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PREFACE 

It is with great pleasure that the Climate Prediction Center and the Office of Science and 

Technology Integration (STI) offer you this synthesis of the 40th Climate Diagnostics and Prediction 

Workshop (CDPW).  The CDPW remains a must attend workshop for the climate monitoring and 

prediction community.  As is clearly evident in this digest, considerable progress is being made both 

in our ability to monitor and predict climate.  The purpose of this digest is to ensure that climate 

research advances are shared with the broader community and also transitioned into operations.  This 

is especially important as NOAA works to enhance climate services both across the agency and with 

external partners.  We hope you find this digest to be useful and stimulating.  And please drop me a 

note if you have suggestions to improve the digest. 

I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology Integration, for 

developing the digest concept and seeing it through to completion.  This partnership between STI 

and CPC is an essential element of NOAA climate services. 

 
David DeWitt 

Director, Climate Prediction Center 
National Centers for Environmental Prediction 
NOAA’s National Weather Service 
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OVERVIEW 

NOAA's 40th Climate Diagnostics and Prediction Workshop was held in Denver, Colorado on 

26-29 October 2015. The workshop was hosted by the Physical Sciences Division (PSD) of NOAA's 

Earth Systems Research Laboratory (ESRL) and co-sponsored by the Climate Prediction Center 

(CPC) of the National Centers for Environmental Prediction (NCEP) and the Climate Services 

Division (CSD) of the National Weather Service (NWS). 

The workshop addressed the status and prospects for advancing climate prediction, monitoring, 

and diagnostics, and focused on five major themes: 

1. The evolution of climate diagnostics and prediction over the last 40 years; 

2. Extremes and risk management: knowledge and products to connect the diagnostics and 

prediction of extremes with preparedness and adaptation strategies; 

3. The prediction, attribution, and analysis of drought and pluvial in the framework of climate 

variability and change;  

4. Diagnostics and prediction of high impact extreme climate events; 

5. Prediction and attribution of Arctic climate variability, and the linkages of Arctic variability 

to lower latitudes. 

The workshop featured daytime oral presentations, invited speakers, and panel discussions with a 

poster session event held in the evening on 27 October. 

This Digest is a collection of extended summaries of the presentations contributed by 

participants. The workshop is continuing to grow and expected to provide a stimulus for further 

improvements in climate monitoring, diagnostics, prediction, applications and services. 
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 Charting a Path Forward at the Climate Prediction Center 

David G. DeWitt 

Climate Prediction Center, NOAA/NWS/NCEP, College Park, MD 

The Climate Prediction Center (CPC) provides the operational short-term climate prediction and 
monitoring capability for the National Oceanic and Atmospheric Administration (NOAA). CPC is a center of 
excellence with an extremely talented team of federal and affiliate scientists.  In order to continue to improve 
our existing products and services and meet stakeholder demand for new products and services CPC 
complements its internal capacity by leveraging the capabilities of the broader climate enterprise. Indeed, we 
and our collaborators have found the research to operations (R2O) and operations to research (O2R) activities 
to be mutually beneficial.  Over time we have found that a few key principals help to ensure successful 
collaborations. These include use of a co-development process to the extent possible, a focused product 
development strategy, and transparency in the research process. 

Currently, we are focusing our development efforts in areas that have received prioritization from NOAA 
management. Some specific activities that are being pursued include: 

• Exploring the feasibility of producing prediction products in the week 3-4 timescale.  Currently, the 
National Weather Service (NWS) does not have any prediction products at this timescale though there 
is significant stakeholder interest in having such products if they can be shown to have skill.  
Forecasts at this timescale are characterized by a small signal, large noise and have low predictability 
due to the decaying influence of atmospheric initial conditions and marginal influence from boundary 
conditions such as sea surface temperature, soil moisture, sea ice, etc.   Consequently, forecasts of 
opportunity are likely to serve as the backbone for these outlooks. 

• Development of experimental seasonal Arctic Sea Ice forecasts for the NWS Alaskan Region. Several 
key stakeholders including the military, transportation, and oil drilling industry are interested in 
forecasts of the ice cover in the Arctic. CPC is developing an improved version of the current 
operational sea ice forecasting model in order to better meet these stakeholder needs. 

• Incorporation of social science research to better understand our stakeholder needs and to improve the 
presentation of our products to better meet those needs. 

We are of course also engaged in research to enable the continual incremental improvement process for 
all of our products and services, which are too numerous to be listed here. There are several initiatives 
available for collaborating with CPC including through NWS headquarters and the Climate Program Office 
and Climate Testbed. If you are interested in collaborating with CPC and are unsure of the best way to engage 
us please feel free to send me an e-mail to david.dewitt@noaa.gov or call me at (301) 683-3428. 
 

OPENING ADDRESS 

 



1.  2015 CLIMATE OVERVIEW

40th NOAA Climate Diagnostics and 
Prediction Workshop
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An Overview of the El Niño-Southern Oscillation (ENSO) since 2014  

Michelle L’Heureux 
 Climate Prediction Center, NOAA/NWS/NCEP, College Park, MD 

1. The borderline El Niño during the Northern Hemisphere winter 2014-15 

Though sea surface temperature (SST) anomalies across a large swath of the central and eastern 
equatorial Pacific Ocean were above average during October 2014-February 2015, NOAA CPC did not issue 
an El Niño Advisory, which would have signified the onset of El Niño conditions.   The combination of the 
brief duration of above-average SSTs and a lack of clear atmospheric indicators across the tropical Pacific 
were the main reasons the winter of 2014-15 was considered a borderline El Niño or ENSO-neutral.  

The Niño-3.4 SST index was in excess 
of +0.5°C during November 2014-January 
2015 (based on ERSSTv4 using a 1981-
2010 climatology; Fig. 1). In the historical 
record, a full-blown “El Niño episode” 
requires ERSST Niño-3.4 SSTs to remain at 
or in excess of +0.5°C for at least 5 
consecutive overlapping seasons (3-month 
average), a condition not met during this 
period.  In addition, the equatorial Southern 
Oscillation Index (EQSOI), which measures 
the difference of sea level pressure between 
the western and eastern equatorial Pacific, 
was characterized by small monthly values 
(between zero and -0.3 standardized units in 
NCEP CFSR and CDAS) during October-
December 2014 (Fig. 2).  Global and 
tropical precipitation anomaly patterns were 
also largely inconsistent with El Niño 
during the latter half of 2014 as indicated 
by small values in the Principal Component 
(PC-1) time series related to the leading 
pattern of global precipitation (Fig. 3- top panel).  El Niño is typically linked to increased rainfall over the 
central and eastern equatorial Pacific, but instead, near average rainfall prevailed.  

2. The growth of a strong El Niño through October 2015 

An El Niño Advisory was issued in March 2015 due to the increase in several atmospheric indicators and 
a turnaround in the Niño-3.4 SSTs, which had decreased from January to February 2015 (Fig. 1).   The 
equatorial Southern Oscillation Index (EQSOI) also strengthened to values near -1.0 standard deviations 
during March (based on NCEP CFSR and CDAS; Fig. 2).  Most notably, a strong westerly wind burst 
emerged and enhanced convection became evident near the International Date Line.  This westerly wind burst 
helped to drive the downwelling phase of an oceanic Kelvin wave eastward, further fueling the growth of El 
Niño.  Also, the oceanic state started off considerably warmer in 2015 compared to early 2014, when models 
first suggested a possible El Niño. 

Fig. 1  Monthly Niño-3.4 index values based on the NOAA 
ERSSTv4 dataset (Huang et al. 2015) for previous 
moderate-to-strong El Niño events dating back to 1950.  
Values are presented over two years, so the dashed black 
line shows 2014 (first set of months 1 (Jan) -12 (Dec)) 
through 2015 (second set of months 1 (Jan) -12 (Dec)).  The 
solid black line shows values only through October 2015.  
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 El Niño grew at a nearly constant pace 
through the first three quarters of 2015. By 
early June, CPC/IRI forecasters favored a 
strong El Niño event.  In August, 
forecasters indicated the event would be 
potentially historic, noting that the 
“consensus unanimously favors a strong El 
Niño, with peak 3-month SST departures in 
the Niño 3.4 region potentially near or 
exceeding +2.0°C” (Aug. 13th ENSO 
Diagnostics Discussion).  By September 
2015, the EQSOI was close to -2.0 standard 
deviations. Also, a prominent west-east 
dipole of suppressed convection over 
Indonesia and enhanced convection over 
the central Pacific had formed (Fig 3- 
bottom panels).  In addition to the tropical 
Pacific, it was clear that, by July-September 
2015, the influence of El Niño extended 
globally:  below-average precipitation was observed over portions of eastern Texas, Central America, the 
Caribbean, northern South America, India, and some regions of equatorial Africa.  

