies (SPPTs) were used to 
improve the model's uncertainty. A brief description of the GEFSv12 forecast system at NOAA NCEP can be 
found in Zhou et al. (2019; 2021). CMORPH multi-satellite-based precipitation data for the same period (2000-
2019) were acquired from the official FTP server of the Climate Prediction Center of the National Oceanic and 
Atmospheric Administration and used as a reference data (https://www.ncei.noaa.gov/data/cmorph-high-
resolution-global-precipitation-estimates/access/daily/0.25deg/). The GEFS-SubX reforecast at TL574L64 
(day 0–8; ~34 km horizontal resolution) and TL382L64 (day 8–35; ~52 km horizontal resolution) is considered 
a benchmark dataset to compare the ability of the GEFSv12 to predict the summer monsoon (JJAS) daily rainfall 
over Taiwan with different forecast lead times Day-1 to 35 based on every Wednesday initial conditions. More 
details about the GEFS-SubX system and the configurations can be found in Zhu et al. (2018).   

The numerical weather models' raw products are not skillful at extended/monthly/sub-seasonal scale, and 
suitable statistical post-processing is highly required for skillful forecast guidance and increase of its usability. 
For further precipitation prediction skill improvement, in the previous studies, various ensemble-based 
statistical post-processing techniques have been 
used, e.g., Frequency Match Method (FMM, 
Zhu and Luo 2015), Quantile-Quantile mapping 
Method (Nageswararao et al. 2021; Guan et al. 
2021), "poor man's ensemble" (Ebert 2001), and 
analog method (Hamill and Whitaker 2006). 
This study uses the quantile-quantile mapping 
post-processing technique to calibrate GEFSv12 
rainfall reforecast data to improve prediction 
skills. The main advantage of this calibration 
method is to transform rainfall simulated by 
GEFSv12 to bias-corrected data statistically and 
make it applicable for use in the impact 
assessment of the GEFSv12 model. The 
technique is also called 'histogram equalization 
and/or 'rank matching' (Piani et al. 2010).  In this 
study, the statistics of daily rainfall for 
CMORPH and GEFSv12 reforecasts were 
determined independently for each lead time 
(Day-1 to 30 forecast lead times) and grid point 
over Taiwan during JJAS. This method is 
applied to an ensemble of 11-members and to 
each member separately. For example, in the 
June analysis, the GEFSv12 reforecast data is 
based on 16th May to 15th June 00 UTC weekly 
once (every Wednesday) initial conditions. The 
corresponding sample size is 89 at each grid 
point for each lead time and each member. The 
July, August, and September analyses have been 
practiced like June analysis for implementing 
the calibration method. The rainfall intensity 
distributions for both CMORPH and GEFSv12 
reforecasts are well approximated by the gamma 
distribution. The empirical probability 
distributions of CMORPH and GEFSv12 

Fig. 1  (a) RMSE (b) Correlation Coefficient and (c) Index 
of Agreement of GEFS-SubX and GEFSv12 in 
depicting East-Asian-Summer-Monsoon-Index 
(EASMI) against 20th CR NCEP Reanalysis based on 
every Wednesday initial conditions for forecast lead 
time Day-1 to 35 for the period 2000-2019. 
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rainfall values have been used in this technique. The calibrated output is the inverse of the cumulative 
distribution function (CDF) of CMORPH values at the probability corresponding to the GEFSv12 model output 
CDF at the particular value (𝐹𝐹𝑡𝑡) . The bias is not calculated explicitly in this method. Suppose CDFs, 
𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶for CMORPH, and 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺12 for an ensemble member rainfall forecast of the GEFSv12 model. For 𝐹𝐹𝑡𝑡 , 
the bias-corrected value Q will then be as follows:  

𝑄𝑄 = 𝐹𝐹−1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺12(𝐹𝐹𝑡𝑡)) 

Here, 𝐹𝐹−1 is an inverse of CDF. Thus, the technique of the quantile mapping is a transformation between two 
CDFs of the CMORPH and GEFSv12 model. The leave-one-out cross-validation procedure has been practiced 
in the entire process. Hereafter, the Raw and calibrated outputs of GEFSv12 are mentioned as Raw-GEFSv12 
and QQ-GEFSv12, respectively.  

3.  Preliminary results 
The East Asian Summer monsoon Index (EASMI) can capture the interannual and interdecadal variations 

in EASM-related climate anomalies and it is good at describing precipitation and air temperature variations 
over East Asia (Zhao et al. 2015). The EASMI is tightly associated with the East Asian–Pacific or the Pacific–
Japan teleconnection and there is a possible role of internal dynamics in the EASM variability. It is also 
significantly linked to El Niño–Southern Oscillation (ENSO) and tropical Indian Ocean Sea surface temperature 
anomalies. There is a need to know the predictability of EASMI from GEFS-SubX and GEFSv12 to understand 
the predictability of EASM rainfall over Taiwan. In this study, the performance evaluation of GEFS-SubX and 
GEFSv12 Day-1 to 35 forecast lead times for EASMI against 20th CR NCEP  
(https://data.tpdc.ac.cn/en/download/1c0c4197-5e5d-4f0d-bd38-03dae3658a06/) for the period 2000-2018 has 
been done by using standard skill metrics. Both models are good in capturing the EASMI with all forecast lead 
times against 20th CR NCEP reanalysis (Fig. 1). However, the RMSE of both the models in depicting EASMI 
is increasing with lead 
time (Fig. 1a). It is 
interesting to notice that 
the RMSE of GEFSv12 
for EASMI is relatively 
lesser for all forecast lead 
times than the GEFS-
SubX. The correlation 
coefficient (CC) and Index 
of agreement (IOA) of 
both models in 
representing the EASMI is 
significantly high for all 
lead time forecasts (CC> 
0.65 and IOA>0.8) and it 
is particularly more up to 
Day-23 forecast lead time 
(CC>0.75 and 
IOA >0.85). However, the 
CC and IOA of both 
models for EASMI 
decreases with lead time. 
The prediction skill of 
EASMI from GEFSv12 is 
relatively higher for all 
forecast lead times than 
the GEFS-SubX (Fig. 1b 
&c). The remarkable 

Fig. 2  Spatial distribution of monthly rainfall (mm) during summer monsoon from 
CMORPH, Raw, and QQ-GEFSv12 (Ensemble mean of 11 ensembles) based 
on weekly once initial conditions for the period 2000-2019. The value at the 
bottom right corner of each panel indicates the average climatological mean of 
monthly rainfall in Taiwan. 
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improvement in prediction skill of GEFSv12 in representing the ESM circulation dynamics and its influence 
on ESM rainfall over Taiwan as compared to GEFS-SubX. The improvements in prediction skill of GEFSv12 
may be attributed to the combined influence of better initial conditions, more advanced microphysics schemes, 
updated stochastic schemes, finer resolution and a new FV3 dynamic core.   

The monthly summer monsoon rainfall analysis over Taiwan reveals that the Raw-GEFSv12 can capture 
summer monsoon monthly rainfall patterns over Taiwan like CMORPH (Fig. 2). The monthly rainfall is more 
prominent over the western windward sloping areas in central and southern Taiwan (300-500 mm), decreasing 
north and west. During June, July, and August, the maximum rainfall is mainly due to the convective systems 
embedded within the southwesterly monsoon flow. In addition, the Mei-yu frontal systems from southern China 
also frequently bring heavy precipitation towards Taiwan. It is also noticed that the rainfall is quite significant 
along with the Central Mountain Range (CMR) as the orographic impact. During June, the pronounced 
monsoon rainfall covers most parts of Taiwan and reduces west to east as the season progresses. Among the 
months, the maximum observed monthly rainfall occurred during August (271 mm), followed by June (246 
mm), July (211 mm), and September (200 mm). After August, the maximum rainfall zone shifted towards the 
north with season progress, and similar patterns can be seen from Raw-GEFSv12 (Fig. 2). However, the Raw-
GEFSv12 has a large wet bias in most parts of Taiwan during all months, and it is notably more during July 
(115 mm) followed by June (87 mm), August (56 mm) and September (41 mm). After calibration, the monthly 
rainfall patterns over Taiwan are very similar to 
CMORPH, the wet bias is significantly reduced 
for all the months, and the magnitude of the 
monthly rainfall from QQ-GEFSv12 is 
relatively closer to CMORPH than Raw-
GEFSv12.   

The correlation analysis reveals that the 
Raw-GEFSv12 is good in capturing the year-to-
year variations of the monthly summer monsoon 
rainfall over Taiwan for all the months against 
CMORPH (Fig. 3a). The Raw and QQ-
GEFSv12 have significant correlation 
coefficient values in most parts of Taiwan 
(CC>0.4 at 90% confidence level) in predicting 
monthly rainfall over Taiwan in most of the 
months except July. The correlation coefficient 
of Raw-GEFSv12 in depicting monthly rainfall 
is particularly larger for September (0.43) 
followed by August (0.41), June (0.39) and July 
(0.19). After calibration, a similar correlation 
coefficient pattern over Taiwan has been noticed 
from QQ-GEFSv12 for all the months. 
However, a slight decrease in the correlation 
coefficient values has been seen. The reason is 
that the quantile-quantile mapping method is 
matching the forecast probability distributions to 
observations, but the temporal structure may be 
lost by using this method. It might not correct 
timing errors also. Further, the Index of 
Agreement (IOA) analysis indicates the Raw-
GEFSv12 has well agreed with CMORPH in 
predicting monthly rainfall over Taiwan for all 
the months (Fig. 3b). The IOA values from Raw-
GEFSv12 in most parts of Taiwan are 

Fig. 3 (a) Correlation Coefficient and (b) Index of 
Agreement of Raw and QQ-GFSv12 against CMORPH 
in depicting Monthly rainfall during Summer Monsoon 
for the period 2000-2019. The value at the bottom right 
corner of each panel indicates the average CC/IOA of 
monthly rainfall in Taiwan. 
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remarkably high 
(IOA>0.5) for all the 
months, and it is higher 
for September (0.6) 
followed by August 
(0.59), June (0.55) and 
July (0.44). After 
calibration, there has 
been significant 
improvement in the 
IOA of QQ-GEFSv12 
in most parts of 
Taiwan. The IOA 
values for Taiwan as a 
whole for June, July, 
August, and September 
are 0.58, 0.49, 0.62, 
and 0.62, respectively. 
The analysis concluded 
that the calibration 
method improves the prediction skill of GEFSv12 in depicting the monthly rainfall over Taiwan for all the 
monsoon months.   

The performance diagram is a suitable method for summarizing the several categorical skill scores such as 
Probability of Detection (POD), Frequency Bias, Treat Score (TS), and Success Ratio (SR) (1-FAR) in a single 
graph (Huang and Luo 2017).  The solid contour lines in the performance diagram (Fig. 4) show the TS, while 
the dash lines indicate the Frequency Bias with extended labels on X and Y's upper (2nd) axes. From Fig. 4a, 
the Raw-GEFSv12 has a considerable overestimation (Frequency Bias is >2) of wet days (>2.5 mm/day) over 
Taiwan for all months, whereas the POD is remarkably high (POD >0.9). After calibration, a substantial 
reduction of overestimated wet days over Taiwan from QQ-GEFSv12 has been detected for all months. In 
contrast, the POD of wet days over Taiwan decreased remarkably for all months. After calibration, the TS and 
SR skill scores for wet days over Taiwan from QQ-GEFSv12 (TS> 0.5 and SR >0.8) are extraordinarily higher 
than Raw-GEFSv12 (TS< 0.5 and SR <0.5) for all the months (Fig. 4a). The Raw-GEFSv12 has a considerable 
underestimation of extreme rainfall (ER) events over Taiwan for all the months (Frequency bias <0.4), and the 
POD in most of the months also is low (POD <0.3) (Fig. 4b). After calibration, the POD and TS of ER events 
over Taiwan from QQ-GEFSv12 increased remarkably for all the months. The frequency of ER events over 
Taiwan from QQ-GEFSv12 has risen notably for all the months. It is mainly due to adjusting the probability 
distribution of various intensity rainfall events from GEFSv12 to the CMORPH.     

4.  Conclusions 

● There is a remarkable improvement in prediction skill of GEFSv12 in representing the East Asian 
summer monsoon circulation dynamics and its influence on summer monsoon rainfall over Taiwan as 
compared to GEFS-SubX, and these improvements may be attributed to the combined influence of 
better initial conditions, more advanced microphysics schemes, updated stochastic schemes, finer 
resolution and a new FV3 dynamic core. 

● The GEFSv12 is good at representing the spatial patterns of monthly rainfall over Taiwan during the 
summer monsoon season. The monthly rainfall is more during August (271 mm), followed by June 
(246 mm), July (211 mm), and September (200 mm) respectively. After August, the maximum rainfall 
zone shifts towards the north with season progress and similar patterns are found from GEFSv12. 
However, GEFSv12 has a large overestimation of monthly rainfall in Taiwan and it is more for July 
(115 mm) followed by June (87 mm), August (56 mm) and September (41 mm).  

Fig. 4  Performance diagram summarizing the SR, POD, Frequency Bias, and TS 
statistical categorical skill scores of Raw, and QQ-GEFSv12 against CMORPH 
for (a) Wet days, and (b) Extreme rainfall events on monthly scale over Taiwan 
during June, July, August, and September for the period 2000-2018. The solid and 
dashed lines represent TS and Frequency Bias scores, respectively. 
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● The RMSE and mean bias errors of monthly rainfall from Raw-GEFSv12 are high in the south and 
eastern part of Taiwan, whereas prominent monthly rain and its IAV are significantly high. The errors 
of RMSE and mean bias decrease from south to north and east to west during all the months. After 
calibration, both errors notably decreased in most parts of the country.  

● The prediction skill (Correlation coefficient and Index of Agreement) of GEFSv12 in depicting the 
summer monsoon monthly rainfall over Taiwan for all the months is significantly high (CC and 
IOA >0.4) in most parts of Taiwan and particularly more during peak monsoon months August, June 
and also for September. It is interesting to notice that after calibration, the prediction skill remarkably 
increased (>0.5) from QQ-GEFSv12 for all months. 

● A considerable overestimation of wet days (>2.5 mm/day) in most parts of Taiwan from Raw-GEFSv12 
has been found during all months, whereas an underestimate of ER events is there. After calibration, 
the probability distribution of various intensity rainfall events from QQ-GEFSv12 is well adjusted to 
that from the CMORPH in most parts of the country during all the months. The QQ-GEFSv12 can 
depict ER events (> 50 mm/days), in which rainfall events lead to floods and landslides over Taiwan. 

● The calibration method significantly improved the most statistical categorical skill scores of QQ-
GEFSv12 for wet and ER events, while the POD is significantly improved for ER events in most parts 
of the country for all the months.  
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Sea surface temperatures (SSTs) and vertical wind shear (VWS) are essential to tropical cyclone (TC) 
formation. TCs need warm SSTs and low shear for genesis. Increasing SSTs and VWS changes influence 
storm development. This work analyzes SST and VWS trends for the Caribbean, the surrounding region, 
and the Atlantic hurricane main developing region (MDR) from 1982 to 2020. Tropical storm intensity 
increases significantly during this period. Annual and seasonal trends show regional SSTs in the MDR 
are warming annually (0.0219°C yr -1) and per season (0.0280°C yr -1). Simultaneously, VWS decreases 
during the late rainfall season (LRS) at 0.0556m/s yr -1 in the MDR and 0.0167m/s yr -1 in the Caribbean 
and surrounding area, while the Atlantic Warm Pool (AWP) is expanding at 0.51km2 per decade. 
Increased upper atmospheric winds are driving VWS changes. Correlations of large-area averages do 
not show significant relationships between TC intensity and frequency and SSTs or VWS during the 
LRS. The observed changes appear to be associated with regional warming SSTs impacting TC 
changes.  

1. Introduction 

Sea surface temperatures (SSTs) in the mid-Atlantic and the Caribbean have steadily increased for several 
decades (Antuna et al. 2015; Glenn et al. 2015 and 2021). Mid Atlantic SSTs are warming faster during the late 
rainfall season (LRS – August to November) than any other season (dry – December to March) and early – 
April to July) with temperatures reaching 26.5°C and higher, the threshold considered for deep convection 
(Fig.1) (Gadgil et al. 1984; Graham and Barnett 1987). Upward trends in the Atlantic SSTs may lead to tropical 
cyclonic (TC) activity intensification, posing more significant risks to coastal communities. Research shows 
that storms in the North Atlantic have increased in frequency and intensity since the 1980s (Melillo et al., 2014). 
Additionally, the Caribbean and the U.S. have experienced increasingly intense hurricanes in recent years, 
potentially linked to increasing SSTs (IPCC, 2014). More than 80% of Atlantic TC systems that turn into major 
hurricanes are formed within the main developing region (MDR, 10°N-20°N, 20°W-80°W), where TCs 
primarily form from easterly waves originating in Western Africa (Goldenberg and Shapiro, 1996). Thus, 
understanding the connection between a changing climate and TCs frequency and intensification trends in this 
region is particularly important.  

Previous studies have analyzed the role of various environmental factors in major hurricane activity in the 
MDR. Mann and Emanuel (2006) showed growing SST trends strongly correlated to TC counts in the MDR, 
unrelated to the Atlantic Multidecadal Oscillation (AMO). While Vecchi and Soden's 2007 work spoke about 
how wind shear is supposed to increase due to climate change, making it more difficult for hurricanes to form. 
Although previous studies of the correlations between SSTs and TC frequency and SST and deep convection 
have been conducted elsewhere, we have not found research on these topics within the MDR. Thus, the 
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objective of this study is to 
investigate the connections 
between recent SSTs (1982-2020), 
vertical wind shear (VWS) trends, 
and the possible linkages to recent 
observations in TC activity in the 
Caribbean, the surrounding region, 
and the MDR.  

2.  Materials and methods 

Climatological analyses of the 
study region were analyzed over 
71 years. The first SST dataset 
used in this study is the NOAA's 
Optimum Interpolated Sea-Surface 
Temperature (OISST). This is a 
0.25° High-Resolution Optimum 
Interpolation (OI) Sea Surface 
Temperature v2.1 dataset with a 
daily temporal resolution 
combined with the infrared 
satellite SST estimates in-situ 
observation data from buoys and 
ships (Huang et al., 2021. For the 
earlier period Pathfinder, infrared 
SST is used, and operational 
satellite SST estimates are used for 
daily updates. The second SST 
dataset used in this study is the 
ERSST v5, derived from the 
International Comprehensive 
Ocean-Atmosphere Dataset 
(ICOADS). It is a monthly 2°x2° 
horizontally gridded dataset that 
uses the NOAA Global Surface 
Temperature product to integrate 
ERSST data with land surface 
temperature from the Global 
Historical Climatology Network 
Monthly dataset combined surface 
temperature analyses (Huang et 
al., 2021). The NCEP/NCAR 
Reanalysis 1 dataset provided 
vertical wind shear data with 
monthly temporal and 2.5°x2.5° 
spatial resolution. Atlantic hurricane data used for this project are taken from the NOAA HURDAT2 Reanalysis 
project, last updated in November 2019. 

3.  Results and discussions 

There have been warming SSTs in the Caribbean, the surrounding region, and the MDR over the past 39 
years (1982-2020), with the most significant changes occurring over the past 25-27 years. These changes have 
implications for increased hurricane activity and intensity. SSTs are warmer at the end of the season, October 

Fig. 2  Monthly regional SST trends from 1982 to 2020 using NOAA 
OISST product: (a) SST temperatures during the LRS in the MDR, (b) 
SST in the LRS during the Caribbean and the surrounding region. 

Fig. 1  Spatial Map depicting trends from 1982 to 2020 during the Late 
Rainfall Season (LRS), indicating warming trends up to and exceeding 
0.4°C per decade in the Main Developing Region (MDR) (10°N-20°N, 
20°W-80°W), and the Caribbean and the Surrounding Region (5°N -
31°N, 100°W -55°W). 
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SSTs are warming over time (Figs. 2 and 3). The AWP increases in magnitude and intensity during the LRS, 
most prominently in the latter half of the study period at 0.51km2 per decade. This is important because of the 
oceanic-atmospheric interactions caused by changes to the AWP, where Atlantic TCs typically form and grow.  

VWS results show that annual averages are stable. There are slight decreasing trends (Fig. 4), but the subtle 
change does not seem to be a significant cause for changes in Atlantic TC activity. Analysis of long-term yearly 
and seasonal trends for SSTs and VWS suggests that warming SSTs is the primary cause of increased hurricane 
frequency and intensity. Hurricane intensity is highly correlated with sea-surface temperature, implying that 
future warming will lead to more frequent or intense storms, increasing the chances of TCs making landfall 
with increased destructive potential.  

Fig. 3  Annual SST trends and daily anomalies. (a,c) annual average SSTs during the LRS for the MDR and 
the Caribbean and the surrounding region, depicting current and global SST trends from 1982-2020 using 
the NOAA OISST and 1950-2020 ERSST dataset. (b,d) regional daily SST anomalies during the LRS for 
the MDR and the Caribbean and the surrounding region. The color bar is SST in degrees Celsius. 

Fig. 4  Left: Annual average of VWS during the LRS from 1982 to 2020 in the MDR, showing a decreasing 
trend at 0.56ms-1 per decade; Right: Annual average of VWS during the LRS from 1982 to 2020 in the 
Caribbean and the surrounding region, showing a decreasing trend at 0.16ms-1 per decade. 
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While August and September are peak hurricane season months, increasing frequency and intensity in 
October suggest we may need to consider October as a part of the peak hurricane season (Fig.5). Despite 
recently reported higher shears, the warmer SSTs could be a factor in the increasing number of October. 
Additionally, with the expansion of the AWP, SST warming trends in the Caribbean, the surrounding region, 
and the MDR and increasingly frequent and intense storms in the area, we may need to consider expanding the 
definition of the MDR.   

Future research is needed and will continue to analyze the impact of additional potential variables that 
influence TC activity, specifically ocean heat content, sea-level height, and mixed-layer depth. 
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Fig. 5  Categories 1&2 Atlantic Hurricane (HU) and Categories 3-5 Atlantic major hurricane (MH) counts 
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orange bars (MH) indicate high-intensity storm counts. Tables show the overall storm counts vs. average 
storm occurrence per year for that study period. 
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1. Introduction 

Every year, extreme precipitation and drought disrupt life, destroy infrastructure, and result in fatalities 
across the United States and the world. Skillful precipitation forecasts with a lead time of several weeks (i.e., 
subseasonal) can help stakeholders of societally relevant public sectors (e.g., water management, agriculture, 
and health) understand imminent threats and take protective actions to mitigate harm (Vitart et al. 2017, Pigeon 
et al. 2019). However, prediction skill of subseasonal precipitation from Earth system models remains poor 
(Fig. 1). Subseasonal prediction remains particularly challenging because the sources of predictability at such 
timescales are limited. Predictability stemming from atmospheric initial conditions is substantially reduced 
beyond approximately two weeks and the ocean generally does not offer added predictability until a trajectory 
reaches the seasonal timescale (Meehl et al. 2021).  

Recent studies have shown that 
deep learning models can produce 
subseasonal to multiyear forecasts 
with skill that exceeds current 
dynamical forecasting systems 
(Ham et al. 2019, He et al. 2020, 
Kim et al. 2021, Weyn et al. 2021). 
Deep learning is well suited for 
geoscience prediction problems 
because of its ability to extract 
patterns from large amounts of data 
and its ability to learn multivariate 
relationships. Our objective is to 
leverage deep learning approaches 
with observational and reanalysis 
products to improve already 
existing subseasonal reforecasts 
(Richter et al. 2022) created using 
the Community Earth System 
Model v2 (CESM2; Danabasoglu et 
al. 2020). Subseasonal forecasts that 
are further bias-corrected and 
skillful could be of significant 
societal value for agricultural 
productivity, water management, 
and transportation systems. 

2. Data and methodology/experimental design 

The 11-member ensemble CESM2 subseasonal reforecasts (Richter et al. 2022) were initialized weekly 
every Monday (1999-2019) and carried out following SubX protocol (Pegion et al. 2019). Weekly real time 
forecasts created using CESM2 (Richter et al. 2022) are being contributed to the multi-model mean ensemble 

Fig. 1 Adapted from Richter et al. (2022, under review).  DJF and JJA 
anomaly correlation coefficient (ACC) for CESM2 precipitation 
averaged over land (1999-2015). 
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used to issue the experimental NOAA weeks 3-4 outlooks as part of the SubX experiment. We focused on bias 
correction of global subseasonal temperature and precipitation forecasts produced using CESM2. Observational 
and reanalysis products used include the NOAA Climate Prediction Center (CPC) global daily gridded surface 
air temperature and global unified gauge-based analysis of daily precipitation, the NOAA Global Precipitation 
Climatology Project data (GPCP; Adler et al. 2003), and the ECMWF Reanalysis 5th Generation data (ERA5; 
Hersbach et al. 2020).  

Preliminary tests conducted involved the training of numerous deep learning model architectures, including 
densely connected neural networks, long short-term memory networks, and convolutional neural networks. The 
deep learning model architecture, named U-Net (Ronneberger et al. 2015), resulted in comparatively higher 
skill when predicting subseasonal precipitation prediction errors. The U-Net involves the use of numerous 
convolutional and max pooling layers to downsample and upsample the input data as it is propagated through 
the network’s layers and weights (Fig. 2). The U-Net also contains numerous cross connections across network 
layers, which helps reduce vanishing gradient issues during training, where the measured loss may not be 
propagated fully throughout the network’s deep layers. Evaluation of model skill in bias correcting precipitation 
forecasts was assessed using anomaly correlation coefficient, root mean squared error, and ranked probability 
skill score.   

The open-source Python-language software used to develop and train the deep learning models is PyTorch 
(https://pytorch.org/) and ongoing work is contained in an accessible Github repository 
(https://github.com/mariajmolina/ML-for-S2S). PyTorch can be run on both CPU and GPU resources, but 
preference is for running on GPU resources given the substantial speed-up in training. The PyTorch Application 
Programming Interface (API) contains the capability to scale deep learning model training across numerous 
GPUs, based on the number of GPUs allocated to a job when launched.  

The numerical approach of this project involves the use of already existing CESM2 subseasonal reforecasts 
(11-ensemble members; 1999-2019) and observational products. The data products were preprocessed into lead 
time bias corrected anomalies for deep learning model training and were made available in NetCDF format. 
The files were used to train the U-Net to predict CESM2 subseasonal reforecast errors for temperature and 
precipitation (weeks 3, 4, 5, and 6), which were then used to bias correct CESM2 subseasonal forecasts of 
precipitation and temperature. CESM2 subseasonal forecasts and deep learning bias corrected fields were output 
using SubX protocol (Pegion et al. 2019) on a nominal 1-degree global grid and evaluated with daily temporal 
resolution. Years 1999 through 2015 were used for training and validation, and the years 2016 through 2019 
were used for final evaluation (i.e., test set).  
  

Fig. 2  U-Net architecture trained to learn CESM2 subseasonal precipitation prediction errors. 
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3.  Results 

Using the U-Net architecture above (Fig. 2), tests were performed using various fields as input (i.e., 
predictors), including CESM2 precipitation anomaly subseasonal predictions (varying the number of preceding 
weeks as input) and the respective weekly climatology. The U-Net was trained to output (i.e., predictand) the 
errors associated with the CESM2 predicted precipitation and temperature global anomalies, with the error 
computed relative to an observational field that contained data over land and ocean points (e.g., NOAA GPCP 
for precipitation and ERA5 for 2-meter temperature). Training was conducted using all the individual CESM2 
ensemble members (not the ensemble mean) to take advantage of the larger sample size that such an approach 
provides. This project is ongoing, but here we provide some very preliminary results. 

 We found that the U-Net was able to predict error globally with skill across numerous lead times (weeks 
3-6). For week 3 (years 2016 through 2019), the anomaly correlation coefficient (ACC) for prediction of 
temperature anomaly errors over land were approximately 0.4 (cosine/area weighted), whether stratifying by 
season (DJF, MAM, JJA, and SON) or considering annual skill. Similarly, for week 3 prediction of precipitation 
anomaly errors over land, ACC skill was approximately 0.3, whether stratifying by season (DJF (Fig. 3), MAM, 
JJA, and SON) or considering annual 
skill. While the U-Net was able to 
predict anomaly errors with skill across 
specific localized areas, adding the U-
Net predicted errors back to the original 
CESM2 prediction (i.e., bias 
correction) did not result in substantial 
improvement in precipitation or 
temperature prediction skill. We 
hypothesize that multiple U-Net models 
should be trained and used to bias 
correct global subseasonal prediction 
errors (for temperature and 
precipitation separately), as such an 
approach would enable the U-Net to 
learn finer-scale regional patterns that 
could provide more skill, rather than the 
current global approach used.  

4. Conclusions 
 Future work will involve an extensive hyperparameter grid search to search for more optimal machine learning 

hyperparameters that may help the network converge and learn a more optimal solution. We will also employ the 
use of transfer learning, which proved very useful in Ham et al. (2019) for multi-year deep learning ENSO prediction, 
where we will first train the U-Net using all the individual ensemble members and upon loss plateauing during 
training (when loss is minimized), we will subsequently transfer learn with just one ensemble member, so that the 
neural network’s weights can adjust to learn the single ensemble member’s prediction errors. Future work will also 
involve the development of a large ensemble of deep learning models for an ensemble of bias-corrected forecasts, 
which will also allow us to explore sensitivity to variations in network hyperparameter settings, such as weight 
initializations. Finally, and importantly, we will also train using specific seasons and smaller spatial regions as 
opposed to the full yearly and global scale, allowing the network to learn localized patterns that are specific to smaller 
climate regions and seasons. These approaches will entail considerable computational usage (on GPUs), which will 
take place during an Accelerated Scientific Discovery period on NCAR’s new supercomputer named Derecho (this 
coming Fall 2022). 
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1. Introduction 

Forecasting the Week 3/4 period presents many challenges, resulting in a need for improvements to forecast 
skill. At this time spanned from initial conditions, numerical models struggle to present skillful forecasts of 
temperature, precipitation, and associated extremes. Nor does this period fully extend into the boundary-
dependent climate time scale. One approach to improve Week 3-4 forecasts is to utilize the better predicted, 
large-scale circulation to make forecasts of temperature and precipitation anomalies, using the association 
between the preferred patterns of geopotential height (hereafter regimes) and surface weather obtained from 
reanalysis products. The functionality of regime classification has been well documented (Amini and Straus 
2018, Riddle et al. 2013, Dawson and Palmer 2015). This study explores the utility of k-means cluster analysis 
of geopotential heights to identify regimes and using the forecasted regimes to make skillful predictions of 
temperature and precipitation in the Week 3/4 period. 

2. Data and methods 

ERA-Interim provides data for 500-hPa geopotential heights (z500) for 1979/80 to 2018/19 winters. To 
match the 2-week period of Week 3/4 forecasts, we use the 14-day running mean anomalies with end dates 
from November 23rd to March 23rd. We consider a domain over North America spanning the central Pacific to 
the western Atlantic (150°-330°E, 20°-80°N), which allows an analysis of common patterns of height 
anomalies across the region (teleconnections). The dimensionality of the data is reduced by retaining the leading 
12 principal components (PCs) from empirical orthogonal function (EOF) analysis of this data, which explains 
about 85% of the variance in z500 anomalies. These PCs are used as inputs to the k-means clustering algorithm. 