Fig. 3  (top panel) Standardized monthly Niño-3.4 index values (black line) and the leading Principal 
Component of global precipitation (red line) from January 1982 through September 2015.  (left bottom 
panel) The reconstruction of July-September (JAS) precipitation anomalies based on the JAS 2015 PC-1 
value.  (right bottom panel) The observed July-September 2015 precipitation anomalies.  Data based on the 
Climate Anomaly Monitoring System (CAMS) and OLR Precipitation Index (OPI; Janowiak and Xie 1999). 

Fig. 2  Monthly Equatorial Southern Oscillation Index values 
(standardized) based on the NCEP Climate Forecast System 
Reanalysis (CFSR) for previous moderate-to-strong El Niño 
events dating back to 1979. 
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3. North American Multi-Model Ensemble 
(NMME) Niño-3.4 SST forecasts 
through October 2015 

NOAA CPC first issued an El Niño 
Watch in March 2014 stating there was 
roughly a 50% chance of El Niño developing 
during the Northern Hemisphere summer or 
fall.  This outlook was based largely on 
multi-model forecasts of the Niño-3.4 SST 
index.  One tool is the North American 
Multi-Model Ensemble (NMME), a suite of 
state-of-the-art general circulation models 
updated once monthly, which favored El 
Niño to develop in 2014.  Fig. 4 displays the 
Niño-3.4 SST forecasts based on ensemble 
averages of each of the NMME models 
(listed in the legend) that were run, or 
initialized, from January 2014 through 
October 2015.  The colored lines only show 
the model forecasts initialized in October 
2015, while the grey lines show the forecasts 
made prior to October 2015.  The thick black 
line is the observed Niño-3.4 SST index 
based on the high resolution, daily OISST 
dataset (Banzon et al., 2014).  

From Fig. 4 it is clear that NMME 
forecasts of the Niño-3.4 SST index were too warm for target forecasts in 2014.  Most ensemble averages 
(grey lines) were greater than the observations (black line).  Some ensemble mean forecasts of Niño-3.4 were 
at or in excess of 2°C for the latter half of 2014, which is an indicator of a strong El Niño.  While some 
warming was observed during the last half of 2014, SSTs only barely reached minimal El Niño thresholds 
(see Section 1). 

In contrast, the NMME forecasts performed considerably better during 2015.  By the time an El Niño 
Advisory was issued in March 2015, most NMME models suggested at least a moderate-to-strong El Niño.  
Two models, the NCEP CFSv2 and the COLA-RSMAS CCSM4, were hinting at an El Niño during 2015 as 
far back as runs made in November 2014.   There was a slight positive bias in the NMME plume for target 
forecasts in summer 2015, but largely the observations (black line) were clearly within the spread of the 
NMME forecasts through most of 2015.  

Acknowledgements.  The NOAA/CPC ENSO forecast team: Anthony Barnston, Emily Becker, Gerry Bell, 
Tom Di Liberto, Jon Gottschalck, Mike Halpert, Zeng-Zhen Hu, Vern Kousky, Wanqiu Wang, Yan Xue. 
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The Faucet: Informal Attribution of the May 2015 
Record-Setting Texas Rains  

John W. Nielsen-Gammon 
Texas State Climatologist 

  Texas A&M University, College Station, TX 

1. Introduction 

Texas received its all-time wettest month of rainfall in May 2015, with an average of 9.05 inches (230 
mm) across the state according to National Centers for Environmental Information (NCEI) climate division 
data. 

The purpose of this talk is to put the extreme rainfall events in Texas in 2015 in a historical perspective 
and to consider the possible role of contributing factors, including anthropogenic climate change, in the May 
2015 rainfall. 

2. Monthly rainfall totals 

The wettest months of the year in Texas are 
climatologically May, June, September, and October.  
Historically, 80% of the largest monthly rainfall 
totals have occurred during one of those four months.  
Figure 1 shows the historical distribution of rainfall 
in Texas for those four months, with the four months 
of 2015 highlighted in red.  May 2015 was an 
extreme outlier.  The gap between May 2015 and the 
second largest total (6.66”, or 170 mm) is as large as 
the gap between the second largest total and the 88th 
largest total.  The May 2015 total was easily 
sufficient to break the record for wettest 31 
consecutive days as well.  Longer-duration records 
were also broken, such as the wettest first six 
months of the year.  

October 2015 was also relatively wet, with 6.17” (157 mm) tying for the second wettest October on 
record.  Despite this, the month started off dry, with 80% of the precipitation falling in the final ten days and 
setting a record for the wettest ten consecutive days in Texas.  For daily precipitation totals, I aggregate the 
spatial precipitation analyses produced by the Northeast Regional Climate Center; these analyses cover the 
period 1950-present. 

Within that ten-day period, Texas also experienced its wettest storm system on record, based on two-day 
(2.34”, 60 mm), three-day (3.02”, 77 mm), four-day (3.61”, 92 mm), and five-day (3.88”, 99 mm) totals. 

When the mud settled, Texas had experienced its wettest year on record, breaking the previous record by 
nearly an inch. 

Both May and October effectively ended droughts in Texas.  According to NCEI Palmer Drought 
Severity Index calculations, the 2010-2015 Texas drought ended in November 2014, but much of the state 
was still suffering from unusually low reservoir levels.  In May, numerous reservoirs went from less than 20% 

Fig. 1  Monthly precipitation totals during the wettest 
months of the year in Texas, with 2015 totals in 
red.  
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of conservation storage capacity to over 100%, ending the water supply drought across the entire state.  The 
October rainfall ended a flash drought whose impacts were almost entirely agricultural, as streamflow and 
reservoir levels remained high. 

3. Attribution and the faucet 

The precipitation received over a given area in a given period of time is the result of a combination of 
dynamical and thermodynamical factors that ultimately result in precipitation production through ascent of 
moist air and subsequent receipt of that precipitation on the ground.  Extreme events in particular tend to 
require a combination of factors all interacting favorably.   Strictly speaking, the individual factors cannot be 
cleanly separated, because each factor influences the others.  However, in the case of precipitation it is useful 
to separately consider the thermodynamic effects of climate change separately from the dynamic effects of 
climate change.  

The direct thermodynamic effect of climate change is to increase the water vapor carrying capacity of the 
atmosphere.  All else being equal, a saturated atmosphere that is warmer will produce more precipitation.  Of 
course, all else is never equal, and the other thermodynamic and dynamic effects of climate change help to 
control the frequency of precipitation events, the vigor of ascent, and the intensity of storms, such that the 
total precipitation received during a given month or year is a product of the changing dynamics and 
thermodynamics of the atmosphere.  

A good analogy is a water faucet.  The direct thermodynamic effect is comparable to the size of the pipe, 
which controls how much water can be delivered to the faucet.  The remaining dynamic and thermodynamic 

Fig. 2  Individual extreme rainfall events (defined as at least 6” (152 mm) of rainfall in one day) during May 
2015 in Texas, from daily Advanced Hydrologic Predictions System (AHPS) rainfall analyses. 
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effects are comparable to the handle of the faucet, which may be closed, slightly open, or fully open.  The net 
resulting precipitation depends on both the size of the pipe and the position of the handle.  However, when the 
handle is wide open, the precipitation intensity is controlled only by the size of the pipe. 

Over the past 121 years, there is essentially no trend in springtime precipitation in Texas.   If 
anthropogenic climate change has had an effect, it has been offset by natural variability.  It is thus difficult to 
argue that climate change played a direct role in the record-setting May rainfall. 

 An upward trend does exist in intense one-day and two-day rainfall events in the south-central United 
States (e.g., Janssen et al. 2014).  This means either that the precipitation handle is wide open more frequently, 
or that on days in which the precipitation handle is wide open, the atmosphere is delivering more precipitation.  
Since overall precipitation has not increased, we presume that the pipe has become wider rather than the 
handle position becoming more favorable.  In other words, climate change is increasing the amount of 
precipitation on those days in which ideal intense precipitation conditions are present. 

As for a possible interaction effect between natural variability and climate change, Wang et al. (2015) 
have found that global warming may have enhanced the atmospheric response to El Niño in Texas, which 
even without climate change favors enhanced springtime precipitation under developing El Niño conditions. 

4. The pipe: Heavy rainfall events during May 2015 

During May 2015, near-ideal intense precipitation conditions were present in various locations across 
Texas.  On sixteen different days, some locations in Texas received at least six inches (152 mm) of rainfall 
(Fig. 2).  These events occurred within every climate division of the state, and included major flooding events 
north of Fort Worth, along the Blanco River in Wimberly and San Marcos, and in parts of Houston.  
Individual events such of these appear to have been made more likely due to climate change. 

5. Summary 

With the lack of a positive trend in monthly springtime precipitation, there is no direct observational 
evidence that the record-setting May 2015 statewide rainfall total in Texas had an anthropogenic component.  
One study has found a possible enhancement of the springtime Texas rainfall response to El Niño.  Much 
more apparent is the likely contribution of anthropogenic climate change to individual intense rainfall events 
within the month of May.  This contribution is analogous to the effect of a wider pipe on water delivered by a 
faucet. 
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ABSTRACT 

California’s Central Valley is undergoing a groundwater drilling boom amid one of the most severe 
droughts in state history from 2012~2015. Within California’s Central Valley, home to one of the world’s 
most productive agricultural regions, drought and increased groundwater depletion occurs almost hand-in-
hand but this relationship appears to have changed over the last decade. Data derived from 497 wells as 
variations of groundwater level (GW) have revealed a continued depletion of groundwater about one year 
after drought, a phenomenon that did 
not exist prior to year 2000 from the 
sliding correlation between PDSI 
and GW with a 15-year running 
window (Fig. 1). Possible causes 
include (a) lengthening of drought 
associated with amplification in the 
4-6-year drought frequency since the 
late 1990s (Fig. 2), that drought 
conditions in California have 
become increasingly more intense 
and lasted longer (Cayan et al., 2010; 
MacDonald, 2010; Diffenbaugh et 
al., 2015), and (b) intensification of 
drought and increased pumping that 
enhances depletion, that Famiglietti 
(2014] noted that drought is the 
leading contributor to groundwater 
behavior, rather than changes in 
reservoir storage. Altogether, the 
implication is that groundwater 
storages in the Central Valley will 
likely continue to diminish even 
further in 2016, regardless of the 
drought status. This work has been 
accepted in Journal of 
Hydrometeorology (Wang et al., 
2016).  

Furthermore, as we know, 
upper-troposphere ridges play an 
important role to influence the 

Fig. 1  Sliding correlations between the Central Valley PDSI and the 
groundwater level (GW) in the following year (year+1; solid line) 
and in the same year (year 0; dashed line), computed with a 15-
year running window (one-sided). The LWET correlations with 
PDSI are indicated by thick circles for 2002-2014. Gray 
horizontal lines indicate the 99% confidence interval. 

Fig. 2  Wavelet spectrum of the PDSI using the Morlet param-6 
approach, in which the contour levels are chosen so that 75%, 
50%, 25%, and 5% of the wavelet power are respectively above 
each level. 
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drought in California (Wang et al. 
2014), but each drought year has 
different climate regime. To 
understand the circulation 
variations within dry years, we 
applied the empirical orthogonal 
function (EOF) to depict the 
variation(s) of the Nov.~Mar. 
250mb geopotential (Z250mb) 
high within the selected 18 dry 
winters. The results show that the 
first mode (Fig. 3a) and its 
Z250mb regression pattern with 
PC1 (Fig. 4a) is relative to the 
teleconnection varieties of Pacific 
North American (PNA) pattern 
(Fig. 4b) and the second mode (Fig. 
3b) and its Z250mb regression 
pattern with PC2 (Fig. 4b) is 
relative to the negative North 
Pacific Oscillation (NPO) pattern 
(Fig. 4d). By comparing Z250mb 
(Figs. 4b and 4d) and PDSI (Figs. 
5a and 5b) regression patterns with 
PNA and negative NPO, the 
variations of two dominated 
circulation patterns over Pacific 
Ocean, PNA and NPO, modulate 
the drought conditions in 
California. Nevertheless, the PNA 
and NPO variations do not directly 
cause the droughts.  
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Fig. 5 The boreal winter (Nov~Mar) PDSI 
regression patterns with (a) PNA and (b) 
negative NPO in 18 California dry years, 
superimposed with 95% significant test (hatch). 
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(b) 

 

Fig. 3 (a) The first mode of EOF1 (shaded) of winter (Nov~Mar) Z(250mb) 
in 18 California dry years and its relative PC1, superimposed with 
these18 years’ mean ZE(250mb) . (b) The second mode. 

Fig. 4  The Z250mb regression patterns in 18 California dry years with: (a) 
PC1 index (b) PNA index, (c) PC2 index, and (d) negative NPO 
index, superimposed with 95% significant test. 
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1. Introduction 

Recent multiyear droughts in California and the Great 
Plains coincide with an extended period of arid conditions 
over much of the contiguous United States that began in 
1999, with severe regional droughts occurring in 1999, 
2002, 2006, 2008, and 2011. Understanding the 
mechanisms and probability for drought onset, persistence, 
and intensity is paramount for decision makers, who must 
assess potential impacts and management options. If there 
is long-term predictability for drought, the “memory” for 
this predictability resides with the global oceans, but 
precisely how the global oceans influence observed North 
American drought remains unresolved.  In this study, we 
expand on previous studies by focusing on AGCM 
simulations where the decadal and interannual signals are 
effectively separated in order to examine how the cold 
phase Pacific SSTA patterns associated with different 
time scale variability impact hydroclimate over the 
contiguous United States, with a particular focus on the 
differences in amplitude of the equatorial and midlatitude 
SST anomalies and precipitation over the Great Plains 
region.  

2. Models, modeling methodology, and data 

Idealized AGCM simulations performed by members 
of the U.S. CLIVAR Drought Working Group (DWG) 
were used in this study. The low-frequency (LF) and 
high-frequency (HF) AGCM simulations of interest for 
this study were carried out by three of the five agencies 
that contributed AGCM data to the DWG in addition to 
the baseline simulations noted above. The three models 
are: 

1. The NASA Global Modeling and Assimilation 
Office (GMAO) NSIPP, version 1 (NSIPP1) 
AGCM at 3° × 3.75°, L34 resolution (Bacmeister 
et al. 2000; Schubert et al. 2002). 

2. The National Oceanic and Atmospheric 
Administration’s (NOAA) Climate Prediction Center Global Forecast System (GFS) AGCM at 2° × 
2°, L64 resolution (Campana and Caplan 2005). 

Fig. 1  The SST anomaly patterns (°C) used in 
forcing for experiments with principal 
components: (a) PcAn, (b) LFc, and (c) HFc. 
The top panels are the idealized anomaly 
patterns of each type and the bottom panels 
are the climatologically varying SSTs by 
years. 
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3. NOAA’s Geophysical Fluid 
Dynamics Laboratory (GFDL) 
Atmosphere Model, version 2.1 
(AM2.1), AGCM at 2° × 2.5°, L24 
resolution (Delworth et al. 2006). 

For the DWG AGCM simulations, 
idealized SST anomaly patterns are fixed in 
time and superimposed on climatologically 
varying SSTs derived from the Hadley 
Centre Sea Ice and Sea Surface 
Temperature dataset (HadISST; Rayner et al. 
2003) for the period 1901–2004. The SST 
pattern for the Pacific (PcAn; Fig. 1a) 
comes from the baseline experiments. (See Schubert et al. 2009 for methodology and derivation of SST 
patterns). Note that the principal component (PC) time series associated with the PcAn pattern in Fig. 1a 
captures the interannual variability of ENSO in addition to variability on decadal time scales. The Drought 
Working Group also produced patterns of SST anomalies associated with the low-frequency (LF) and high-
frequency (HF) tropical Pacific SST variability. The low-frequency cold (LFc) and high-frequency cold (HFc) 
patterns are shown in Figs. 1b and 1c, The patterns of the anomalies are similar in a broad sense (spatial 
correlations for PcAn and LFc, r = 0.93; PcAn and HFc, r = 0.9; and LFc and HFc, r = 0.79); however, the 
amplitude of the equatorial (midlatitude) anomalies differ by up to 1°C (0.3°C) between the different patterns. 
The GFDL AM2.1 and NASA NSIPP1 simulations were run for 50 yr and the NCEP GFS for 35 yr. For the 
purposes of the regional analysis in this study, the contiguous United States is divided into six subregions (see 
Fig. 2); the northern–southern western United States, the northern–southern Great Plains, and the northern–
southern eastern United States. 

3. Research highlights 

Overall, there is agreement with previous results using the DWG model data, as all of the models 
simulated drought conditions over large portions of the contiguous United States for the La Niña–like PcAn 
SST forcing pattern. Building on previous results of the DWG, the current study finds differing levels of 
sensitivity to regional differences in prescribed Pacific SST forcing patterns with respect to internal 
atmospheric variability in the three AGCMs. The coherence of the AM2.1 responses for all forcing patterns 
and across all seasons (Fig 3a and d) suggests the model is overpredicting the strength of the tropical SST 
signal. Internal atmospheric variability and land–atmosphere interactions were shown to influence the GFS 
model response, though the shorter simulations also play a role in the reduced significance of the results 
presented (Fig. 3c and f). The SST forced response in the NSIPP1 AGCM (Fig 3b and e) is a function of the 
relative amplitude of the SST forcing in the tropics and middle latitudes, with detectible constructive 
interference between the two signals, similar to that seen between ocean basins (McCabe et al. 2004; Schubert 
et al. 2009). The current study points to a more significant role for the extratropical component of the SST in 
forcing the precipitation response; particularly over the western United States and northern Great Plains, via 
distinctly different teleconnections. In light of the results presented, it is certainly reasonable that the 
amplitude of the Pacific (PcAn) pattern dominated the drought response in the earlier works by the U.S. 
CLIVAR Drought Working Group (Schubert et al. 2009), when compared to the multidecadal Atlantic and 
warming trend patterns.  