The goal of this k-means clustering method is to separate the clusters such that the ratio of the variance, an 
Eulerian distance metric, between clusters is maximized and the intracluster variance is minimized (Straus et 
al. 2007). Using Monte-Carlo PC data sets in which each synthetic PC retains its auto-covariance structure but 
is statistically independent of all other PCs, we determine that any number of clusters greater than 3 is 
statistically significant. Through sensitivity testing with hindcast skill, 6 clusters or k=6 were chosen as the 
number of clusters to consider. 

With each 14-day period from each forecast assigned a cluster, we composite several weather variables, 
such as temperature, precipitation totals, and storm tracks, for each of the six clusters, where the association of 
each cluster with a weather variable is based on reanalyses. The composites we create are frequency composites. 
We first categorize a given variable’s observed, 14-day anomaly as below, near, or above normal if it falls 
within the bottom, middle, or top tercile of its climatological distribution, respectively. Here, the tercile 
thresholds are defined by the 33rd and 67th percentiles and have been harmonically smoothed. Next, we find the 
percentage of occurrence of each of the three categories at each grid point for each cluster, resulting in three, 
cluster specific, frequency maps. Data from CPC’s Global Unified Gauge-Base Precipitation reanalysis (Chen 
et al. 2008), CPC’s 2-m Daily reanalysis (Fan and van den Dool 2008), and ERA-Interim reanalysis (Dee et al. 
2011), provide the 14-day running periods synchronous with the cluster periods.  

Correspondence to: Greg Jennrich, ERT, Inc. and Climate Prediction Center, NOAA/NWS/NCEP, 5830 University 
Research Court, College Park, MD 20740;  E-mail: gregory.jennrich@noaa.gov 
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Fig. 2  Cluster composites of above normal temperature frequencies. For each 14-day period assigned a 
specific cluster, it is determined how frequently each grid point was observed to fall into the above 
normal temperature tercile. Climatological normal would be near 33.3 %. 
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Hindcasts for z500 from the GEFSv12 and 
ECMWF extended forecasts allow for an 
investigation into the skill of a cluster-based 
forecast. We consider 252 winter (Nov 15- Feb 
15) weekly initialization dates from 2000/01 to 
2019/20 and verify the Week 3/4 forecast period 
(days +15 to +28). Forecasts are constructed by 
first assigning individual ensemble members to 
a cluster. The GEFSv12 and ECMWF provide 
11 ensemble members each to assign. A final 
forecast is constructed from weighting the 
cluster-based composites by the percentage of 
ensemble members assigned to each cluster. 
Skill is measured by a two-category Heidke skill 
score (HSS) for the CONUS and Alaska, where 
the forecast corresponds to the category with the 
maximum, cluster-weighted probability. Thus, 
the above and below normal forecast points are 
compared with the corresponding two-category 
observations. Near normal forecast grid boxes 
are ignored for scoring due to the relatively low 
occurrence in the forecasts. The resulting three-
category HSS would be significantly reduced. 
The aforementioned CPC datasets are used to 
verify the forecasts. 

3. Results 

The k-means clustering provides the 6 most common height patterns (clusters) seen in the North American 
cold-season. Figure 1 reveals the height anomalies associated with each cluster. While the clusters are numbered 
from 1 to 6, there is no significance in their order. Each of the clusters is comprised of various trough/ridge 
patterns, some related to common teleconnections. For example, a strong positive North Atlantic Oscillation 
(+NAO) is evident in Cluster 2, while the opposite signal (-NAO) stands out in cluster 4. The Pacific North 

Fig. 1 500 hPa geopotential height anomalies (in meters) for 
the 6 North American Clusters. K-means cluster analysis 
provides the cluster assignments used to calculate these 
composites. There is no significance in the ordering of the 
clusters. 
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Fig. 3  Same as in Fig. 2, but for above normal precipitation. 

American (PNA) pattern is also connected to anomalous wintertime weather (Wallace and Gutzler 1981; Baxter 
and Nigam 2015) and is loosely found in all clusters, but most apparent as a negative PNA signal in cluster 3. 
Additionally, each of the clusters has an opposing cluster, with near opposite height patterns. These sets include: 
Clusters 1 and 6, Clusters 2 and 5, and Clusters 3 and 4. 

With the clusters defined, the next step is to investigate anomalous 2-m temperature and precipitation for 
each of the clusters. Figure 2 shows the frequency of occurrence of above normal temperatures for each of the 
clusters. We would expect a random sample of periods to have each tercile category occur around 33% of the 
time. Where frequencies are greater than 33%, there are increased probabilities of above normal temperatures. 
While percentages less than 33% could result in greater probabilities for the below or near normal terciles, we 
can assume through a similar figure for below normal temperatures (not shown) that its often an indicator for 
an increased frequency of below normal temperatures. Each of the 6 clusters have distinct temperature tercile 
occurrences. For example, cluster 2 signals a strong cold air outbreak over much of the CONUS. In contrast, 
Clusters 3 and 6 have split, east west terciles. 

The same analysis is performed for precipitation in Figure 3. Although the signals are noisier, there are 
several areas of increased frequencies of above normal precipitation. For example, Cluster 3 features a swath 
of increased frequencies from the southern Great Plains to the Great Lakes, while the Pacific Northwest sees 
increased frequencies during Clusters 1 and 5. Cluster 6 suggests suppressed precipitation across much of the 
Lower 48 of the United States. Each of the clusters have well-defined temperature and precipitation anomalies 
that give insight into their associated surface conditions. 

Hindcasts from the GEFS and ECMWF allow us to compare skill between forecasts based on the cluster 
framework and raw forecasts from the dynamical models. Table 1 displays the temperature and precipitation 
HSS for the cluster and model forecasts (rows 1 and 2), as well as possible forecasts of opportunity (rows 3 and 
4). For all of the hindcasts, cluster forecasts are skillful, but not quite to the level of the dynamical models. We 
acknowledge that this framework may not be applicable to every week 3/4 forecast, thus we explore possible 
forecasts of opportunity in the bottom two rows. We define forecasts of opportunity as instances when 75% or 
more of the ensemble members are assigned to two clusters or less, which would suggest that there is more 
confidence in the utility of the cluster framework. This occurred in just under 25% of the hindcasts. These 
forecasts were ~8 and 10 HSS points better than the entire hindcast dataset for temperature and precipitation, 
respectively. As a fair comparison, the same initialization dates that were identified as forecasts of opportunity 
are scored for the dynamical models, where skill scores increased as well. Since we know the cluster assignment 
distribution beforehand, this method to identify forecasts of opportunity shows some promise. 



 

 

  

 
 

  
 

  

 
  

  

 
 

 
 

  
 

 

 

 

 

Forecast Type Forecast Category Forecast Count  Temperature  Precipitation 

  Cluster: Maximum Category 
 Above/Near/Below, 

 Near=Ignore 
252 18.9 7.9 

 GEFS/ECMWF: Raw Anomaly  Above/Below  252  22.9  10.3 
Cluster: Top 2 Clusters Assign-

  ments sum ≥75% 
 Above/Near/Below, 

 Near=Ignore 
50   27.0  17.6 

GEFS/ECMWF: Raw Anomaly 
 (Same Forecasts as Row 3) 

Above/Below   50  28.2  15.6 
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Table 1  Heidke Skill Scores based on 2-category observations for GEFSv12/ECMWF winter hindcasts from 
2000-2019, scored over CONUS/AK. For cluster forecasts, near normal forecast points are ignored and not 
scored. 

Heidke Skill Scores 

4. Discussion 

This investigation sheds light on the most frequent circulation regimes during the North American winter. 
These regimes are often similar to combinations of teleconnections such as the NAO and PNA.  The 6 clusters 
and their associated composites present a useful tool for forecasters by providing detailed probabilistic maps of 
above, near, or below normal temperature and precipitation anomalies based on the Week 3/4 height forecast. 
Assigned clusters from each ensemble member can also be used to weigh and formulate cluster-based 
temperature and precipitation forecasts. 

While not scoring as high as the dynamical model forecasts during the hindcast period, the cluster forecasts 
provide skillful insight (see Table 1) to the temperature and precipitation Week 3/4 forecast from just the z500 
field. There seems to be a few things to consider from this hindcast assessment. First, temperature forecasts 
rarely have near normal classification (not shown). This is in part due to the robust anomalies seen in Figures 
1-3. Above and below normal terciles are much more common across North America than the near normal 
terciles. The lean towards end terciles is likely attributed to the anomalous nature of the cluster analysis. Clusters, 
by nature, are the most common anomaly regimes. Since surface variables are correlated, we should expect our 
cluster composites to be quite anomalous themselves. 

Second, there is no established way to utilize the ensemble members to make a final forecast. The weighting 
of clusters from cluster assignments is a basic, yet useful, way to calculate a forecast, but there are other ways 
to achieve this. If some ensemble members are not closely correlated with any of the clusters, it may be best to 
simply throw them out, so that we do not force a cluster classification. Also, we treat all members as equal 
contributions. Perhaps, weighting members by the correlation with clusters would result in a better forecast.  

Finally, there are a few more items that we plan to investigate. While we have a skill measurement based 
on hindcasts, a realtime measurement will be required. This will need to include more models to increase the 
ensemble members to consider. Additionally, a comparison of different methods for making forecasts, described 
above, would need a skill assessment in realtime. While the focus has been on temperature and precipitation, 
other variables should be considered. For example, an investigation into storm tracks has begun and generally 
corresponds with the clustering by height fields. Likewise, extremes for any variable can undergo the same 
analysis. Extreme cold and precipitation (15th and 85th percentiles, respectively) forecasts result in similar maps 
as the tercile temperature and precipitation forecasts. Lastly, the expansion outside of DJF to account for all 
seasons should be performed. In all, this work represents an important first step in addressing the utility of 
regime analysis for Week 3/4 forecasts. 
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Meta-heuristic Ant Colony Optimization Technique to Forecast the Amount of 
Summer Monsoon Rainfall: Skill Comparison with Markov Chain Model  

Sayantika Mukherjee 
Amity University, Kolkata, India 

Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting 
in a country like India where the national economy is mostly based on regional agriculture. In the present study 
the meta-heuristic method of ant colony optimization (ACO) technique is used to forecast the amount of summer 
monsoon rainfall over an urban station Kolkata (Chaudhuri et al. 2014). ACO technique takes inspiration from 
the foraging behavior of some ant species. The ants deposit pheromone on the ground in order to mark a 
favorable path that should be followed by other members of the colony. A range of rainfall amount replicating 
the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of 
rainfall during summer monsoon 
season (June – September) is 
observed to be within the range of 
7.5 to 35 mm, the Range – 4 
category set by the India 
Meteorological Department (IMD) 
during 1998 to 2007. The 
transitional probabilities of rainfall 
for consecutive two days during 
the summer monsoon season are 
computed using ACO technique 
and compared with Markov Chain 
Model (MCM) (Fig. 1). The result 
reveals that the accuracy in 
forecasting the amount of rainfall 
for two successive days using 
ACO technique and MCM are 95% 
and 83% respectively. The 
accuracy of the forecast is 
validated with the IMD 
observations from 2008 and 2012.  
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Fig. 1  Transitional probabilities for occurrences of rainfall for successive 
two days during monsoon season using ant colony optimization 
technique and statistical Markov chain model for the period from 1998 
to 2007 over Kolkata. 
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ABSTRACT 

 This study proposes a hybrid approach to improving subseasonal prediction skills by bridging a 
conventional statistical model and a dynamical ensemble forecast system. Based on the perfect prognosis 
method, the phase of the Arctic Oscillation (AO) from the European Centre for Medium- range Weather 
Forecasts ensemble forecast system is used as a predictor in a composite based statistical model to predict the 
wintertime surface air temperature in the Northern Hemisphere. The hybrid model, which employs AO phases 
predicted by the dynamical model for weeks 1–4, generally outperforms the conventional statistical model for 
lead times of weeks 2–6 (Fig. 1). The improved skill score is due to the high accuracy of the AO forecast from 
the dynamical model and the strong lagged connection between the AO and temperature. This study thus lays 
the groundwork for the potential use of combining climate variability, statistical relation, and dynamical 
forecasting.  

This study has been published in Geophysical Research Letters in 2021.  
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Fig. 1 Area-averaged DJF Heidke Skill Score (HSS) over (a) Northern Hemisphere, (b) Eurasia, and (c) North 
America from lead-time weeks 1-6. The dashed and solid black lines represent the two conventional models 
AO7918 and AO9817, respectively. The colored lines represent the hybrid models: H1 (red), H2 (blue), H3 
(green), and H4 (purple). 
∗ AO7918 and AO9817 are conventional statistical phase models constructed using the entire DJF between 

1979/80 and 2017/18 and between 1998/99 and 2016/17, respectively.  H1-H4 are different versions of 
hybrid dynamical-statistical model built with the dynamically forecasted AO phase for forecast weeks 
1–4.   
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U.S. Climatological Standard Normals: A Utilitarian Workhorse  
Michael A. Palecki 

NOAA National Centers for Environmental Information, Asheville, NC 

1. Overview 

The concept of the normal as a climatological reference has been around since the 19th Century, and was 
adopted into the terminology of the World Meteorological Organization (WMO) from its very beginning in 
1950, and even before by its predecessor the International Meteorological Organization (IMO). The first normal 
period adopted worldwide was 1901-1930 at a meeting of the IMO in 1935. A normal dataset consists of 
averages and other statistics derived from a particular range of years, so as to provide a uniform context for 
comparing conditions across time and geography. The United States started updating normals every ten years 
in the mid-1950s, but the WMO required it of its member nations only every thirty years, most recently for 
1931-1960, 1961-1990, and 1991-2020. In 2015, the WMO changed its requirements to recommend that nations 
update normals every ten years in light of the speed with which the underlying global climate was changing. 

Besides being for a specific period, normals are different from averages in how they are calculated (Arguez 
et al. 2012). Specific procedures have been recommended in the WMO Guidelines on the Calculation of Climate 
Normals,  WMO-No. 1203 (WMO 2017). In the United States, official climatological standard normals for 
observation stations are calculated by the NOAA National Centers for Environmental Information (NCEI) and 
provided to the National Weather Service (NWS) and all other users in the public and private sector so they are 
the same for all. NCEI procedures correct temperature values for non-climatic influences using a process of 
pairwise homogenization (Menne and Williams 2009), and daily temperature normals are smoothed by applying 
a constrained harmonic fit to the values (Arguez and Applequist 2013).  Precipitation values are improved by 
filling missing values from surrounding stations (Durre et al. 2013).  At the end of these processes, the 
accumulated daily normals match precisely to monthly normals. 

Normals are designed to perform two main tasks: 1) act as a uniform baseline for understanding how today’s 
weather compares to the weather of a uniform reference period, and 2) provide a set of averages and statistics 
that can be used to make decisions for actions/activities that are impacted by weather but are occurring at times 
beyond the reach of reliable dynamical weather forecasts. The first is always done with the standard 30-year 
period, while the second can utilize the conventional normals or other baseline periods, such as 2006-2020 15-
year normals that are also provided by NCEI. In total more than 500 variables are calculated over annual, 
seasonal, monthly, daily, and hourly time intervals, including averages, maxima and minima, percentiles, 
threshold exceedance counts, growing season statistics, and others. 

2. Highlights 
The main release of the 2020 U.S. Climate Normals took place at the beginning of May 2021, and all U.S. 

normals can be found through a single newly designed web site located at: 
https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals. A variety of access methods are 
available, from downloading the entire dataset to extracting temperature and precipitation normals for a single 
station of interest (Fig. 1).  