While the large equatorial component of the PcAn forcing may not be appropriate for comparison with 
the decadal- and century-scale Atlantic multidecadal oscillation (AMO) and global trend pattern, it is critical 
in the context of understanding the observed variability of the Pacific. The PcAn pattern can be seen as a 
“worst case” scenario for drought that is all the more relevant considering the recent occurrence of multiyear 
La Niña events (1998–2001, 2007–09, and 2010–12). The amplified response to the combined PcAn pattern 
seen in the NSIPP1 AGCM suggests that the severity of several recent droughts, particularly in the U.S. 

Fig. 2  The regions of the United States used to form averages 
in Figs. 3 and 4 
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Southwest and Great Plains, is likely influenced by the combined cold decadal pattern that has prevailed since 
the late 1990s (Burgman et al. 2008, Clement et al. 2009) and the large number of individual La Niña events. 

This work has been published in Journal of Climate in 2015. 
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ABSTRACT 

 A popular perception is that landfalling tropical 

cyclones help to mitigate droughts in the Southeastern 

United States (SeUS). However intriguing paradigms 

on the role of large scale SST variations on continental 

US including SeUS droughts and seasonal Atlantic 

tropical cyclone activity confronts us. These paradigms 

suggest that in the presence of warm (cold) eastern 

tropical Pacific and cold (warm) Atlantic Ocean Sea 

Surface Temperature Anomaly (SSTA) lead to the 

increased likelihood of wetter (drier) conditions over 

the continental US including the SeUS. Juxtaposing 

this understanding with the fact that landfalling tropical 

cyclones contribute significantly to the annual mean 

total rainfall in the SeUS and in El Niño (La Niña) 

years with cold (warm) tropical Atlantic SSTA lead to 

reduced (increased) Atlantic tropical cyclone activity 

raises a conflict on the role of the large-scale SST 

variations in SeUS hydroclimate.   

This study attempts to investigate the apparent 

dichotomous role of the large scale SST variations on 

the SeUS hydrology by examining the role of rainfall 

from landfalling tropical cyclones in the SeUS to local 

seasonal droughts (Figure 1).  

This work has been published in Climate Dynamics 

online on 14 May 2015. 
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Fig. 1  a) The average drought index over the 28 

watersheds spread across the southeastern 

United States from the control model and 

experimental model (where the rainfall for 5 

days subsequent to landfall is removed) and 

the difference in the drought index between 

control and experiment, showing that the 

mitigating impact of the landfalling TCs is 

rather minimal, b) The drought index averaged 

across all 28 watersheds for each year from 

1954 to 2010 from control and experiment, 

revealing apparent difference in months when 

there are multiple landing TCs.  (From Misra 

and Bastola 2015). 
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Flash drought refers to relatively short periods of warm surface temperature and anomalously low and 

rapid decreasing soil moisture (SM). Based on the physical mechanisms associated with flash droughts, we 

classify these events into two categories: heat wave and precipitation (P) deficit flash droughts. We analyze 

flash droughts based on observations of P, temperature (Tair), SM and evapotranspiration (ET) reconstructed 

using four land surface models (VIC, Noah, Catchment and SAC) for the period 1916 to 2013. Both types of 

flash droughts are manifested by SM deficits which cause damage to crops. Therefore, both are agricultural 

droughts.   

  To determine the preferred regions for flash drought occurrence, we computed the frequency of 

occurrence (FOC) by using a threshold method. We processed each model separately. For a given pentad T 

and grid point x , we identified a flash drought event when a given definition of flash drought was met. That 

pentad was defined as the onset. For each grid point, we computed the total number of pentads N under flash 

drought of either type for the entire record for a given model. We defined the FOC as the percentage of 

pentads under heat wave or P deficit flash droughts.  

FOC (model) =  
 

      
 × 100%                    

where Ntotal is the total pentads.  

The requirements for heat wave flash droughts are 

Tair anomalies greater than one standard deviation (SD), 

ET > 0 and SM% less than 40%. Figure 1a shows the 

FOC for heat wave flash droughts. They occur most 

often in the North Central, the Ohio Valley and the 

Pacific Northwest. Heat wave flash droughts are resulted 

from the confluence of severe warm air temperature and 

low SM. The heat waves increase ET, and decrease SM. 

Therefore, they tend to occur in the vegetation dense 

areas.  

The second type of flash droughts is caused by 

precipitation deficits. We associate with lack of P, which 

causes ET to decrease and temperature to increase. The 

requirements for P deficit flash droughts are Tair > 1SD, 

ET<0 and P <40%.  Fig. 1b shows the FOC for P deficit 

flash droughts. P deficit flash droughts are more common 

than heat wave flash droughts. We find that P deficit 

flash droughts are about twice as likely to occur as heat 

wave flash droughts averaged over the conterminous U.S. 

(CONUS). They are most prevalent over the southern 

United States with maxima over the Southern Great 

Plains and the Southwest, in contrast to heat wave flash 

Fig. 1 FOC for (upper) the heat wave flash 

droughts and (lower) the P deficit flash 

droughts. The units are percentiles. Shadings 

are given by the color bar.  (Mo and 

Lettenmaier 2015) 
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droughts which are mostly likely to occur over the Midwest and the Pacific Northwest where the vegetation 

cover is denser.  

The P deficit drought is initialized by P deficits. The lack of P decreases SM. In the areas where SM and 

ET anomalies have linear relationship, ET decreases. That leads to the increase of sensible heat and high 

temperature. In this sense, high temperatures are the consequence of P deficits. 
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ABSTRACT 

Severe flooding occurred in Thailand during the 2011 summer season, which resulted in more than 800 
deaths and affected 13.6 million people. The unprecedented nature of this flood in the Chao Phraya River 
Basin (CPRB) was examined and compared with historical flood years. Climate diagnostics were conducted 
to understand the meteorological conditions and climate forcing that lead to the magnitude and duration of 
this flood. Neither the monsoon rainfall nor the tropical cyclone frequency anomalies alone were sufficient to 
cause the 2011 flooding event. Instead, a series of abnormal conditions collectively contributed to the 
intensity of the 2011 flood: anomalously high rainfall in the pre-monsoon season especially during March; 
record-high soil moisture content thorough the year; elevated sea level height in the Gulf of Thailand which 
constrained drainage (Fig. 1(a)-(c)), as well as other water management factors. In the context of climate 

Fig. 1  Monthly distribution of (a) rainfall computed from 1951-2013 for the CPRB, (b) soil moisture content 
couputed from 1948-2014 for the CPRB, and (c) sea level height computed from 1993-2013 for the Gulf of 
Thailand overlaid with 6 flood years. The above-normal values in 2011 are indicated by the yellow area.  
(d) Premonsoon (January-April) rainfall overlaid with the linear trend of the preriod 1980-2013 (red) and 
the 5-yr moving average (orange) for the CPRB. The linear trend slope is hightly significant with r2=0.32, 
p<0.01. (e) Premonsoon rainfall (normalized scales) derived from CMIP5 ensembles of GHG forcing 
superimposed with the 5-yr moving average (black) and post-1980 linear trend (orange) constructed for the 
CPRB. The linear trend slope is significant with r2=0.11, p<0.10. (f) Flood-period sea level height (July-
December) overlaid with the linear trend constructed for the Gulf of Thailand. The linear trend slope is 
highly significant with r2=0.67, p<0.01. 



PROMCHOTE ET AL. 
 

 

23 

change, the substantially increased pre-monsoon rainfall in CPRB after 1980 and the continual sea level rise 
in the river outlet (Fig. 1(d) and (f)) have both played a role. The rainfall increase is associated with a 
strengthening of the pre-monsoon northeasterly winds that come from East Asia. Attribution analysis using 
the Coupled Model Intercomparison Project Phase 5 historical experiments pointed to the anthropogenic 
greenhouse gases as the main external climate forcing leading to the rainfall increase (Fig. 1(e)). Together, 
these findings suggest increasing odds for potential flooding similar to the 2011 flood intensity.  

  This work has been published in Journal of Climate in 2015. 
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ABSTRACT 

Since August 2011, realtime monthly and seasonal forecasts from the North American Multi-
Model Ensemble (NMME) have been made every month by the NCEP Climate Prediction Center 
(CPC). Among the most popular NMME products, NMME ensemble mean maps are made from the 
equally weighted average of the participating models’ ensemble means, after removing systematic 
errors. However, some users are interested in how the models are different – that is, the diversity of 
the forecasts. In this study, we defined a normalized spread (SPRnor) to measure NMME forecast 
uncertainty, which is calculated from the multi-model predictive variance (including between-model 
variance and within-model variance) and then normalized by the observed standard deviation. When 
SPRnor is smaller than 1, it indicates the NMME forecast has less uncertainty, since the models are 
in good agreement over the grid point. When SPRnor is greater than 1, it means that the NMME 
forecast uncertainty is larger than the observed inter-annual variability, as the model forecasts are 
more dispersed. Generally, the SPRnor grows with the forecast leading time, and also varies with 
season. Therefore, we supply normalized spread maps to complement the NMME ensemble mean 
forecast and give users additional information of NMME forecast uncertainty in realtime. 