Climate normals are available for stations at more than 15000 locations for precipitation and more than 
7000 locations for temperature. Most of these data are collected by citizen scientists in the NWS Cooperative 
Observer Program (COOP) Network or the Community Collaborative Rain, Hail and Snow (CoCoRaHS) 
Network. Despite this coverage, users require normals for every location in the contiguous U.S. While this is 
not possible with observation stations, sets of gridded normals have been constructed at a 4 km grid scale (1/24 
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by 1/24 degree latitude / longitude) due to the development at NCEI of monthly grids calculated using 
climatologically guided interpolation techniques (Vose et al. 2014). Maps are available for users (Fig. 2), as 
well as the data values for each monthly climate normal grid.   

One of the highlights of the availability of the new normals was the opportunity to look at how conventional 
normals have changed since the last cycle. Subtracting 1981-2010 normals from 1991-2020 yields patterns of 
substantial changes that are not uniform (Fig. 3).   

Conditions have become generally wetter in the central and east U.S., and drier in the west and southwest 
U.S., while the U.S. is warmer everywhere except in the north-central U.S. However, changes do vary by month, 
with patterns shifting geographically through the months. April temperature normals are cooler in a wide swath  

Fig. 1  Conventional monthly normals for Asheville Regional Airport., NC. 

Fig. 2  Annual gridded climate normals for the contiguous U.S. 
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Fig. 3  Change in climate normals from 1981-2010 to 1991-2020. 

Fig. 4  The fingerprints of human-induced climate change have emerged since the 1970s. 
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of the north-central U.S., indicating the impacts of atmospheric circulation and snow cover differences between 
the 1980s and 2010s, since both normals have the years 1991-2010 in common. In the southeast U.S., October 
temperatures have warmed, November temperatures cooled, and December temperatures warmed, indicating a 
change in the shape of the seasonal cycle in that region. 

3.  Discussion 

While the use of 2020 U.S. Climate Normals is required by NOAA NWS and many other government and 
private sector entities, the normals concept should be adopted more broadly. It is very important to use the same 
period-of-record and calculation approaches when trying to compare anomalies from different datasets or 
models. Models are especially flexible in the selection of a baseline or normals period, but if comparing between 
models and observations, or two or more different models, it is best practice to base those comparisons on a 
time period drawn from when they overlap. This time period must also link to the application. If trying to 
understand responses to anomalies or extremes in the current climate, that period should be as close to the 
present as is feasible. However, there has been consideration given to the use of older or longer baseline periods 
for examining climate change over time, to avoid the possibility that the scale of change will be obscured by 
using a shifting baseline over the decades (Hulme 2020). WMO recognizes 1961-1990 as a best period to use 
when examining long term climate change (WMO 2017), while NCEI climate monitoring products use a 
centennial period between 1901-2000, and still other periods have been used by the Intergovernmental Panel 
on Climate Change in their reports over time. However, the power of using both by comparing 30-year normals 
to a 1901-2000 baseline can be seen in Figure 4, which uses a series of gridded normals to illustrate that climate 
change formed coherent trajectories after the mid-1900s that continue into the present. Normals are a utilitarian 
workhorse as defined, and can also be a useful concept applied in a variety of circumstances beyond their basic 
origins.   
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1. Introduction 
Sea surface temperature (SST) is one of most important indicators of Earth’s climate because of its influence 

on the heat, momentum, and freshwater exchanges at the ocean-atmosphere interface on weather and climate 
time scales. It is an essential variable for weather and climate forecasting, forecast verification, and monitoring. 
SST analysis, which provides smooth SST data with global coverage, is often used at operational agencies to 
monitor the state of climate variability.  

Several operational centers and research groups have developed and released real-time SST products. The 
SST analyses are created by applying interpolation and statistical techniques (e.g., observational/background 
error correlation scales, input data bias correction) on SST observations (i.e., satellite based, in situ platforms, 
ship, autonomous vehicles etc.) (O’Carroll et al. 2019). Uncertainty among SST analyses exists because of 
different observation data sources, sampling, and analysis techniques. The Climate Prediction Center (CPC) 
currently utilizes multiple SST data sets to monitor climate variability and outlooks on time scales ranging from 
weeks to seasons. On occasion, there are large differences among SST products in areas where SST variations 
have important influence on climate variability, such as the ENSO region of the central-eastern equatorial 
Pacific Ocean, hurricane main development area, etc. This creates challenges for interpreting climate 
monitoring and prediction products that depend on the sign and amplitude of SST anomalies. Our objectives 
are to help users understand consistency and discrepancy among SST products used at CPC, and to inform users 
about the characteristics of these data sets, which informs their use in applications.    

In addition to the importance to climate monitoring, SST analysis is widely used as boundary conditions in 
the weather and climate forecast systems and provides a constraint on SST evolution in ocean data assimilation 
systems. For ocean reanalysis, the ocean models are forced by surface heat fluxes from atmospheric reanalysis, 
which often have biases, leading to drifts in model SSTs. A strong relaxation of model SST to an SST analysis 
is applied as a flux correction, so that the evolution of model SST stays close to the evolution of specified SST 
analysis. This is also referred as SST nudging, which is widely used in operation ocean reanalysis systems, such 
as NCEP Global Ocean Data Assimilation System (GODAS) (Behringer and Xue 2004), Climate Forecast 
System Reanalysis (CFSR) (Saha et al. 2010), ECMWF Ocean Reanalysis System 4 (ORAS4) (Balmaseda et 
al. 2013) and ORAS5 (Zuo et al. 2019). Previous studies reported that the fidelity of ECMWF ocean reanalysis 
was sensitive to the SST nudging sources in the data assimilation systems (Balmaseda et al. 2013; Zuo et al. 
2019). NCEP CFSR ocean reanalysis switched its SST nudging source from NOAA daily OISSTv2 to a new 
NOAA/EMC analysis called “Near Surface Sea Surface Temperature (NSST)” in early 2020. Moreover, the 
CFSR ocean reanalysis is used to provide oceanic initial conditions for NCEP Climate Forecast System version 
2 (CFSv2) (Saha et al. 2014).  How the CFSR and CFSv2 respond to the change in the SST nudging source has 
not been investigated yet. The other objective of this study is to explore the potential impacts of SST nudging 
source replacement on CFSR and CFSv2 monthly forecasts. 

2.  Data sets and methods 
CPC currently employs five SST analyses for climate monitoring and forecast verification. It includes: 

NOAA weekly Optimum Interpolation (OI) v2.0 SST or NCEP OI SST (hereafter referred to as OISST, 
Reynolds et al. 2002). 
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● NOAA Extended Reconstructed SST version 5 (ERSSTv5, Huang et al. 2017). 
● NOAA ¼ Daily OISSTv2.1 (hereafter referred to as OISSTv2.1, Reynolds et al. 2007; Huang et 

al. 2020). 
● NCEP Near Surface SST (NSST) (NWS, 2020). 
● U.K. Met Office Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system 

(Donlon et al. 2012 a, b). 

 These SST analyses depend on different observational input and reanalysis techniques, and therefore, meet 
different requirements. OISST, OISSTv2.1, NSST and OSTIA use both in situ and satellite observations. These 
data sets rely on different satellite streams and have different capabilities of resolving temporal and spatial 
variations. OISST provides global weekly data on 1°x1° grid. OISSTv2.1, NSST and OSTIA were specifically 
designed to provide accurate high spatial and temporal resolution SST estimates, so that they can be utilized in 
operational applications such as real-time analysis, and/or boundary conditions in numerical weather/climate 
forecasting models. It is noteworthy that OISSTv2.1 shares the same data value of daily OISSTv2.0 prior 
January 2016. ERSSTv5 only uses in-situ observations, which is relatively sparse compared to the satellite 
coverage, but this trade-off allows for a much longer record than SST datasets that use satellite observations. 
This dataset is specifically designed to be suitable for long-term monitoring of global and basin-wide climate 
variability. For example, NOAA uses ERSSTv5 to define ENSO conditions going back to 1950 because this 
data set is more homogeneous over time and allows more consistent comparisons among a larger number of 
historical ENSO events.  

SST analyses can also be classified based on the depth, for which the SST analysis representatives of OISST, 
OISSTv2.1 and ERSSTv5 represent “Bulk SST” (roughly 0.5m in depth), while NSST and OSTIA are 
representatives of the foundation temperature (i.e., the temperature is free or nearly free of diurnal cycle at 
roughly 10 m in depth). The characteristics of the five SST analyses are summarized in Table 1. 

Except for NSST, all the other SST anomalies are computed as departures from their own climatology 
reference period 1991-2020. NSST is only available after 2015, which is too short to define a 30-year 
climatology, so its anomalies are defined as departures from the OISSTv2.1 climatology. Maps of CPC real-
time daily, weekly, and monthly SST analyses are available at 
https://origin.cpc.ncep.noaa.gov/products/GODAS/multiSST_body.html.  

In this study, all the SST products were gridded on a common spatial resolution as OISST (regular 1°x1° 
grid). The uncertainty/consistency among the SST analyses is quantified by taking the difference, root-mean-
square difference (RMSD), and the correlation between an individual SST product and a “reference product”. 
In this study, OISSTv2.1 serves as the benchmark analysis. Hereafter, bias refers to the difference between the 

Dataset Spatial 
resolution 

Temporal 
resolution Time range Type of 

SST Usage examples 

NCEP OISST, 
(OISST) 

Global  
1o x 1o Weekly Nov 1982 -

present Bulk SST 
CPC operational products 
(weekly ENSO update, 
Ocean briefing, etc.) 

NOAA ERSSTv5 
(ERSST) 

Global  
2o x 2o Monthly 1854 - present Bulk SST ENSO Diagnostic Discussion 

NOAA Daily 
OISSTv2.1 
(OISSTv2.1) 

Global 
0.25o x 
0.25o 

Daily 

Sep 1981-present 
(1981 - 2015 is 
identical with 
Daily OISSTv2) 

Bulk SST 

CFSv2 forecast validation; 
SST nudging source for 
CFSR ocean reanalysis prior 
February 2020 

NCEP NSST 
(NSST) 

0.083o 
0.083o 

x Daily July 2015 - 
present 

Foundation 
SST 

SST nudging source for 
CFSR ocean reanalysis since 
February 2020 

Met Office 
OSTIA 
(OSTIA) 

0.05o 
x0.05o Daily 1985 - present Foundation 

SST EMC model validation 

Table 1  SST product comparison summary 
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various individual SST analyses and OISSTv2.1. For the SST data set with daily updates (OISSTv2.1, NSST 
and OSTIA), weekly data is derived from the weekly average centered on Wednesday, the same timestamp as 
the weekly OISST. Monthly data is the average of daily data over a month. For OISST, which has a native 
resolution of weekly averages, the monthly data is derived by a linear interpolation of the weekly output to the 
daily field and then averaging the daily values over the month.  

We also assessed the fidelity of SST products by validating against the in-situ TAO moored buoy data from 
January 2016 to September 2021 (McPhaden et al. 1998). ERSST was excluded from this comparison of weekly 
data because it is only available in monthly resolution. All the SST analyses are interpolated onto TAO’s grid 
and were sampled identically in time as the buoy data. For example, when the buoy data were not available at 
a specific period, SST analysis data for the same period was also set as missing values.  

We also assess the impact of the recent SST nudging source replacement on CFSR ocean reanalysis and 
CFSv2 forecasts. For CFSR, SST anomalies are departures from its 1991-2020 monthly average. For CFSv2 
forecasts, SST ensemble anomaly forecasts are downloaded from IRI Data Library (Kirtman et al. 2014, 
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/).   
3.  Results 

3.1 Uncertainty among SST 
analyses 

ENSO is the most dominant 
mode of interannual coupled 
atmosphere-ocean variability. At 
NOAA, the Niño3.4 anomaly (SST 
anomaly average in [170°-120°W, 
5°S-5°N]) is one of the most 
important indicators to monitor the 
occurrence and evolution of 
ENSO. Figure 1a compares the 
time series of weekly Niño3.4 from 
various SST analyses. It shows that 
uncertainty among the four SST 
analyses varies with time. The 
most striking feature is that OISST 
(red line) exhibits pronounced 
high-frequency fluctuations 
superimposed on ENSO 
timescales. Sometimes the 
differences between OISST and 
other datasets are greater than 
0.5°C. For example, Niño3.4 was 
near zero in OISSTv2.0 on 
September 29, 2021 and then 
dropped to -0.6°C on October 6, 
2021. Although OISSTv2.1, 
OSTIA and NSST are not identical 
with each other, they were all 
consistently below -0.5°C 
(threshold value to define La Niña) 
in these two weeks. CPC has used 
the weekly OISST for the official 
weekly ENSO monitoring 

Fig. 1 (a) Time series of weekly Niño3.4 from various SST analysis 
products.  (b)- (e) Root-mean-square (RMS) error of weekly SST for 
each SST analysis against the TAO/TRITON data in 2016-2021. Red 
texts represent basin average RMS and the color at TAO location 
indicates the amplitude of RMS error. Unit in °C. 
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products since the early 2000s. 
However, once the questionable 
fluctuations in OISST became 
evident the CPC ENSO team 
started to use OISSTv2.1 for 
weekly ENSO monitoring after 
October 11, 2021. This 
demonstrates the importance of 
knowing which SST analysis is 
closer to the observations. Figure 1 
b-e shows the root-mean-square 
error (RMSE) of individual SST 
analysis against TAO moored 
buoy measurements. OISST has 
the largest basin average RMSE. In 
particular, RMSE of OISST is 
generally greater than 0.3°C in the 
eastern Pacific (east of 155°W). 
OSTIA and OISSTv2.1 have the 
smallest RMSE. The analysis 
suggests that weekly OISST has 
some issues in capturing weekly 
SST variation in the key regions of 
ENSO development.  

For regions outside the tropical 
Pacific Ocean, the moored buoy 
data is very limited. To assess the 
uncertainty among SST products, 
the temporal evolution of global 
mean difference between 
individual SST analysis and 
OISSTv2.1 (Fig. 2a) was 
examined. Both ERSSTv5 and 
OISST global average SST are 
persistently warmer than 
OISSTv2.1 since 1982. The 
difference between OSTIA and 
OISSTv2.1 is the smallest among 
the SST analyses. We also 
compared the climatology 
differences. The results showed 
that OISST and ERSSTv5 are 
significantly warmer than 
OISSTv2.1 near the ITCZ and high 
latitudes of the southern 
hemisphere, while the difference 
between OSTIA and OISSTv2.1 is 
not statistically significant in most regions (not shown).  

Spatial root-mean-square difference (RMSD) is plotted in Fig. 2b. ERSSTv5 has the largest global averaged 
RMSD from OISSTv2.1 (~ 0.5°C) and the difference remained stable in the last forty years. OSTIA has the 
smallest RMSD from OISSTv2.1 and RMSD drops from 0.3°C to 0.2°C after 2017.  

Fig. 2  Time series of (upper panel) global SST and (bottom panel) global 
root-mean-square difference between OISSTv2.1 and other SST data 
sets.  Unit in °C. Nine-month running mean is used to filter the time 
series. 

Fig. 3   Left panels: Monthly SST difference between NSST and OISST 
v2.1 (NSST minus OISST v2.1) at different months of 2021. Right 
panels are the same as left panels except for that between OSTIA and 
OISSTv2.1. Unit in °C.  
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3.2 Impact of replacing SST nudging source on CFSR and CFSv2 forecasts 

NSST has much shorter temporal coverage compared with other SST datasets, and it has been updated three 
times since the operational implementation in July 2017. These changes from the updates prohibit the use of 
NSST as a climate monitoring resource because such a dataset requires consistency over the historical record. 
Otherwise, it is uncertain whether a shift reflects a physical change or is due to a change in how the data was 
gathered and processed.  The latest version was implemented in November 2019 and is currently used as the 
SST nudging source for the CFSR, NOAA’s current operational climate reanalysis system. As shown in Fig. 
2a, the global average NSST is significantly colder than the other three SST products. The global mean NSST 
bias in 2020 is about 0.2°C, which is about three times higher than the other SST products (<0.05°C).  