1. Introduction 

More and more users have gone to the North American Multi-Model Ensemble web page 
(http://www.cpc.ncep.noaa.gov/products/NMME/) to view NMME products for their operational missions 
and applications since the first NMME seasonal and monthly prediction was made in August 2011 (Kirtman 
et al.  2014). Among the thousands of uploaded figures of realtime prediction for both North American and 
global domains, the most popular products are the NMME mean 2m temperature and precipitation anomalies 
made by the equally weighted average of each NMME model’s ensemble mean, after removing systematic 
errors. However, the information from the NMME ensemble mean anomalies is not enough, since it is akin to 
a deterministic forecast. Users are also interested in how the forecasts for each model differ and the 
confidence of the NMME prediction. While the NMME probability forecasts, calculated from all ensemble 
members with equal weights, have been made each month (Becker et al. 2014) since 2012, their weights are 
not completely consistent with the maps of NMME anomalies. Therefore, the motivation of this work is to 
define and develop new products to express the prediction uncertainty of NMME and indicate the model 
forecast diversity.    
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2. Definition of the spread for multi-model ensemble 

The NMME is a dynamic multi-
model ensemble forecast system, initially 
comprised of 6 US models (CFSv1 & 
CFSv2/NCEP, ECHAM-a & ECHAM-
f/IRI, NCAR-CCSM3/COLAR-UM, 
GFDL-CM2.1, and GEOS5/NASA). For 
the past two years, the NMME has 
included seven models: two Canadian 
models (Can-CM3&4) (Environment 
Center of Canada joined in August 2012, 
when CFSv1 was retired), two models 
from GFDL, GEOS5/NASA, 
CFSv2/NCEP, and NCAR-CCSM4 
(which replaced NCAR-CCSM3). All of 
the NMME models are atmosphere-ocean 
coupled, and the horizontal resolution of 
the exchanged variables is 1x1 degree, 
consistent with the retrospective forecasts 
from 1982 to 2010. The NMME model 
climatologies are calculated from the 29 
years of retrospective forecasts to remove systematic bias in the mean at each leading forecast time for each 
model before calculating the NMME ensemble mean. The model’s prediction skills (as expressed by the 
anomaly correlation) are also obtained from these retrospective forecasts. 

We define the multi-model ensemble predictive variance in space (s) and time (t), lead (τ) and IC month 
(m) for an anomalous field, according to Raftery (1993): 
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where Fk’ is the kth model ensemble mean anomaly after mean bias correction. F’ is the equal weight averaged 
NMME ensemble mean for (K=7) models and fnk’ is the anomaly of each member for each model, as N is the 
number of the members for each model.  VAR is a function of space, time, forecast lead and either the start 
month or the target month.  

Here the predictive variance should be the sum of the two terms. One (the first term) is the between-
model variance, another one (the second term) is the within-model variance.  The between-model variance is 
the distance of the 7 individual model ensemble means from the multi-model ensemble mean, and the within-
model variance is the average distance of each model member from its model’s ensemble mean. (Raftery, et 
al. 2005).   

The spread of NMME also consists of two terms: 

SPR2 = VAR = SPR2 ensm + SPR2 memb      (2) 

where the first term represents the diversity of the models’ ensemble means relative to the forecast signal (we 
call it ensemble mean spread). The second term is the spread of the individual members relative to their 
models’ ensemble means, which is linked to the forecast noise (hereafter called member spread). 
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Fig. 1 Spread (black solid line) of Nino3.4 for NMME hindcasts 
(1982-2010) and the ensemble mean spread (SPRensm, 
dashed line) and the members of spread (SPRmemb, dotted 
line) with the spreads of individual model (color lines). 
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We also normalized the NMME spread to eliminate spatial and seasonal variation. Normalized multi-
model ensemble mean spread indicates the uncertainty of the NMME ensemble mean prediction or the model 
forecast diversity. It is also known as the "envelope of solutions" for each lead forecast time. We define the 
normalized spread as a ratio of the root mean square of predictive variance to the observed standard deviation 
(STD), that is,  

obsSTDVARSPRnor /)( 2/1=       (5) 

When SPRnor is smaller than 1, it indicates the NMME forecast has less uncertainty since the models are 
in good agreement over the grid point. When SPRnor is greater than 1, it means that the NMME forecast has 
more uncertainty than observed inter-annual variability due to the greater dispersion of model forecasts. 

3. Results 

a. The relationship of spread and the forecast uncertainty 

Among the most popular NMME 
figures are the Nino3.4 plumes (Barnston 
et al. 2015). These show 7-month lead 
Nino3.4 index forecasts for the individual 
members and the ensemble mean of each 
model, as well as the equally weighted 
NMME ensemble mean (see 
http://www.cpc.ncep.noaa.gov/products/N
MME/current/plume.html). The Nino3.4 
plumes also show the forecast uncertainty 
visually: the denser the member 
distribution the higher the prediction 
probability. Here we describe the 
relationship of the NINO3.4 spread and 
forecast uncertainty by using 29 years of 
NMME retrospective forecasts as an 
example. 

Figure 1 shows the SPR of NMME 
Nino3.4  index (black solid line) and its 
two component terms, the NMME 
ensemble mean spread (SPRensm, labeled 
Model_ENS, dashed line) and the spread 
of all members (SPRmemb, labeled 
Model_MEAN, dotted line) with the 
individual models’ spread (colored lines). 
All of these quantities grow with forecast 
lead time. However, the NMME ensemble 
mean spread (SPRensm) reaches 
saturation after 4 lead months and 
increases slowly after. The spread of 
NMME is bigger than that of any 
individual model, indicating that the 
ensemble mean of NMME covers all 
members and have a wide PDF for the all 
kind of predictability from the individual 
model.  

Fig. 2  Spread of NMME calculated for each month from 
hindcasts (1982-2010). 

Fig. 3  Realtime forecast of Nino3.4 plumes with the NMME 
spread in shading for Oct. 2015 IC. 
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From figure 2, we find that the spread 
of NMME not only increases with 
forecast lead time but also varies with the 
season of initial forecast time (IC). The 
biggest peak of forecast uncertainty is for 
spring initial conditions, corresponding to 
the well- known “spring barrier” of ENSO 
prediction. The smallest spread (highest 
forecast confidence) is for forecasts made 
in the fall (September), when ENSO 
predictive probability is high, especially 
within 4 months lead.  

Figure 3 shows the realtime 
forecast of Nino3.4 plumes, with 
NMME spread in shading, for October 
2015 initial conditions. It is easy to 
see that the spread is consistent with 
the diversity of the ensemble mean of 
NMME models on the occasion.   

b. Normalized NMME spread 

Since the spread varies spatially and 
temporally, the multi-model spread 
calculated from formula (2) is hard to 
compare to the model forecast diversity in 
a different location or time. For the maps 
of NMME prediction, we normalize the 
spread by formula (5) to extract the 
information of NMME forecast diversity.  
Figs. 4 and 5 show NMME realtime 
prediction of 2m temperature and 
precipitation anomalies (contours) with 
normalized spread (shading) for North 
America for October 2015 initial 
conditions. 

 The NMME predicts warmer-than-
average temperatures over the western 
half of North America, partially 
influenced by El Niño developing in the 
fall of 2015. Forecasts from the NMME 
models are more consistent in this region 
than in the south-eastern CONUS, where 
the forecast has higher uncertainty, shown 
by the models’ prediction diversity. On the other hand, the forecast for positive precipitation anomalies over 
the eastern CONUS has less uncertainty than that over the western US (Fig. 5).  The normalized spread gives 
users information about how NMME model forecasts differ, or the diversity in the predictions. 

4. Summary and discussion 

NMME realtime spread is defined as the multi-model ensemble predictive variance, including 
between-model variance and within-model variance. Normalized ensemble spread is a new 

Fig. 4  NMME realtime prediction of 2m temperature anomalies 
(contours) with normalized spread (shading) of North 
America for October 2015 initial conditions. 

Fig. 5 NMME realtime prediction of precipitation anomalies 
(contours) with normalized spread (shading) of the North 
America for October 2015 initial conditions. 
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measurement for NMME forecast uncertainty, consistent with the forecast of NMME ensemble 
mean anomalies. SPRnor ≤ 1 indicates the model forecasts are in good agreement over the grid 
points. SPRnor > 1 means that the model forecasts are more dispersed, and therefore have more 
uncertainty, than observed inter-annual variability. In generally, realtime SPRnor increases with 
forecast lead time. However, some variables, such as precipitation, may be influenced by seasonal 
variance in certain regions. 
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 This study examines the forecast skill of 2 m temperature extremes in the monthly mean (T2m), 

maximum (Tmax), and minimum (Tmin) using the North American Multi-Model Ensemble (NMME; 

Kirtman et al. 2014), an ensemble of state-of-the-art coupled global climate models. Extremes are where the 

real impact of weather and climate are felt, yet there are 

currently very few forecasts for short-term climate 

extremes (STCE). Aggregate skill (as assessed using the 

anomaly correlation) for forecasts of STCE only has 

previously been found to be higher than the aggregate 

skill of all forecasts (Becker et al. 2013), providing 

confidence that a useful forecast for STCE might be 

possible.  