Figure 3 shows the biases of NSST and OSTIA in different months of 2020. Overall, NSST was 
significantly colder than OISSTv2.1 in the mid-to-high latitudes year-round, while biases in the tropics exhibit 
strong seasonal dependence. Large cold biases developed near the upwelling zone of eastern Pacific during the 
Northern Hemisphere summer and fall, while the bias is negligible during winter. Clear cold bias is also found 
near upwelling zones of the Atlantic Ocean in different months. Interestingly, although both NSST and OSTIA 
measure foundation temperature, OSTIA biases were negligible in most of the regions. It suggests that large 
cold biases in NSST is not purely due to the difference in SST type. One factor contributing to the cold bias in 
the tropical upwelling regions could be the usage of partly clear AVHRR radiance in NSST when it is not well 
detected by the satellite (personal communication with EMC, 2022). Further investigation is needed to clarify 
causes for the large difference between NSST and OISSTv2.1. 

The CFSR ocean reanalysis was strongly nudged to daily OISSTv2.0 from January 1979 to January 2020 
and then nudged to NSST starting from February 2020. How sensitive is the CFSR ocean reanalysis to such 
change in the source of SST nudging? To address this, the evolution of difference between CFSR and 
OISSTv2.1 is examined. Given the large difference between NSST and OISSTv2.1, one can expect a rapid shift 
in CFSR SST if the SST nudging source has a strong influence. Because the CFSR climatology is fixed, the 
bias shift in the total SST field should manifest in the SST anomaly field. To illustrate this, we selected the 
Pacific Ocean as an example. Figure 4a displays the temporal evolution of zonal average of difference. CFSR 
SST follows very closely with 
OISSTv2.1 prior February 2021 
with very small bias, but rapidly 
developed a similar large cold bias 
to that of NSST after the nudging 
replacement (Fig. 4b). This 
demonstrates that the switch of 
SST analysis introduces a spurious 
negative anomaly in the mid-to-
high latitudes. It is evident that the 
switch of nudging SST analysis 
source has a strong negative 
impact on temporal consistency of 
CFSR SST.  

CFSR ocean reanalysis 
provides oceanic initial conditions 
to CFSv2. In this study, we only 
focus on the impact of the SST 
nudging source change on ENSO 
predictions. Both 2020-21 and 
2021-22 were La Niña years. 
Whether CFSv2 forecasts share 
common features for these two 
events can help us understand the 

Fig. 4 Zonal average monthly SST anomaly bias of (a) CFSR, (b) NSST 
in the Pacific Ocean during 1982-2021. Unit in °C. 
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impact. Figure 5 displays the 
Hovmoller diagram of NSST, 
CFSR and 0-month lead CFSv2 
SST biases along the equator in the 
Pacific Ocean.  

During 2020-2021, NSST 
biases exhibit similar seasonal 
variations where the center of the 
maximum negative bias (<-0.8°C) 
peaks in September-November in 
the far eastern Pacific and, at other 
times, a warm bias (>0.2°C) 
emerges in the western-central 
Pacific (Fig. 5a). CFSR bias was 
very small prior to the NSST 
nudging implementation, and then 
developed a similar pattern to 
NSST (Fig. 5b). The analysis 
reveals that the SST analysis 
replacement creates spurious 
negative (positive) SST signals in 
the eastern Pacific (warm pool) 
where air-sea interactions are very 
active for ENSO development. As 
expected, the CFSR bias leaves a 
clear footprint nearly immediately 
in the 0-lead CFSv2 SST forecast 
(Fig. 5c). However, the forecast 
bias evolution is slightly different 
from that of CFSR. Strong 
negative SST bias expands from 
the far eastern Pacific westward 
near the dateline from September 
to December. This was not 
observed in the CFSR bias. The 
warm bias in the 0-lead forecasts is 
also stronger than that of CFSR. It 
indicates that the spurious 
enhanced west-east SST gradient 
in CFSR can trigger positive 
feedback in the coupled system, and thereby intensify the original SST bias.  

Figure 6 shows Niño3.4 predictions from CFSv2 over the course of 2020-2021. The most striking feature 
is that the CFSv2 forecasts of La Niña are far too cold for initializations during October to November. Forecasts 
overestimated the peak of La Niña by more than 1°C. This is consistent with the problems with the NSST/CFSR 
analyses shown in Fig. 5. Given that these months are short-lead forecasts, and are close to the mature phase of 
ENSO, we should expect higher prediction skill (Barnston and Tippett et al. 2013). That the forecasts are so 
strongly biased suggests that NSST error is so large that spurious strong positive feedbacks are induced in the 
coupled system, degrading the CFSv2 ENSO forecast skills.  
  

Fig. 5 Longitude-time diagrams of (a) NSST, (b) CFSR, and (c) 0-month 
lead CFSv2 SST anomaly bias at the equator during 2018-2021. Unit 
in °C. 

Fig. 6  Nine-month ensemble average predictions of Nino3.4 index from 
CFSv2 during 2020-2021. The black solid line is the observation based 
on OISSTv2.1. Color solid lines represent forecasts of individual 
forecasts at different initial months. Thick color solid lines represent 
months when CFSR has strong SST cold bias shown in Fig. 5.  
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4.  Summary 

SST analyses have been widely used for weather and climate forecasting and monitoring. However, on 
occasion, significant differences exist among SST products, which are caused by differences in the input data 
sources, sampling, analysis procedures, and other factors. The uncertainty creates challenges for interpreting 
climate monitoring and prediction products, which depend on the signs and amplitudes of SST anomalies. In 
this study, we assessed the fidelity of SST products currently employed in CPC operational products. We also 
investigated the impact of the SST nudging source change on the CFSR ocean data assimilation system and on 
CFSv2 SST forecasts. The main results are: 

1. Uncertainty among SST data sets varies with time and location. OSTIA and OISSTv2.1 are consistent 
with each other, and these two data sets have smaller bias against the in situ TAO moored buoy than 
those of OISST and NSST.  

2. NSST is significantly colder than OISSTv2.1 as well as other SST products in the mid-to-high latitudes. 
In the tropics, NSST biases are mainly located in the upwelling regions and Indo-Pacific warm pool 
regions with seasonally varying amplitude. 

3. The replacement of NSST as the source of SST nudging in the analysis gives rise to the systematic 
errors in CFSR SST and anomalies after February 2020. CFSR biases subsequently leave clear 
footprints in the 0-lead CFSv2 forecast and beyond. 

4. Large cold biases from the NSST in the eastern equatorial Pacific during the fall season contributed to 
overly negative predictions in Niño3.4 for DJF 2020-21 and 2021-22.  
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The Climate Prediction Center (CPC) Government Performance and Results Act (GPRA) metric is the 48 
month running mean Heidke Skill Score (HSS) of the favored category for the first lead seasonal 2-meter 
temperature (T2M) forecast.  The forecasts are given as the probability of tercile categories: below, near, and 
above normal with the GPRA metric increasing (decreasing) if the score from 48 months ago was lower (higher) 
than the current seasonal score that replaces it in the running mean.   

Since 2004, CPC has verified its seasonal temperature forecasts using real time data from River Forecast 
Centers (including from the Hydrometeorological Automated Data System – HADS) with a climatology based 
on the Cooperative Observer Program (COOP) network.  Over the past 5-10 years, HADS has greatly increased 
its number of reporting stations, many of them out West at elevation, which has resulted in a cold bias in the 
CPC verification data set.  Figure 1 shows the station density for this dataset on 6JAN2014 (left) and again 7 
years later on 6JAN2021 (right).  In particular, note the greater number of stations (generally at elevation) in 
California, Utah, Colorado, Montana, and Wyoming.  Since some of the skill of seasonal temperature forecasts 
is linked to trends, this cold bias has often resulted in poorer scores than should have been obtained from 
unbiased verification of the forecasts.  

In order to more properly characterize a season into tercile categories, CPC has developed a new dataset 
which consists of Synoptic and METeorological Aerodrome Report (Metar) stations only, and which is 
consistent (same stations) throughout the historical and real time periods.  Although containing fewer stations 
across the country (somewhere around 1500 stations), the use of a database with the same set of stations used 
in both the climatology and in the real time is highly desirable and ensures that the observed departures from 
normal (both above and below) will be the result of differences in the seasonal climate and not the result of the 
changing locations of stations used to verify the forecast. 

A comparison of the individual HSS for the period 2011-20 (not shown) shows that scores are fairly 
consistent during the first half of the period.  However, beginning in about 2016, scores obtained when verifying 

Fig. 1  Station locations for the historical database used to verify CPC seasonal outlooks on January 6, 2014 
(left) and January 6, 2021 (right). 
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against the new database often (but 
not always) exceed the HSS when 
verifying against the older 
database.  Figure 2 shows the 48 
month running mean of the first 
lead seasonal temperature outlook 
HSS calculated using the older, 
biased database (blue line) and the 
newer, consistent database (green 
line).  As noted earlier, scores for 
the first half of the period are fairly 
similar, with the significant 
separation between the two lines 
developing fairly rapidly around 
2017.   Once established, the 
difference remains fairly 
consistent, indicating that the bias 
in HSS over the past 5 years has 
remained at about 5-7 points.  

The change of datasets used 
for the verification of CPC's 
seasonal outlooks is expected to be 
implemented at the beginning of FY2023. 

Fig. 2  Time series of the 48 month running mean of the Heidke Skill Score 
(HSS) of first lead seasonal temperature outlook scored using CPC’s 
older verification dataset (blue line) and newer, consistent verification 
dataset (green line).   
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Understanding US Drought in Past 120+ Years  
Yun Fan 
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1. Introduction 

 Drought is one of major natural disasters which accounts for about one-third of all-natural disaster impacts. 
Those severe mega-droughts that cover large spatial areas and last long term periods can bring major disruption 
to earth’s ecosystems and devastating disasters to the human society. Therefore, to better understand the 
attributions of these major droughts and to accurately predict them are important for science and protecting 
human society. In this study, a long-term (1895 to present) land surface hydrological dataset over the US was 
used to study long-term variations of the US droughts over the past 120+ years. Detailed studies were conducted 
to investigate if any drifting of the frequencies, magnitudes and locations of the land surface hydrological 
extremes happened over the past 12 decades, and how the land surface hydrological extremes responded to land 
surface hydrological forcing. Several land surface hydrological modelling experiments have been conducted to 

Fig. 1  Decadal variations of the observed precipitation for period 1901 to 2020 (120 years). 
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quantify the impacts of climate variations, such as long-term rainfall deficit and anomalous warm up 
temperatures, on the US drought. Further studies were zoomed into the Southwest, where frequently being hit 
by server droughts during the recent two decades, such as the Colorado River Basin (CRB).  

2.  Data and methodology 

Land surface soil moisture responds to incoming precipitation and other atmospheric forcing like a low-
pass filter, and it is an ideal and important physical variable for drought monitoring and studies. A long-term 
land surface hydrological dataset (from 1895 to present) was derived from the CPC leaky bucket land surface 
hydrological model (Huang et al. 1996), forced with the improved National Centers for Environmental 
Information (NCEI) monthly observed precipitation (P) and 2m surface air temperature (T2m) (well quality 
controlled) over the 344 US climate divisions (Vose et al. 2014). 

There were some concerns (McRoberts et al. 2011) that variance of the observed data in the early period 
(i.e. 1895 ~ 1930) may be too low and would be “different” from the data collected in late period. Our analysis 
(Fan et al. 2017) shows that variabilities of the observed data in the early period look quite “normal” and there 
is no clear discontinuity or disruption when compared to those in the late period.   
3.  Decadal variations for past 120 years 

The significant decadal spatial-temporal variations of the observed P and T2m for past 120 years are showed 
in Figs. 1 and 2, which depict evolution of the major decade-long wet (dry) and warm (cool) events across the 

Fig. 2  Decadal variations of the observed 2m temperature for period 1901 to 2020 (120 years). 
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CONUS. Another striking feature is the long-term trend in observations, such as much of the eastern CONUS 
trending to wetter while the whole CONUS trending to warmer, especially the southwestern CONUS. 

The simulated decadal soil moisture variations (Fig. 3) reveal that the major land surface hydrological 
extreme events occurring in the past 12 decades were well captured in terms of spatial distribution, severity and 
duration, such as the decade-long major droughts (dust bowl era) in the 1930s in large parts of the US, multi-
year severe droughts in the 1950s in the US (e.g. the southern Great Plain). The preliminary analysis shows that 
the decadal spatial-temporal variations of the derived soil moisture carry very similar patterns as the observed 
P, indicating that soil moisture variations are primarily driven by the variations of the observed P. However, 
the signature of the observed T2m modulation is also clearly indicated, such as anomalous warmer period in 
1930s and 1950s enhancing already drier conditions, while relatively cool period in 1960s relieving the drier 
conditions in the eastern CONUS. 

In order to further quantify the impacts of climate variations, such as long-term rainfall deficit and 
anomalous warm up temperatures, on the US drought, several modelling experiments have been conducted with 
different forcing (Control: observed daily P and T2m for 1979 to 2021; Exp1: 1991-2020 observed daily P 
climatology and observed daily T2m; Exp2: observed daily P and 1991-2022 observed daily T2m climatology; 
Exp3: 1991-2020 observed daily P and T2m climatology). The results suggested that observed P inter-annual 
variability may account for about 85~90% inter-annual variability for the simulated soil moisture, while 
observed T2m inter-annual variability may contribute another 10~15% inter-annual variability for the simulated 
soil moisture.  

Fig. 3  Decadal variations of the simulated land surface soil moisture for period 1901 to 2020 (120 years). 
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4.  Mutual validation against US drought monitor (USDM) 
Figure 4 provides a centennial long categorized drought area (%) index for the CONUS (upper panel: D0 

to D4 with yellow to dark red bars) based on the simulated soil moisture data, while the counterpart (green 
shaded bars) can be viewed as wet extreme events (e.g. flood). In terms of the CONUS wide during the past 
120+ years, the worst drought periods happened in 1930s (dust bowl era) with about 4 major extreme events 
spared across the decade and in 1950s with two to three more major droughts clustered in middle of the decade. 

 To verify the quality of the used simulated soil moisture data, traditional way is directly against to 
observation. Other indirect ways can be done by validation with other drought indicators. Here the weekly 
official USDM was picked up to perform a mutual validation. The lower-panel of Fig. 4 shows very good 
agreement (temporal mapping) between drought indices from the USDM and CPC Leaky Bucket modeled soil 
moisture. Figure 5 further displays a nice spatial mapping between the two drought indicators. 

5.  Drought in the Western CONUS and Colorado River Basin (CRB) 

Here more detailed studies were conducted to focus on the US West, where widespread droughts frequently 
hit the region in recent decades and water supply routinely becomes a major issue for the people living in the  
  

Fig. 4  Time series of areas (%) covered by classified (D0 to D4: yellow to dark red) US droughts: (1) upper 
panel from CPC Leaky Bucket model for period of 1895-2021 ; (2) lower panel for the official US drought 
monitor against CPC Leaky Bucket model  for period of 2000-2021. 
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Fig. 6  EOF analysis from simulated soil moisture in the western CONUS for period 1895 to 2021. 

Fig. 5 Selected 6 US drought events from the official US drought monitor and classified CPC Leaky Bucket 
model. 
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West. The EOF analysis (Fig. 6) depicts very clear decadal and inter-annual variability. The dominant first 4 
leading EOFs with relatively simple and large-scale patterns can explain nearly 69% total soil moisture variance.  

The studies were further zoomed into the Southwest, where is the core region associated with warm-up 
trend and frequently hit by severe droughts during the recent decades, such as the Colorado River Basin (CRB). 
The daily EOF analysis for period of 1979 to 2021 shows that the even more dominant first 4 leading EOF 
modes could account for up-to 73% (94% from the monthly data) total soil moisture variance (Fig. 7). 
Interestingly, the second EOF mode shows the naturally divided geological Lower Basin and Upper Basin and 
they vary in opposite direction. The most striking low-frequency feature is the leading EOF modes display very 
significant inter-decadal variations and lead to a clearly long-term dry trend. Decreasing water supply and 
increasing water use (also partly due to population increase) will make the water demanding crises even worse 
for more than 40 million people who live in the CRB and rely on its water. If this trend continues, better water 
management becomes more important for the region’s future. 