The NMME currently provides real-time guidance 

for NOAA’s operational short-term climate forecasts, 

and includes a database of retrospective forecasts (1982-

2010), used for bias correction, calibration, and skill 

studies. Seven models from the NMME contribute to 

this study: NCEP-CFSv2, Environment Canada’s 

CanCM3 and CanCM4, GFDL’s CM2.1 and FLOR, 

NASA-GEOS5, and NCAR-CCSM4. A new maximum 

and minimum temperature dataset was recently created 

at CPC, and is interpolated to the NMME grid and 

timescale to allow for an initial assessment of these 

fields. The aggregate skill of deterministic forecasts of 

Tmax and Tmin in general is found to be slightly lower 

in magnitude to that of 2 m temperature, with some 

differences in geography.  

Temperature extremes are herein defined as the top 

and bottom decile (10%) of the historical record at each 

gridpoint, using the 1982-2010 hindcasts, with cross-

validation. A Gaussian distribution is assumed, but may 

not be the most accurate fit; this is a point that requires 

further examination. This study assesses forecast 

verification, that is, the question of “did the forecast 

come true?” using deterministic forecasts, at a one-month 

lead for the monthly mean, over all initial conditions. 

Area-average skill is assessed using the anomaly 

correlation. When assessing the skill at individual 

gridpoints, the Symmetric Extremal Dependence Index 

Fig. 1  Anomaly correlation for monthly-mean 2 m 

temperature (top) and minimum temperature 

(bottom), area-aggregated over North 

America, for the seven individual NMME 

models’ ensemble means and the NMME 

grand ensemble mean, averaged over all 12 

initial conditions. Gray bars show anomaly 

correlation for all forecasts, and orange 

indicates the upper decile, i.e. positive 

extremes. 



BECKER ET AL. 

 

 

31 

(SEDI; Ferro and Stevenson 2011) which is non-degenerate for rare events, is employed. The decile definition 

of extremes results in approximately 35 “extreme” events per gridpoint over all 12 initial months for 29 years 

of retrospective forecasts.  

The previous finding of higher anomaly correlation for forecasts of extremes is confirmed (Fig. 1). Skill 

for forecasts of extremes of mean 2 m temperature (both negative and positive extremes) is slightly higher 

than extremes in Tmax and Tmin. Overall, Tmin is predicted slightly more skillfully than Tmax, especially 

when positive extremes are examined. Tmin has been more affected by the warming trend over the past 

several decades, which may in part explain this difference. Forecasts for positive extremes of all three 

temperatures are highest over the northern tier of North America, where they are generally >30% better than a 

climatological forecast (Fig. 2).  

This is a preliminary study that demonstrates that there is some potential for skillful forecasting of 

extremes. Further experimentation will examine the definition of “extreme”, including possible use of 

absolute temperature thresholds and consideration of warm-season positive Tmax extremes and cold-season 

negative Tmin extremes. A large ensemble such as the NMME is valuable in constructing probabilistic 

forecasts, and further analysis will be necessary to discover valid thresholds for triggering an extreme forecast. 
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Fig. 2  Symmetric Extremal Dependence Index (SEDI) for upper-decile (left) and lower-decile (right) 

forecasts of monthly-mean maximum temperature, averaged over all 12 initial months. 
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1. Introduction 

Recent studies have highlighted the importance of internal variability in decadal trends and variability of 
regional-scale temperature and precipitation (Deser et al. 2012; Hawkins et al. 2015). Understanding and 
potentially reducing the uncertainties in climate change projections arising from internal variability has been a 
focal point of climate research over the last decade (Bindoff et al. 2013). The superposition of 
anthropogenically forced climate change with this unforced internal variability complicates attempts to detect 
and attribute climate change (Thompson et al. 2009). In the Northern Hemisphere mid to high latitudes, the 
stochastic variability of atmospheric circulation is a major contributor to this internal variability (Smoliak et 
al. 2015; Deser et al. 2015). Beyond decadal trends in temperature or precipitation, recent research has 
focused on diagnosing the driving factors behind individual extreme events, such as heat waves, cold snaps, 
or floods (Herring et al.  2015). It is therefore of interest to estimate the contribution of atmospheric 
circulation to a given trend or anomaly in temperature or precipitation.  

Here we present a new method, based on constructed analogues, to estimate the contribution of 
atmospheric circulation to a given surface temperature anomaly. The details and an application to decadal 
temperature trends are described in Deser et al. 2015. The paper here is structured as follows. Section 2 
summarizes the new method and introduces the data it is applied to. Section 3 illustrates how this method can 
be used to diagnose high temperature events. Section 4 summarizes these results and provides an outlook onto 
ongoing and future projects. 

2. Data and methodology/experimental design 

a. Dynamical adjustment of temperature 

To estimate the contribution of atmospheric circulation to surface air temperature (SAT) changes, we 
apply a dynamical adjustment technique based on constructed circulation analogues. A full description of the 
methodology is given in Deser et al. 2015, of which we provide a summary here. 

The method aims at empirically determining the component of SAT variability that arises solely from 
atmospheric circulation changes, characterized here by sea level pressure (SLP). This component is termed 
the ‘dynamical contribution’ to temperature variability. Subtracting the dynamical contribution from the raw 
field yields the residual, which is to first order an estimate of the ‘thermodynamical contribution’. 

In practice, for a given target month, e.g., July 2015, we looking through all other available Julys in a 
given record, searching for Julys which have an analogues SLP pattern to the target month. The closest 
analogues are determined by finding the smallest Euclidean distance from the SLP pattern of the target month. 
Among the closest 80 analogues we randomly choose 50. An optimal linear combination of the 50 analogues 
is then computed that best fits the SLP pattern of the target month. Using the linear coefficients determined 
this way, we construct a SAT anomaly field that is defined as the optimal linear combination of the SAT 
anomalies associated with the SLP analogues. The process of randomly selecting 50 out of 80 analogues and 
constructing a best fit pattern is repeated 100 times to get an upper bound on the thermodynamically-induced 
internal variability. We then average over the 100 sets of SLP analogues and associated SAT anomalies to 



LEHNER ET AL. 
 

 

33 

arrive at a best estimate of dynamically induced SAT anomalies for the target pattern. This dynamic 
contribution can then be subtracted from the target SAT field, yielding a dynamically adjusted field. The 
whole procedure is applied analogously to all months available, so that eventually all monthly mean SAT 
fields in a given record are dynamically adjusted. Prior to the whole analysis, the SAT time series is detrended 
with a quadratic fit to remove the global warming signal (see Deser et al. 2015 for details). The dynamical 
adjustment is applied to the following model simulations and observational datasets.  

b. Model simulations and observations 

We use monthly mean output from the Large Ensemble with the fully coupled Community Earth System 
Model 1, hereafter CESM LE (Kay et al. 2015). The CESM LE is an ensemble of 30 simulations from 1920 
to 2100, in which each simulation was started from slightly different atmospheric initial conditions, while 
using the same ocean initial conditions. In accordance with protocols from the Coupled Model 
Intercomparison Project 5 (CMIP5; Taylor et al. 2012), historical natural and anthropogenic forcing was 
applied from 1920 to 2005 and the Representative Concentration Pathway 8.5 (RCP 8.5) thereafter. Due to its 
size, the Large Ensemble allows us to sample internal variability in a robust manner, as will be shown in 
Section 3b. 

For observations we use monthly mean SAT from MLOST (Vose et al. 2012) and SLP from the 
Twentieth Century Reanalysis (Compo et al. 2011). 

3. Results 

a. Application to observed high 
temperature events 

We pick two examples from 
observations to illustrate the 
dynamical adjustment method: the 
exceptionally warm July over the US 
in 1980 and the exceptionally warm 
August over central Europe in 2003. 

Fig. 1a shows the raw SAT 
anomaly of July 1980, relative to its 
1951-1980 climatology, as well as the 
corresponding SLP.  During this 
month, a strong and persistent 
heatwave took hold of large parts of 
the Midwestern US, with SAT 
anomalies of over 5°C. Fig. 1b shows 
the dynamical contribution to the SAT 
field in Fig. 1a as determined by the 
dynamical adjustment method. The 
SLP pattern in Fig. 1b is the analogue 
constructed from similar July SLP 
patterns in the observational record. 
There is good agreement of this 
pattern with the SLP pattern in Fig. 1a, 
indicating that the dynamical 
adjustment is successful in 
constructing analogues patterns (the 
residual/”error” is given in Fig. 1c). 
The SAT anomalies in Fig. 1b are then 
the constructed SAT field, i.e., the 
SAT anomalies that typically go along 

Fig. 1  (a) July 1980 surface air temperature (SAT; shading) and sea 
level pressure (SLP; contours, in 1 hPa increments starting at 
+/− 0.5 hPa) anomalies from their 1951-1980 climatology. (b) 
Dynamical contribution of constructed SLP pattern (contours) to 
SAT anomalies (shading). (c) Thermodynamic contribution to 
SAT anomalies (shading) and difference between true and 
constructed SLP anomalies (contours) as residual from 
subtracting (b) from (a). (d-f) Same as (a-c), but only SAT 
anomalies >2σ are shown. The spatial mean over the gray box is 
given in the bottom left corner with the fraction of the mean in 
panel (d). 
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with such a SLP pattern. Fig. 1c shows 
the SAT anomalies that remain after 
subtracting the dynamical contribution 
from the raw SAT anomaly (i.e., Fig. 
1a minus 1b), termed 
‘thermodynamical contribution’.  

During this particular July (and 
preceding June; not shown), a strong 
high pressure system was positioned 
off and over the US west coast, 
deflecting eastwards-moving storms, 
thereby causing warm (and dry; not 
shown) conditions over the Great 
Plains (Fig. 1a). Indeed, the dynamical 
contribution suggests that such SLP 
patterns lead to elevated temperatures 
across most of the Great Plains (Fig. 
1b). However, SLP did not contribute 
significantly to the heart of the warm 
anomaly just southwest of the Great 
Lakes. Indeed, most of the warm 
anomaly there seems to have been 
contributed by thermodynamic 
processes, related to the co-occurring 
drought (Fig. 1c). 

Fig. 1d-f show the same data as Fig. 1a-c, but only those regions where SAT anomalies were greater than 
two standard deviation (2σ) of their local 1951-1980 climatology (before calculating the climatology the data 
was detrended with a quadratic fit). The SAT anomaly averaged over the gray box is given in the bottom left 
corner. This depiction suggest that atmospheric dynamics, as described by SLP, only contributed 27% to 
the >2σ SAT anomaly of that month (Fig. 1e), while 73% can be attributed to thermodynamic processes. This 
is generally in line with understanding from other studies regarding this particular event (Wolfson and Atlas 
1987; Lyon and Dole 1995). These studies suggest that while remote dynamical forcing was important in 
setting the stage for the heat wave, more local, thermodynamic effects, such as soil moisture feedbacks, 
controlled the amplitude and longevity of the heat wave throughout July.  

The second example concerns the month of August during the 2003 summer heat wave in Europe (Fig. 2). 
In August 2003, a strong high pressure system positioned itself over central Europe, leading to a classical 
blocking situation. Anomalous high and low pressure North and South of the English Channel, respectively, 
shielded central Europe from any Atlantic disturbances (Fig. 2a). The dynamical adjustment method estimates 
that such a blocking typically creates about 2.14 °C of SAT anomaly (Fig. 2e), which constitutes only about 
47% of the observed >2σ SAT anomaly. The remaining 53% of the temperature anomaly was likely made up 
by thermodynamic processes. Again, depleted soil moisture, arising from a dry spring, was found to having 
contributed substantially to this large thermodynamic contribution (Fischer et al. 2007). 

b. Temporal evolution of dynamical contribution to temperature anomalies 

After illustrating the dynamical adjustment on individual months, we aggregate this information over 
space and longer time periods and take the CESM LE into consideration (Fig. 3). To that end, we focus 
on >1σ SAT anomalies, as there are not enough >2σ SAT anomalies in observations to achieve robust 
aggregated results. First, we average across all >1σ SAT anomalies and their accompanying dynamic 
contributions in the domains (North America, 20-75°N, 170-50°W; and Europe, 35-75°N, 170°W-45°E). 
Second, we multiply this with the land fraction that these anomalies take up. This later quantity gives a sense 

Fig. 2  Same as Fig. 1, but for August 2003 over Europe. 
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of SAT anomaly amplitude and spatial extent (hereafter 
called ‘anomaly magnitude’).  The following examples 
are based on boreal summer means (June-August).  

In North America the period 1930-1940 (the “Dust 
Bowl” era) was marked by exceptional anomaly 
magnitudes, which are not reproduced by any of the 
ensemble members of CESM LE (Fig. 3a), indicating 
that the model is lacking a process or additional forcing 
that would be crucial for the generation of such 
anomaly magnitudes. Previous model studies found that 
specifying additional dust emissions from land use 
change and drought during that period improves the 
agreement with observations (Cook et al. 2008). Still, 
the dynamical adjustment suggests a significant 
contribution from dynamics during 1930-1940, 
originating from a persistent high pressure ridge over 
the Western US, as identified by other studies 
(Brönnimann et al. 2009). Averaged over the period 
1920-1980 the partitioning between dynamic and 
thermodynamic contributions to >1σ anomaly 
magnitudes is about 50% each in both observations (47% 
vs. 53%) and CESM (50% vs. 50%). After 1980, the 
model’s forced response (the ensemble mean) shows an 
increase in anomaly magnitudes, largely driven by an 
increase of the thermodynamic contribution, which 
constitutes the fingerprint of radiative forcing from 
increasing greenhouse gas concentrations.  

The European domain is smaller and on average has 
a larger contribution from dynamics during 1920-1980 
(57% in observations, 66% in CESM). After 1980, 
Europe shows a very similar behavior as North America 
with increasing anomaly magnitudes, mainly driven by 
an increase in the thermodynamic contribution. The 
summer of 2003 as a whole, taking into account June 
and July in addition to August (Fig. 2), shows a large 
thermodynamic contribution in observations. 

4. Summary and outlook 

In this study we applied a new method that 
estimates the dynamically induced variability from a 
surface air temperature field using constructed circulation analogues (Deser et al. 2015). It is shown that the 
method can be used to diagnose drivers of a given temperature anomaly in observations, but also help to 
understand the dynamic and thermodynamic contributions to anthropogenically driven climate change in 
model simulations. 

  The CESM LE shows skill in reproducing the partitioning between dynamic and thermodynamic 
contributions of high summer temperatures as suggested by observations, namely about 50% each for the 
period prior to 1980 over North America. A notable exception is the Dust Bowl era, which in its amplitude 
and spatial extent is not reproduced by any of the CESM simulations. 

Diagnosing other climate variables, such as precipitation, or events on shorter time scale, such as heat 
waves, constitute promising future avenues of this method. 

Fig. 3  Time series of anomaly magnitude of >1σ 
events, averaged from June through August 
(see text for details) for (a) North America 
and (b) Europe and the relative contribution 
from dynamics. Bold lines are observations, 
while thin lines and shading are the CESM LE 
ensemble mean and minimum-maximum 
range across the ensemble, respectively. Gaps 
in observations indicate that there occurred 
no >1σ event in that particular summer over 
the respective domain. 
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1. Introduction 

From October 2014 to March 2015, the Niño3.4 index, referred to as sea surface temperature (SST) 
anomaly averaged over 170oW-120oW, 5oS-5oN, was in a 0.5oC to 0.9oC range.  At the same time, except for 
the February 2015, the southern oscillation index (SOI), defined as the standardized surface pressure 
difference between Tahiti and Darwin (former minus later), was in a range of -0.6 to -0.9.  The values of the 
both indices exceeded the thresholds for a weak El Niño conditions (Trenberth 1998).  However, the 
atmospheric anomalies over the same time did not reflect typical ENSO like conditions, leading to the 
question why atmospheric circulation did not show a response typical to what is generally observed during El 
Niño conditions? 

To illustrate this point 
further, comparison of spatial 
pattern between the observed 
December-January-February 
2014/15 seasonal mean (referred 
to as DJF 2014/15) and the 
Niño3.4 index based regression 
patterns for DJF mean SST, 
precipitation rate (Prate) and 
200hPa stream function (S200) 
is shown in Fig. 1.  The Niño3.4 
index regression patterns 
represent the spatial patterns that 
are typically seen during ENSO 
winters.  

For the Niño3.4 index 
regressed SST pattern (Fig. 1, 
bottom left), the largest 
anomalies are in the eastern to central equatorial Pacific, and further, are confined to the east of the date line.  
In contrast, the observed SST anomalies for DJF 2014/15 in the tropics had their warm center located over the 
central Pacific and even extended to the west of the dateline.  Also, the warm SST anomalies in the tropics 
extended along a circular arch northeastward towards and along the western coast of North America.    

For Prate, the Niño3.4 index regressed pattern (Fig. 1, bottom right) in the tropical latitudes is the familiar 
dipole pattern, with the positive anomalies extending from the eastern equatorial Pacific to the warm pool 
region and the negative anomalies covering the Maritime continent region and its vicinity, and extending over 
to the South Pacific convergence zone (SPCZ).  The spatial pattern of Prate corresponds well with the SST 
pattern in both shape and sign, indicating a forced response to SST, a fact that has been validated earlier in 
atmospheric general circulation model simulations (Peng et al. 2014).  The corresponding DJF 2014/15 
observed Prate pattern is also an east-west dipole pattern, however, with a reversed polarity.  The positive 

Fig. 1  Upper row: DJF mean SST (left), 200hPa stream function (contours 
in right) and precipitation rate (shadings in right) observed in the 
winter of 2014/15.  Lower row: Regressions of SST, 200hPa stream 
function and precipitation rate onto Niño3.4 SST index for the data 
period (1949/50-2014/15 for SST and stream function, 1979/80-
2014/15 for precipitation). Units: oC for SST, 106 m2 s-1 for stream 
function and mm/day for precipitation rate.  
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anomaly is in the western 
tropical Pacific and the 
maritime continent area, and the 
negative anomaly in the central 
equatorial Pacific.  This contrast 
in Prate pattern between the 
observed and ENSO was noted 
by Barnston (2015).  