6.  Conclusions 

The preliminary studies reveal the significant decadal spatial-temporal variations in the observed P and 
T2m across the CONUS for past 120+ years and depict the striking features of the long-term trend in 
observations: much of the eastern CONUS trending to wetter while the whole CONUS trending to warmer, 
especially the southwestern CONUS. The severe precipitation anomalies modulated by long-term anomalous 
temperatures were the immediate reasons for those major hydrological extreme events.  

With the studies further zoomed into the US West, especially the Southwest such as the CRB, the more 
simple soil moisture structures emerged with the most striking low-frequency features showing a clearly long-

Fig. 7  EOF analysis from simulated daily soil moisture in the CRB for period 1979 to 2021. 
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term drier trend. Decreasing water supply and increasing water use will make the water demanding crises even 
worse. However, from forecast point of view, the CRB soil moisture variability is strongly dominated by very 
few simple and low-frequency soil moisture anomaly patterns and may indicate drought in the CRB potentially 
more predictable.  
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1. Introduction 

Extratropical storms are accompanied by heavy precipitation and damaging winds, causing high impacts 
on public safety, property, and economy.  Reliable predictions of enhanced and suppressed storm activities over 
mid- and high-latitude regions, including Alaska, are in great demand and of critical importance.  The goal of 
this study is to develop a forecast tool for week 3-4 storminess by extending the week-2 forecast system (Pan 
et al. 2021), which already exists at the NOAA Climate Prediction Center (CPC), to week 3-4.   

Storms are detected and tracked using 6-hourly sea level pressure (SLP) data from the real-time GEFSv12 
35-day forecasts and a storm-tracking algorithm developed by Serreze (1995). The week 3-4 outlook products 
include storm activities (storm tracks and track density, storm intensity and duration), SLP day-to-day variance, 
storm-associated precipitation, SLP and 10-m wind speed over North Pacific, North America, and North 
Atlantic, derived from the GEFSv12 week 3-4 forecasts for both total and anomaly fields. In addition to 
deterministic forecasts (ensemble mean forecast), the outlooks also provide probabilistic forecasts of 
precipitation and 10-m wind speed exceeding 75% and 90% percentiles, and storm intensity lower than 990, 
980, 970, and 960 hPa. Verifications for the real-time week 3-4 forecasts are also conducted using the NCEP 
Climate Forecast System Reanalysis (CFSR).  The week 3-4 storminess outlook is updated daily. 

2.  Data and methodology 

2.1 Data 

In this study, GEFSv12 6-hourly 35-day forecasts (31 ensemble members) are utilized for the week 3-4 
storminess outlooks. The variables used include SLP, precipitation, and 10-m winds. We have also used the 21-
year (1999-2019) GEFSv12 hindcast dataset to derive model climatology and assess the forecast skill, and the 
CFSR data as observations for the forecast verification and skill assessment. 

2.2 Methodology 

Similar to the week-2 outlook (Pan et al. 2021), the week 3-4 storm detecting and tracking are based on the 
algorithm developed by Serreze (1995), with the following criteria: 

• Using 6-hourly SLP data on the 2.5o × 2.5o grid 
• Storm center SLP ≤ 1000 hPa 
• Storm center SLP at least 1 hPa lower than surrounding grid points 
• Maximum distance a storm can travel is 800 km/6 hour 

Storm track density is defined as total number of storm centers within a 250-km radius for each grid point 
divided by ensemble members. Storm intensity (center SLP) denotes the mean storm center pressure within a 
250-km radius for each grid point. Storm duration is the mean lifetime of storms passing through a domain of 
250-km radius for each grid point.  



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

124 

3.  Week 3-4 storm track outlook, verification and skill evaluation 

The real-time week 3-4 forecast products are available on the following forecast website, with a daily update 
(https://ftp.cpc.ncep.noaa.gov/hwang/YP/week2/). Figure 1 shows an example of the week 3-4 outlook issued 
on January 30, 2022, for the 14 days from February 13 to 27, 2022, including storm tracks, storm track density, 
storm intensity and duration. The left panels in Fig. 1 are the total fields and the right panels are the anomaly 
fields. Forecasts for other variables, as well as the sub-regional maps can be found in the forecast webpage.  

The verification of the week 3-4 forecast against the CFSR is done when the CFSR data are available for 
the forecast target weeks. Therefore, there is a 28-day delay for the real-time verification. Figure 2 shows both 
forecast and verification, in which left panels are the model forecast (same as in Fig. 1) and the right panels are 
the CFSR verification of storm tracks, storm track density, storm intensity and duration for the forecast shown 
in both Fig. 1 and Fig. 2 (left). 

The outlook tool is assessed using the 21-year (1999-2019) GEFSv12 hindcast data. The forecast skill is 
determined by the anomaly correlation (AC) between the forecasts and the CFSR during the GEFSv12 hindcast 
period. Figures 3-4 display the AC skills of week 3-4 storm track density, SLP day-to-day variance, 
precipitation, and SLP, respectively, for January and July. The results indicate a relatively high skill for the 
week 3-4 storm track density (Fig. 3 left) in the climatological storm-active regions (circled by dash curves). 
The week 3-4 forecasts of SLP day-to-day variance (Fig. 3 right), precipitation and SLP (Fig. 4) show higher 
skills than the week 3-4 storm track density in both January and July. Overall, the AC skills in the winter month 
(January) are higher than in the summer month (July).   

Fig. 1. GEFSv12-based week 3-4 forecasts of storm tracks, track density, storm intensity and duration for both 
total (left) and anomaly fields (right). The forecast date was January 30, 2022 for week 3-4 from February 
13 to February 27, 2022. 

4. Summary  

 A real-time GEFS-based week 3-4 storminess outlook 
tool was developed at NOAA CPC, with a daily update 
and the CFSR verification. Anomaly correlations of 
week 3-4 storm track density, SLP day-to-day  
variance, precipitation and SLP between the GEFSv12 

https://ftp.cpc.ncep.noaa.gov/hwang/YP/week2/
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Fig. 2a Verification (right) of GEFSv12 week 3-4 forecast (left) for storm tracks, track density, storm intensity 
and duration with total fields.  The forecasts were issued on January 30, 2022 for week 3-4 from February 
13 to February 27, 2022. 
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21-year hindcasts and the CFSR indicate a certain level of skills for storm track density over the storm-active 
regions, and better skills for SLP day-to-day variance, precipitation and SLP. Overall, a winter month has a 
higher skill than a summer month. 

To improve the forecast skill, the week 3-4 storminess outlooks using Climate Forecast System version 2 
(CFSv2) 45-day operational forecast and GEFSv12+CFSv2 combined forecast have also been developed and 
implemented in real time, which are also available on the forecast website. 

Acknowledgments. We thank Michael Staudenmaier, Eugene Petrescu, Ray Wolf, Joseph Dellicarpini, 
Christopher Buonanno, Eric Lau for their helpful comments and suggestions on the development of the storm-
track outlook products.  
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Fig. 2b  Same as Fig. 2a but with anomaly fields.  

Fig. 3 Anomaly correlation of week 3-4 storm track density (left) and SLP day-to-day variance (right) between 
the GEFSv12 hindcasts and CFSR over the 21-year (1999–2019) hindcast period for January (top) and 
July (bottom). Areas circled by dashed curves represent climatological storm-active regions. 

Fig. 4 Anomaly correlation of week 3-4 precipitation (left) and SLP (right) between the GEFSv12 hindcasts 
and CFSR over the 21-year hindcast period for January (top) and July (bottom). 
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1. Introduction 

The Climate Assessment Database (CADB) is a suite of station based monitoring analyses products that is 
routinely produced by the Climate Prediction Center (CPC). It consists primarily of daily, weekly, monthly, 
and annual estimates of various weather parameters, based on hourly data from the Global Telecommunication 
System (GTS). These datasets were created based on the need for station observations updated in a more timely 
manner. The National Centers for Environmental Information (NCEI) is the national leading authority for 
environmental data, with complex algorithms for quality control (QC) and calculations of observations. 
However, these datasets take more time to produce due the complex nature of the production algorithms. The 
CADB has lighter QC performed, enabling quicker processing and production of datasets, and thus near real-
time data availability for users’ various needs. The original CADB software (CADBv1) was created in the early 
1980s with a backend direct access database. After years of documenting CADBv1, code development, and 
benchmarking new results with CADBv1, CPC transitioned to the new version of CADB software (CADBv2) 
at the beginning of 2020, including the upgrade to using a relational database for the backend storage and web 
application support. Additionally, the previously static temperature and precipitation time series charts based 
on CADB data have been replaced with a dynamic web application. 

CADBv2 continues to be occasionally upgraded and improved as needed based on upstream data changes 
and feedback from users. There is a broad variety of users and stakeholders of the CADB, including those 
internal to CPC that produce other gridded datasets and international products, external government agencies 
such as the Joint Agricultural Weather Facility (including usage in crop models) and U.S. Department of 
Agriculture (USDA), private companies, and general public users. This article will describe the available CADB 
datasets, changes from version 1, as well as the related upgraded base period station normals, station meta-data, 
and new CADB time series web application. 

2.  About the CADBv2 

The CADB refers to a framework that consists of a suite of station based datasets that have summarized 
values of weather parameters over various timescales based on raw hourly station observation reports over the 
globe. Multiple pieces of software support the routine production of the CADB, including the summarized 
station observations that are estimated on daily, weekly, monthly, and seasonal timescales, which are available 
at https://www.cpc.ncep.noaa.gov/products/cadb or via FTP at https://ftp.cpc.ncep.noaa.gov/cadb_v2. 

It is important to note that the CADB is considered a preliminary dataset, meaning that there is “light quality 
control (QC)” used to assess and summarize the data. The CADB is not intended to be a high quality controlled 
dataset with more complex post-processing, such as using nearest neighbor check techniques, other data sources 
for adjustments, and assessing climatological data for value bounds. Other datasets, such as those from NCEI 
or the CPC unified gauge dataset (which ingests primarily the CADB as well as standard hydrometeorological 
exchange format (SHEF) data) utilize more complex post-processing and QC techniques. The benefit of having 
lighter QC used for the CADB is that the data is available in a more timely manner, which is necessary to 
support many real-time operational needs, whereas datasets with more complex QC procedures, such as from 
NCEI, take more time to process and release updated data. 

 The original version of CADB software, CADBv1, was created in the 1980s in Fortran77. It was deemed 
necessary by CPC to rewrite the software in a more modern software language for multiple reasons including: 
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1) the original code was sparsely documented, thus the details of the methodology and calculations were not 
well understood, precluding upgrades from being done easily and making the software hard to maintain, 2) 
suspicion that there may be some errors in the code and/or approaches, 3) changes in upstream data formats 
required updates to be made in the CADB software, 4) many more stations of data are available globally now 
compared to the 1980s but the framework of v1 did not easily allow for expansion of station coverage, and 5) 
need for having software in a more modern language enabling more staff to be able to maintain and upgrade it 
over time.  

Another related upgrade was the conversion from storing data in a binary formatted direct access file to a 
relational database. Updating data in the direct access file was not transparent and could easily lead to errors, 
making it hard to update, maintain, in addition to being difficult to view the data itself. In contrast, using a 
relational database to store and extract CADB data is much easier to maintain and was also a needed technology 
to support a new CADB temperature and precipitation time series web application, which replaced the static 
CADB time series chart graphics.  

3.  Data 

Hourly station observation data from the Global Telecommunication System (GTS) is the source of input 
to the CADB. This hourly data is a global network of transmitted meteorological data from various sources, 
including manual and automated measurements of various weather conditions. The raw data reports are 
comprised of both surface synoptic observations (SYNOP) and meteorological aerodrome reports (METAR) 
formatted stations. As of 2022, there are about 12,000 stations of the GTS that are included in the CADB, where 
the number is also based on whether there is quality meta-data available for a station. 

With the release of CADBv2, global station data was made available to the public (previously limited to 
the U.S.). Additionally, archived data was made available and many more parameters are included in the 
summary data files. Previously CADBv1 public data focused primarily on temperature and precipitation. 
Inclusion of more meta-data in the CADBv2 summary files allows more potential for user applications 
downstream, including easier plotting of values if desired. Table 1 gives an overview of the meta-data and 
parameters included in the daily summaries. Weekly, monthly, and seasonal summaries are also updated 
regularly, containing statistics based on temperature and precipitation. 

Documentation is available on the CADB webpage that provides details regarding the format, range, and 
units of the parameters.  

Table 1  List of meta-data and available parameters in the CADB dataset. 

Metadata Parameters 

Station ID 
Station call 
City 
State 
Country 
Date 
Lat 
Lon 
Elevation 
 

Max and min temperature 
Reported precipitation - Based on reported “6 hour” and “24 hour” precipitation amounts 
Final precipitation  - Complex estimated amount based on reported precipitation, weather 

type, various adjustments based on e.g. latitude, etc., time and value weighted 
Precipitation flag - Denotes source/quality of the final precipitation amount 
Number 6-hr precip reports - number of 6hr report values (assigned to 3-hr time steps) 
Weather characters - Weather character string representing weather type for 8 times 
Trace - Flag denoting 0 for no trace, 1 for trace precip 
Vapor pressure and vapor pressure deficit 
SLP (at 6Z, 12Z, 18Z, 0Z [day after valid]) 
Max and min relative humidity 
Apparent temperature (heat index) and wind chill 
Wind speed at 8 times (relative to the beginning of the precip bounding period) 

4. Methodology  

The CADB is driven by a suite of scripts and codes that perform various levels of formatting and quality 
control. A diagram is shown (Fig. 1) that outlines the framework and process flow of CADBv2 that starts from 
ingesting raw GTS data in binary universal form for the representation of meteorological data (BUFR), ending 
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with CADB output provided to users. CADB data is stored on an internal relational database at the National 
Centers for Environmental Prediction (NCEP) that serves a variety of purposes including providing the back-
end data for the newly created CADB time series web application. 

The CADB rewrite project was a multi-year effort to improve the many parts of the CADB suite, including 
rewriting software to produce improved station meta-data and normals, leading to the overall improvement of 
the CADB product suite as a whole. The first year was dedicated to the understanding of the v1 code and 
methodology of the CADB software suite, as well as planning methodologies for the new version of the code. 
Subsequent work entailed an iterative process of developing code to calculate summary values for the different 
parameters, evaluating results by benchmarking with v1 and external sources and interacting with users to get 
feedback, and making further adjustments to the code. 

The approach and equations used to calculate the daily summary values based on hourly data is similar to 
those used by CADBv1, plus modifications made based on updates in equations or methodologies that were 
deemed appropriate and beneficial by the CADB development team. Each time a change was made to the 
software, a variety of techniques were employed to determine whether this change was kept in the software 
including 1) evaluating the percent of stations over the globe for a sample day/week where the difference 
between the CADBv1 and v2 values exceeds a set acceptable threshold, 2) manual inspection of values for 
specific cases including looking at actual values and maps of data, 3) comparison to other external sources of 
summary values, and 4) feedback from users with expertise in assessing specific variables and regions. 
Information about any newly released versions of the software and related impacts to data are detailed in 
technical notes available on the home CADB summary data webpage.  

5. CADBv2 upgrades and changes compared to v1 

Version 2 of the CADB data is available from January 1, 2020 to present. Many improvements were made 
to various parts of the framework. A list of some notable upgrades and changes are listed below: 

● Expanded datasets of summaries available to the public including global coverage, whereas previously 
only U.S. data was provided. The number of stations may vary slightly day to day depending on the 
reports that come in. 

● More parameters are available; previously the data focused primarily on temperature and precipitation. 
● More meta-data available in the CADB summary, making it easier to ingest into downstream 

applications, such as plotting in a geographic information system (GIS). 

Fig. 1  Diagram of process flow indicating how raw station observations get processed and summarized to 
CADB output. 
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● Well documented software suite  
● Core software that calculates daily summary values is written in Python, replacing f77 code 
● Many scripts doing the initial QC and formatting of the raw hourly data were improved, including 

retrieving more stations 
● Replace direct access database in backend with relational database enabling web applications to 

dynamically pull data and much easier to maintain 
● Software is in version control (git), promoting code collaboration and ease of maintenance and tracking 

changes 
● In many of the CADBv1 files, METAR stations were identified as ‘99’ followed by 3 characters. 

CADBv2 will now use 4 characters after ‘99’. Therefore, the METAR stations will change from 5 to 6 
characters in total (e.g. ‘99CHO’ will be ‘99KCHO’). This allows potentially more stations because the 
upstream data is actually reported with 4 characters, with the first character denoting the region. In 
CADBv1, we were using only U.S. METAR. Additionally, there are stations in the contiguous U.S. 
(CONUS) and Alaska that have the same 3 last characters with a different char at the beginning. 
CADBv1 only picked the CONUS version of the 3-char station if it was a duplicate. For example for 
station ‘KABR’ and ‘PABR’, with ‘KABR’ being the CONUS station and ‘PABR’ being the Alaska 
station. CADBv1 only chose the CONUS station, precluding the Alaska PABR station from being 
output. CADBv2 would now include, e.g. ‘99KABR’ and ‘99PABR’. 

● Summary files are formatted differently, previously a fixed width text file now formatted as a comma 
delimited CSV file that is easier to parse and contains header column names.  

● New column with station call letters, if there is one. If not, a ‘-99999’ is listed for a station that does 
not have a station call. 

● Many stations have higher resolution of latitude/longitude information (up to 4 decimal places), which 
can be especially important for plotting in GIS. 

● Archive of data available now, previously only 7 day rotating files were available. Many users 
requested days of data prior to the current 7 days, so this allows users to grab past data now. 

● File naming convention has changed to include the valid summary date since files are no longer rotating, 
e.g. daily files named daily_summary_$YYYY$mm$dd.csv 

6. Related upgrades 

6.1. Station meta-data 

In addition to the core software that produces summary analyses, significant time in the CADB rewrite 
project was also dedicated to rewriting software to produce improved meta-data. One reason that station meta-
data is important to the quality of the CADB data is that many stations require matching station call identifiers 
(ID) associated with the METAR data input stream with the World Meteorological Organization (WMO) 
formatted IDs that are used with the SYNOP input. These stations have observation data that come in through 
both METAR and SYNOP sources upstream. Therefore, it is essential that the different forms of identifiers are 
matched correctly in order to combine the hourly data for the proper stations.  

Previous to the meta-data software rewrite, maintenance and upgrading of the station meta-data was more 
of an ad-hoc approach and completely manual. Now, there is a set of scripts that uses a complex approach to 
combine various sources of meta-data to produce a meta-data file which is utilized by various downstream 
processes, including the core CADB software that produces the summary values. A major challenge of station 
meta-data is that despite multiple external sources maintaining a station meta-data library, there are significant 
differences among them including how METAR and SYNOP IDs are matched, associated latitude and longitude, 
etc. There are also stations that are known to be incorrect in these meta-data sources, but these issues are only 
found when the CADB team or users notice erroneous summary values. Therefore, a methodology was devised 
to try to optimally combine meta-data using multiple sources, while retaining all the previous manual 
adjustments that need to be applied. 
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Input sources for meta-data reference include the NCEI enhanced global station meta-data list, recent real-
time GTS data, legacy CADB meta-data file, and aviation weather global meta-data file. After reformatting 
data as  necessary, multiple steps of assessment and QC are performed to determine a best guess for each of the 
meta-data parts with tiers of prioritizing quality of data, which was based on iterative trial and error of evaluating 
various stations and getting feedback over time from users based on the CADB output (e.g. a regional user 
identifying an incorrect station assigned) and those with meta-data expertise. This updated station meta-data 
list is available on the CADB webpage with the summary data. 

In addition to the WMO formatted ID and associated METAR call ID (where applicable), logic is included 
in the software to assign an NCEI formatted station ID. It was necessary to pair NCEI formatted station IDs 
with the WMO SYNOP and METAR station IDs in order to assign NCEI 30-year normals which are in an 
NCEI ID convention. 

6.2 Normals software 

New Python software was created to produce quality upgraded station normals for temperature and 
precipitation based on various sources of available data. These CADB station normals feed into a number of 
downstream applications, including usage by CPC’s international desk and the global CADB time series web 
application. This includes three sources: 1) archived CADB daily input, 2) monthly summaries from the Global 
Historical Climatology Network (GHCN) available on the NCEI website, and 3) NCEI monthly and daily 
normals. A suite of calculated monthly and daily normals are produced from these inputs, including usage of 
the station meta-data to pair station IDs with different formats, and various steps of QC including comparing 
values to the previous 30-year normals. This new software was then used to produce updated 30-year normals 
for the 1981-2010 base period, and 1991-2020 normals are being reviewed for release currently as well. 

6.3 Time series web application 

A new web application was developed in tandem with the CADB software suite rewrite, which replaces the 
globally available static graphics of temperature and precipitation time series charts using CADB data. This 
web application allows users to display charts of time series based on CADB summary values for many global 
stations. Charts include information such as daily values, departures from normal (anomalies), accumulated 
precipitation, and minimum and maximum temperatures over a customizable period. There are many more 
global stations available now compared to the previous static graphics, which utilize the updated station normals 
previously discussed for climatology information. The web application allows users to interact more with the 
backend data, and includes new features such as the ability to hover over chart points to get values, customizable 

Fig. 2 Diagram showing previously available legacy CADB time series static maps (left) and new dynamic web 
application (center and right). 
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dates and periods of assessment, and downloadable graphics in multiple formats (Fig. 2). Available stations for 
time series charts are based on which stations have available 30-year normals to pair with CADB summary data. 
The time series application is available at https://www.cpc.ncep.noaa.gov/products/timeseries. 

7. Results 

 Quality preliminary global station summary data is now produced with more extensive parameters and 
stations over the globe, including using upgraded well documented python software for many parts of the 
CADB framework. Archived data is saved in a relational database that allows for more reliable maintenance 
and easier access of past data, including the ability to serve data dynamically to the time series web application. 
CADB data has been evaluated and continues to be evaluated in real-time by many stakeholders and is run 
operationally in real-time for routine updates. Data results in general are fairly similar to v1, although there are 
some parameters that have more notable differences, for example the heat index which now uses an updated 
methodology used by the Weather Prediction Center.  

Another noticeable difference between v1 and v2 is that v1 had a known dry bias in some areas of the world. 
It was found that v1 had assigned zero precipitation values where there shouldn’t have been. It is suspected that 
v1 set many values to zero due to suspicion of raw station values. However, there have been many 
improvements to the quality of data since the inception of v1 in the 1980s, so more station precipitation reports 
should be deemed valid and are thus incorporated in v2. These zero precipitation values previously produced 
in CADBv1 were evaluated by the CADB team and stakeholders, particularly from JAWF, and deemed 
incorrect. The approach in CADBv2 retains more valid ingested values, thus resulting in more locations that 
have valid values rather than a zero assigned. This, however, has made localized areas sporadically have more 
“bullseye” values compared to neighboring values in space and/or time. These situations are not deemed to be 
systematic, and are considered a caveat to expect when dealing with preliminary data that do not use more 
complex QC techniques. These inherent issues are associated with sporadically occurring erroneous raw reports 
from the station where no systematic light QC can be applied. 

8. Challenges and caveats 

There are inherent challenges associated with assessing raw station data due to the nature of the 
inconsistency of how upstream raw data is reported at stations across the globe. As discussed in the ‘results’ 
section, there are many challenges in trying to devise QC that can be systematically applied to data, particularly 
when “bullseye” values deemed too large occur sporadically. It is also difficult to find reliable ground truth 
values from other sources to determine whether a value is actually erroneous. Significant caution must be taken 
in adding a QC technique in the CADB summary software since fixing some station values may result in 
degrading the quality of data for other locations. Other sources of data, such as from NCEI, should be used if 
higher QC data is desired. 

There are inconsistencies across the global stations in terms of the level of maintenance in the measuring 
and reporting equipment over time, and thus the level of quality of the reported values. Also, reports are sent at 
many various times of a day with varying frequencies, where some stations routinely report at least once an 
hour if not more, whereas other stations have sparse reports for the period being assessed, which can result in a 
poorer quality summary value due to poor sample size of the raw reports. 

9. Summary 

A revamped suite of software has been developed at CPC to produce global station observation summary 
data with improved quality and stability, including upgraded meta-data station data, 30-year station normals, 
and a new time series web application. The CADB development team and other CPC teams continue to perform 
ongoing assessment to identify any changes that could be incorporated into the suite of software for further 
improvement. Publicly available CADB summary data is now in an improved user-friendly format in addition 
to providing new additional parameters, expansion to global stations, and access to the archive of available data. 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
46th NOAA Annual Climate Diagnostics and Prediction Workshop  
Virtual Online, 26-28 October 2021 

______________ 
Correspondence to: Aston Chipanshi, Agriculture and Agri-Food Canada, Science and Technology Branch, 300-2010-12th 
Avenue, Regina, SK, S4P 0M3;  E-mail: Aston.Chipanshi@agr.gc.ca 

Moisture Based Agroclimate Indices Across the Canadian Prairies 
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1. Introduction: Motivations and overview of the work 

In our ongoing assessment of agroclimatic indices across Canada’s largest agricultural zone in the Prairie 
Provinces under a changing climate (Chipanshi et al. 2021) (Fig. 1), we present a comparative analysis of soil 
moisture based indices derived from a water budget model,  the Versatile Soil Moisture Budget (VSMB) (Baier 
et al. 2000) under the present and future climatic scenarios. We analyzed values of available soil moisture and 
water stress for the summer peak crop growth period: June, July and August (JJA), when moisture limitations 
have their maximum impact on crop 
growth and final crop yield and 
production. Simulations of the water 
related indices were based on a cool 
season crop (spring wheat), which is 
typically seeded in the spring and 
harvested by end of September. The 
wheat crop in this study represents other 
cool season crops grown on the Canadian 
Prairies such as barley, oats, canola etc., 
which currently have the largest seeded 
acreage (Statistics Canada, 2019). This 
research was motivated by the following 
questions which resource based sectors 
are asking as effects of climate change 
gain prominence: 1) Will the Canadian 
Prairie agricultural space remain suitable 
in supporting the production of cool 
season crops under climate change?  2) Is 
there a likelihood that the current 
agricultural zone for cool season crops 
will shrink or expand under climate 
change?  

2.  Data and methodology/experimental design 

Daily soil moisture down to the root zone (~120cm) and crop water stress were simulated for all of the 
Canadian Prairies south of the 60° parallel for the base climate period of 1981 to 2010 and for both the medium 
(RCP4.5) and high (RCP8.5) emission projections extending to the distant future (2071–2100) (van Vuuren et 
al., 2011). The Versatile Soil Moisture Budget, which works as a simplified bucket model, was used to calculate 
the following moisture based agroclimatic indices. 

i) Available Water Content as a fraction of the total Water Holding Capacity of the soil layer down to the 
root zone - The Available Water Holding Capacities (AWHC) of the Canadian Prairie soils which 
define the range of soil moisture levels across the study area can be found in De Jong and Shields 
(1988). The AWHC values typically range from 50mm for the sandy soils to 250mm for the fine 

Fig. 1  Map of the study area with insert showing the location of the 
Canadian Prairies within Canada. The dotted line (red) 
describes the cropped zone under the present climatic 
conditions. 
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textured soils. In order to understand the effects of climate on soil moisture depletion in more detail, 
the AWHC for all grid points was set to 150mm and this represents a sandy loam soil on the Canadian 
Prairies. The simulated water by volume from the four layers was then converted to mm equivalents by 
multiplying volumetric content by depth. The product was then expressed as a fraction of the water 
holding capacity. With this normalization, the spatial and temporal comparisons could be made. 
 

ii) Crop Water Stress - Crop water stress (CWS) was calculated as the normalized ratio of actual and 
potential evapotranspiration from:  

  CWS = 1 - (AET/PET)       (1)  

where AET is the actual evapotranspiration and PET is the potential evapotranspiration. Ordinarily, 
AET is estimated from PET, which defines the maximum amount of moisture that can be lost under 
prevailing atmospheric conditions. In order to calculate PET at many locations in the study area, a 
temperature based method was used (Baier and Robertson, 1968) unlike other methods that require 
multiple variables to estimate PET. To estimate maximum AET from PET, a crop coefficient (Kc), 
which is dependent on crop stage is multiplied by PET. The actual transpiration is affected by soil 
moisture in the root zone. Apart from soil moisture content in the layer, the coefficient for determining 
AET is also affected by the density of roots. An example of how to derive soil water coefficients can 
be found in Ritchie et. al (1973). 

iii) Climate Moisture Index (CMI) - The Climate Moisture Index is the difference between Precipitation 
and Potential Evapotranspiration for determining water requirements for multiple uses such as crop 
growth and irrigation. It is calculated from: 

CMI = P – PET        (2) 

where P is the total precipitation (gridded daily P values in this study) and PET as calculated in Equation 
1.  

The VSMB requires inputs of daily maximum and minimum air temperature and precipitation. These were 
obtained from the 10 km gridded data set from 1981 to 2010 (https://cfs.nrcan.gc.ca/projects/3/4). Similar 
variables were needed to run the VSMB for two emission scenarios: RCP4.5 (moderate emission) and RCP8.5 
(high emission) from 2006 to 2100 (https://www.pacificclimate.org/data/statisticallydownscaled-climate-
scenarios). Six GCMs were used to generate T and P per emission scenario. The VSMB was configured to run 
with 4 soil layers in 30 cm increments from 0 to ~120cm.  

3.  Results 

a) Soil moisture availability in summer  

Figure 2 shows a comparison of available soil moisture for the months of June to August and compares the 
climatological values (shown as baseline or 1981 to 2010) with values simulated from climate change scenarios 
under the medium (RCP4.5) and high (RCP8.5) emission scenarios. Climate change results are presented in 30-
year time steps as near future (2011 to 2040), far future (2041-2070) and distant future (2071-2100). The 
baseline maps show that soil moisture is usually depleted in August, which nearly coincides with the period 
when cool season crops reach maturity or near harvest time. Under climate change, soil moisture depletion 
occurs much earlier (July) irrespective of the emission scenario although depletion is amplified under the high 
emission scenario. The spatial extent of the area with the least moisture (red) is relatively small for August 
compared to July and Manitoba is less impacted compared to Alberta and Saskatchewan. The early peak in soil 
moisture depletion in July under climate change is in response to early summer warming that has been reported 
across the study area (Tam et al., 2019).   

b) Crop Water Stress  

Under climatological conditions (1981-2010), crop stress is least in July when the majority of precipitation 
is received across the Canadian Prairies (Fig. 3).  There are exceptions from southern Alberta and southwestern 
Saskatchewan  where  pockets  of stress  in  the  order of 0.4 and  above  can be  expected  over the  long  term.   
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Fig. 2  The spatial and temporal variability of soil moisture during the summer months (From top to bottom 
panels are for June, July and August, respectively). 
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Fig. 3  Simulated  crop water stress for a wheat crop under the present and future climate change scenarios 
(From top to bottom panels are for June, July and August, respectively). 
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Under both medium and high emission scenarios, crop stress expands beyond the agricultural zone and reaches 
its maximum during the month of August. 

c) Climate Moisture Index  

The southern agricultural zone of the Canadian Prairies experiences water deficits (the difference between 
Precipitation and Potential Evapotranspiration) of up to 450mm during the growing season under the observed 
climate (1981-2010); baseline map. Under the climate change scenarios studied, water deficits in the order of 
<=450mm expanded northwards and eastwards for both emission scenarios across the 30-year climate periods 
up to the distant future (Fig. 4). On a relative basis, the CMI index shows that Manitoba’s water deficit ranks 
better than Alberta and Saskatchewan.       

4.  Summary 

We found changes in the temporal and spatial distribution of the water based indices across the Prairie 
landscape. Chiefly, the timing of when soil moisture is least in the soil occurs early under climate change 
(around July) compared to the observed climate period (1981 to 2010) where soil moisture depletions occurs in 
August. Using the difference between precipitation and potential evapotranspiration as a proxy for water 
availability, moisture deficits expanded northwards and eastwards and beyond the current agricultural zone 
under the high emission scenario. Based on these findings, rain-fed agriculture for the traditional cool season 
crops like wheat, barley and canola may become riskier  to grow in the distant future due to increased dryness 
in the soil and high evaporative losses conditioned by high temperatures. It will be possible to adjust the crop 
calendar to take advantage of when these risks are less intense as an adaptation measure, however a detailed 
analysis of the agroclimatic indices at finer scale (temporally and spatially) will provide more insight for 
addressing variability. 
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Economic value estimates can be used to evaluate forecast performance. Called Value-of-Information 
(VOI) when used to compare alternatives in areas such as pharmaceutical R&D and oil and gas exploration, 
this approach can be used much like verification metrics to identify regions, seasons, and lead times where 
extended-range forecasts outperform climatology for use in decision-making. This approach easily supports 
multi-variable performance evaluation. It also addresses some end-users’ assumption that extended range 
forecasts aren’t useful because the shorter-range forecast is more accurate.   

1. Introduction 

Murphy (1993) describes the conventional metrics that summarize the relationship between forecasts and 
observations - such as error measures, RMSE, hit rate, accuracy - as “quality” measures. Economic value, which 
Murphy simply calls “value”, is the expected savings for decisions made using forecasts, compared to using 
climatology.  

Quality metrics are applied in many domains of forecasting. They depend only on forecasts and ground 
truth, and are independent of any specific use-case. Typically used in contexts where acquiring information is 
costly, Value-of-Information (VOI) metrics integrate forecasts and ground truth with models of specific 
decision contexts. They can combine into a single measure of the impact of multiple variables, forecast products, 
and lead times. A further difference is that the units of quality metrics are environmental scales, e.g. length, 
temperature. The exception is metrics like hit rate and false alarm rate that are most similar to VOI metrics. 
VOI metrics are in end-user-relevant units like $, delay, or the probability of a good or bad outcome. 

The main drawback of VOI metrics is that they depend on a specific decision context. However, since VOI 
can show skill in forecasts that show no skill using conventional verification metrics---and vice versa---it can 
pay off to search for skill using VOI metrics for specific end users.  

Moreover, some common characteristics of decisions made using extended-range forecasts can narrow the 
focus to decision models most relevant to exploiting these forecasts. 

Fig. 1  Schematic of two-stage decision, where the consequences of weather outcomes are affected by 
planning decisions that must be made based on an extended-range forecast and tactical decisions that 
can be made using a shorter-range forecast. 
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2.  Common features of extended-range decisions 

Decisions that end users would make using extended range forecasts are systematically different from the 
ones they make with shorter-term forecasts. In general, end users will use longer-range forecasts to make 
decisions that take longer time to implement, such as when consequences depend on the location of a slow-
moving asset. For example, if you are planning a major military exercise or other event that requires people to 
converge at a selected location, it would make sense use an extended-range forecast to make that choice.  

An action that requires a long 
time to implement is also likely to 
be costly―and therefore only done 
in an unusual case, for an extreme 
environmental event: if it’s 
something that the end user would 
need to do often, they would have 
invested in a way to make it less 
costly. The consequences of 
extended-range decisions may 
depend on variables that 
accumulate over time, such as 
precipitation, or drought.   

Longer-lead decisions include 
stage-setting decisions such as 
reserving some kind of agricultural 
equipment, pre-positioning 
humanitarian response supplies or 
weather-related retail inventory. 
This means that later decisions that 
can be made with shorter-range 
forecasts can still affect the 
consequences. In other words, 
there is flexibility remaining at 
shorter lead times: e.g., ship routes 
may be updated repeatedly. The 
value of the extended-range 
forecast is similar to option value.  

Some of these characteristics 
we can use to make some 
generalizations about the types of 
value or with the types of decision 
contacts in that we can use some of the ways we can look for value in forecasts.  

3.  Two-stage decisions: Garden Party Example 
VOI allows us to measure the value of extended range forecasts while taking into account the fact that the 

decision maker may make related decisions using more accurate, later forecasts. We illustrate this with a simple 
two-stage cost-loss model (Fig. 1).    

Using the notation from Figure 1,  

VOI = E[c(a1, a2,w) – c(f(φe), f(φs),w)] 

The first term is the consequences of reference decisions―e.g. the end user uses climatology to make the 
decision, while in the second term, the two decisions are made using forecasts. The decision policies f(φ) do not 

Fig. 2  Illustration of the garden party decision scenario. Time moves from 
left to right―decisions are made using the forecasts available before 
each decision. 
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have to be identical at the two stages. Like quality metrics, VOI depends on the relationships among φe, φs, and 
w. However it also depends critically on the user specific function c( ).  

We will take the simplest two-stage decision model, a two-stage cost-loss model with two alternatives at 
each stage and two weather outcomes. This structure can be adapted to many decision contexts, but as an 
accessible narrative to explain the parameters, we’ll treat it as a garden party, illustrated in Figure 2. The end 
user is planning a garden party for a particular date and time. The extended range forecast for that date, 𝜙𝜙𝑒𝑒  is 
received first---summarized as either warm (enough) or cold. At that time the end user must decide whether to 
reserve a tent, incurring a cost 𝑐𝑐1.  Later, the enduser receives a second forecast 𝜙𝜙2 for the date and time of the 
party, and must then decide whether to rent the tent, incurring an additional cost 𝑐𝑐2. 

The consequences of these two decisions further depend on the weather outcome 𝑤𝑤---if the weather is good, 
the consequence is zero plus any costs incurred for the tent. If the weather is bad, then if the end user rented the 
tent, the consequence is again zero plus tent costs, but if the end user did not rent the tent, the consequence is 
Loss, normalized to one.  

VOI is often measured as a percent of the value of perfect information―with perfect information, the end 
user would prepare for adverse weather when it occurs and never otherwise. 

4.  Data used to illustrate 

To illustrate the use of VOI to evaluate extended-range forecasts, we use the NOAA MDL GFS MOS MEX 
for the extended range,1 and MOS MAV guidance for short-range decisions.2 For ground truth, we use hourly 
data from NCEP ISD,3 and for climatology, max average daily temperatures by day of the month average from 
1981-2010,4 for twenty stations in the contiguous United States.  

We average results over all days in April and May, 2015-2019, all valid at 1800 UTC, at the following 
twenty stations: Cheyenne, WY: KCYS, Detroit, MI (Wayne): KDTW, New Orleans, LA INTL: KMS, Phoenix, 
AZ Sky Harbor: KPHX, Seattle-Tacoma, WA: KSEA, Washington D.C. Reagan National: KDCA, KBLV, 
KDAY, KELP, KJAX, KMCN, KBOI, KOKC, KOMA, KORF, KPSM, KPUB, KSAN, KSAT, and KVCB. 

Since the available climatology gives daily maximum temperature, and actuals are for 1800Z, we estimated 
the bias of using the daily maximum as a prediction of the 1800Z temperature, and removed this bias of 5.1° to 
estimate a climatological temperature for the valid time. 

5.  Effect of short-term flexibility 

The costs 𝑐𝑐1 and 𝑐𝑐2 are a proportion of Loss, and 0 < 𝑐𝑐1, 𝑐𝑐2 < 1, and additive, i.e. the consequence of 
choosing to both reserve and rent the tent  =  𝑐𝑐1 + 𝑐𝑐2. However, the end user cannot rent the tent if they haven’t 
already reserved it. More general models can also be included by changing this last assumption, as in the next 
section. 

In this model, short-term flexibility is reflected in how much of the total cost of the tent can be held back 
until the short-range lead time. In other words, how large is  𝑐𝑐2 as a proportion of 𝑐𝑐1 + 𝑐𝑐2. If 𝑐𝑐2

𝑐𝑐1+𝑐𝑐2
 = 0, there is 

no flexibility, and the entire cost of the tent must be committed at the extended-range lead time. If 𝑐𝑐2
𝑐𝑐1+𝑐𝑐2

 = 1, 
there is no cost to reserve the tent, and the extended-range forecast has no value---because it is never worthwhile 
to reserve the tent.  

Figure 3 shows how flexibility, measured as 𝑐𝑐2
𝑐𝑐1+𝑐𝑐2

 affects the average VOI for 18Z temperature forecasts 
for the stations and dates listed above, measured as a percent of the value of perfect information, with 𝑐𝑐1 + 𝑐𝑐2= 
0.25 and the weather is considered bad if the temperature is less than 60℉ and good otherwise. RMSE is shown 

                                                
1 https://vlab.noaa.gov/web/mdl/extended-range-gfs-mos 
2 https://vlab.noaa.gov/web/mdl/short-range-gfs-mos 
3 https://www.ncei.noaa.gov/access/search/data-search/global-hourly 
4 https://www.ncei.noaa.gov/products 
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in black on its own axis as a 
reference―it is in temperature 
units (not shown). However, the 
red bar at the bottom of each plot 
represents the region in which the 
skill is negative―assuming 
climatology is used in the 
extended-range decision and 
everything else is identical to the 
with-forecast decision. In the 
climatology reference, the short-
range decision is still made using 
the short-range forecast. 
Climatology differs by station and 
date, and therefore, for some dates 
and stations, the climatology will 
call for reserving the tent, and 
others it will not. 

While RMSE skill is positive 
at all lead times in this example, 
which only goes out to 192 hours, 
when there is more flexibility 
remaining at shorter lead times, the 
VOI of the extended-range 
forecast is negative for longer lead 
times. The less flexibility 
remaining at the shorter lead time, 
and the bigger the commitment at 
the extended-range lead time, the 
higher the value of the extended-
range forecast. In other words, the 
characteristics of the decision 
maker―in this example, flexibility 
summarized as 𝑐𝑐2

𝑐𝑐1+𝑐𝑐2
, affects 

whether the forecasts have value 
(skill) relative to climatology. 
Although not shown here, the 
threshold for bad weather and the 
total cost to prepare also substantially affect the VOI. 

Note that the short-range lead time also affects the VOI, which makes sense as the shorter the lead time, 
the better the short-range forecast, but the effect is relatively small for short-range lead times of 1-3 days. 

6. Conclusions 

Economic value metrics can find value over and above climatology in forecasts where that show no skill 
using conventional verification metrics―and vice versa. In the example above, we illustrated the VOI method 
using lead times of only 8 days, but in other work, we find positive skill using extended range forecasts at lead 
times where RMSE does not.  

By exploring VOI as a function of user characteristics, it is possible to find skill that would be overlooked 
if you use only accuracy measures. It can therefore help identify end users who can benefit from forecasts. 

Fig. 3  VOI depends on flexibility remaining at short-range lead time. VOI, 
measured as a percent of the VOI for perfect forecasts, is shown as a 
function of the extended-range forecast lead time, the short-range lead 
time, for five levels of flexibility, with RMSE on its own scale shown 
as a reference 



REGNIER AND FELDMEIER 
 

 

143 

References 

Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. 
Forecasting, 8, 281-293. 

Pegion, K., B. P. Kirtman, E. Becker, D. C. Collins, E. LaJoie, R. .Burgman, R. Bell, and Coauthors, 2019:  The 
Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. 
Soc., 100, 2043-2060,  doi:10.1175/BAMS-D-18-0270.1 



 



NWS Science and Technology Infusion Climate Bulletin 

Featured Special Collections 
(https://vlab.noaa.gov/web/osti-r2o/climate) 

 

 

 

Climate Prediction Science and Technology Digest   (2008 – 2022) 

STI Climate e-Communications 

NOAA Climate Test Bed Joint Seminar 
Series Extended Summaries Collection 
Volume 

S&T Infusion  
e-Lecture Series & Notes 



  


	46th NOAA CDPW Digest
	PREFACE
	CONTENTS
	OVERVIEW
	1. Subseasonal-to-Seasonal Prediction
	Do Models Generate Realistic Simulations of the North Atlantic SST?
	Preconditions for Extreme Wet Winters over the Contiguous United States
	MJO Impacts on Winter Weather Event Frequency
	Prediction Challenges Associated with Errors in Linear Trends of Tropical Pacific Sea Surface Temperature
	Skillful Long-lead Prediction of Summertime Heavy Rainfall in the US Midwest from Ocean Salinity
	Evaluating the Potential of a Blocking Predictor in a Hybridized Dynamical-Statistical Model for Improved Week 3-4 Temperature and Precipitation Outlooks
	Dynamical Weighting of the Week 3-4 Models based on Forecasts of Opportunity
	Evaluation of Subseasonal Arctic Sea Ice Hindcasts in an NCEP’s UFS-based System
	Regional and Global Climate Drivers of Marine Heat Waves and Related Atmosphere-Ocean Anomalies in the Eastern North Pacific
	Mechanism of the Centennial Subpolar North Atlantic Cooling Trend in the FGOALS-g2 Historical Simulation
	Initialized and Uninitialized ENSO Predictability in Year 2+
	Seasonal Tropical-Extratropical Teleconnections Originating from Tropical Rainfall Modes Beyond Canonical ENSO for Northern Winters

	2. Extremes and Extreme Events
	Global Seasonal Forecasts of Marine Heatwaves
	Was the February 2021 Cold Air Outbreak over the Central U.S. a Subseasonal Forecast of Opportunity?
	A Diagnosis of 2018/19 and 2019/20 Winter CPC Outlooks and Model Forecasts
	The 2020-21 Southwestern U.S. Drought: A Preliminary Study on Its Causes and Prediction
	Impact of the MJO on the Forecast Skill of Week-2 Severe Weather over the United States
	Fewer Troughs, Not More Ridges, Have Led to a Drying Trend in the Western United States
	Predictability of Summer Monsoon Extreme Rainfall Events over Taiwan Using NCEP GEFSv12 Reforecast
	Sea-Surface Temperatures and Vertical Wind Shear as Precursors to Tropical Cyclone Activity in the Caribbean and an Expanding Main Developing Region

	3. Applications of Modern Technologies
	Deep Learning for Subseasonal Precipitation and Temperature Errors
	Ensemble Predictability of Week 3/4 Precipitation and Temperature over the United States via Cluster Analysis of the Large-Scale Circulation
	Meta-heuristic Ant Colony Optimization Technique to Forecast the Amount ofSummer Monsoon Rainfall: Skill Comparison with Markov Chain Model
	Enhancing Subseasonal Temperature Prediction by Bridging a Statistical Model with Dynamical Arctic Oscillation Forecasting

	4. Development and Use of Climate Data Records
	U.S. Climatological Standard Normals: A Utilitarian Workhorse
	Communicating Uncertainty in SST Analysis
	Updating the CPC T2M Observational Verification Dataset and Impact on the Seasonal T2M GPRA
	Understanding US Drought in Past 120+ Years
	Developing an Experimental Week 3-4 Storm Track Outlook over North Pacific, North America, and North Atlantic
	CPC’s Climate Assessment Database Version 2
	Moisture Based Agroclimate Indices Across the Canadian Prairies Under a Changing Climate
	Extended Range Verification Using Economic Value