Although the difference in 
Prate pattern is so striking, the 
observed and regression S200 
patterns are surprisingly similar 
in the tropics.  They both have 
an anti-cyclonic pair straddling 
the equator over the central 
Pacific.  The difference between 
them is that the observed pattern 
is shifted westward about 15o 
with respect to the Niño3.4 
index regression pattern.   
Furthermore, its zonal extent was narrower evolving to a cyclonic pair over the eastern Pacific.  Differences in 
circulation pattern also occur in the extratropics.  The most obvious difference is the pattern orientation over 
the North America. The Niño3.4 index regression pattern has a north-south dipole structure, with an anti-
cyclonic anomaly in the north and a cyclonic anomaly in the south, whereas in DJF 2014/15 observations the 
spatial pattern has an east-west dipole structure, with cyclonic anomaly in the east and anti-cyclonic anomaly 
in the west.  From a global perspective, in both cases the pattern over the North America is part of a wave 
train emanating from the tropical Pacific, and thus, the causes of the difference for both the patterns may still 
be in the tropics.  

The role of tropical diabatic heating (as inferred from the Prate) in influencing global circulation during 
ENSO winters has been demonstrated in model experiments (Hoerling and Kumar 2002 and references 
therein) and in diagnostic analyses (Ting and Hoerling 1993, Peng 1995, DeWeaver and Nigam 2004).  The 
anti-cyclonic (cyclonic) pair straddling the diabatic heating (cooling) in the central equatorial Pacific has been 
inferred to as the forced response to the heating-cooling pair over the equatorial Pacific with the Rossby wave 
propagation extending this response into extratropical latitudes (Gill 1980, Sardeshmukh and Hoskins 1988).  
The canonical ENSO heating- circulation relationship, however, does not seem to be at play for the winter of 
2014/15 as the anti-cyclonic pair, instead of associated with the heating, straddles the cooling.  This leads to 
the question as to what drove the SST and circulation anomalies, and what was the dynamics behind the 
tropical circulation anomalies for 2014/15 winter? 

In this study we intend to examine the effects of dominant modes of wintertime SST variability using a 
decomposition procedure, and then assess the relative importance of these modes through a reconstruction 
procedure on the observed DJF 2014/15 SST and circulation anomalies.  

2. Data and analysis procedures 

The data used in this study include monthly mean SST, 200hPa stream function  (S200) and 1000hPa 
wind from Jan 1949 to Feb 2015, including 66 DJF seasons, and DJF mean precipitation from 1979/80 to 
2014/15 for total 36 winters.  The SST is taken from Hurrell et al. (2008), the stream function from 
NCEP/NCAR reanalysis (Kalnay et al. 1996), and the Prate from the CPC merged analysis of precipitation 
(CMAP) (Xie and Akin 1996).  The anomalies of these variables are with respect to the seasonal climate 
mean over the respective data periods. The analysis procedure begins from an empirical orthogonal function 
(EOF) analysis for the 66-winter Pacific SSTs.  The spatial domain for the analysis is the north of 30oS and 
between 120oE and 80oW, including the tropical and northern part of Pacific, same as that in Hartmann 

Fig. 2  Regressions of DJF mean SST (left), precipitation rate and 200hPa 
stream function (right) onto the first (upper), second (middle) and third 
(lower) principal components of the SSTs in the Pacific north of 30oS.  
Units are the same in Fig. 1. 
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(2015a).  The EOF calculation is based on a 
covariance matrix such that fewer dominant 
modes explain more variance.  After 
computing the principal components (PCs), 
which are the time series associated with 
EOFs, the corresponding spatial patterns of 
SST are obtained with the regression of the 
global SSTs at each grid point onto the PCs.  
Following the same procedure, S200 and 
Prate regression patterns associated with the 
SST modes are also obtained.  As the Prate is 
only available from 1979, the PC time series 
used for regression is from that year onward. 

After the decomposition procedure, the 
relative importance of the SST modes in 
explaining the observed anomalies of the 
three variables for DJF 2014/15 is assessed 
with a reconstruction procedure.  The 
procedure starts from the most dominant 
mode, and then successive modes are added 
at each step, until a spatial pattern 
resembling the observed DJF 2014/15 
anomalies is reconstructed.  For SST, the 
EOF modes can completely reconstruct the 
observed anomalies, because they are the 
modes of SST itself.  For S200 and Prate, 
however, only a part of variance can be 
explained by the SST EOF modes.  As a 
result, the constructed S200 or Prate is not as 
accurate as that for SST.  

3. Results 

Fig. 2 shows the patterns of SST, Prate 
and S200 associated with the first three EOF 
modes of SST.  The corresponding PCs are 
displayed in Fig. 3.  The first mode, 
explaining 41% variance of SST over the domain for the EOF analysis, is related to ENSO and referred to as 
ENSO mode.  The SST EOF pattern and associated S200 and Prate patterns are almost identical to those from 
regressions with Niño 3.4 index shown in Fig. 1.  The PC value of the ENSO mode for the DJF 2014/15 
winter is around 1, indicating that the ENSO signal was pretty robust and was important.  

The second mode, explaining about 10% variance of SST over the domain, has its major SST loading in 
the western and southern tropical Pacific, and also associates with anomalies in the Indian and Atlantic 
Oceans.  The corresponding PC2 indicates that this mode is related to warming trend in the oceans, though 
interannual variability is also included.  Its associated Prate pattern is likely a response to the SSTs with dry 
(wet) anomalies collocated with cold (warm) SST anomalies in the central (western) Pacific. Further, the 
spatial pattern of the Prate is very similar to that associated with the warm phase of ENSO, but with opposite 
sign and much weaker intensity.  The corresponding S200 pattern in the tropics includes a cyclonic system 
towards the south of the negative Prate and a cross-equator system over the eastern Pacific.  According to 
their location, shape and orientation, the former is likely forced by the diabatic cooling corresponding to the 
negative Prate, while the latter is more complicated.  In the northern extratropics, a cyclonic system is 

Fig. 3  Principle components (PCs) 1-3 of the DJF SSTs in 
the Pacific north of 30oS and percentages of their 
explained variance.  PCs are normalized with their own 
standard deviation. 
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centered over Bering Sea and 
with a westward extension 
towards Mongolia.  This mode 
was not part of Hartmann (2015a) 
analysis, because their data were 
detrended prior to the EOF 
analysis. 

The third mode, explaining 
about 8% variance of SST over 
the domain, is the North Pacific 
Mode (NPM).  The SST pattern 
is similar to that in Hartmann 
(2015a), though our analysis is 
based on the DJF seasonal means 
alone, and not the monthly 
means over the entire annual 
cycle.  Its larger amplitude in the 
extratropics may suggest a local 
origin, but it also has tropical 
loading in the western and 
central equatorial Pacific.  The 
corresponding Prate pattern 
matches well with the SST pattern in the tropics, with positive anomaly over the warmer SST and negative 
anomaly over the colder SST.  Though its SST anomalies are much weaker than that in the ENSO mode, the 
Prate anomalies are not weak, with their amplitude reaching almost a half of that for the ENSO mode.  This is 
because that Prate is not linearly related to SST anomaly, and is much more dependent on total SST (Hoerling 
et al 1997).  In the S200 pattern, a wave train clearly starts from the tropical western Pacific, the area of 
anomalous heating, and then extends across the North Pacific to North America with a ridge along the west 
coast and a trough over the northeastern part of the continent. The wave train then turns southeast towards the 
Atlantic and finally ends at the equator near western Africa.  In the tropical eastern Pacific, a cyclonic pair is 
associated with the diabatic cooling, suggesting that it is forced by the cooling.  The time series of this mode 
(Fig. 3c) is dominated by interannual variability before 1998, but after that by variations on a lower frequency.  
The PC values were notably high for DJF 2013/14 (1.75) and 14/15 (2.90), with latter being the highest in the 
record analyzed.  

The fourth mode (not shown) is the Pacific decadal oscillation (PDO) mode, which is the second mode in 
Hartmann 2015a.  The reason for the second mode in Hartmann 2015a to be the fourth mode here may be 
related to the difference in data length and trend removal or not (Wen et al. 2014).  The data used in Hartmann 
2015 was from 1900, about 50 years longer than here.  Because its PC value for DJF 2014/15 is only 0.25, its 
impact is small.  Other SST modes are either with small PC values for DJF 2014/15 or with weak patterns.  
Therefore our analysis is limited to the three leading modes. 

The correlation maps corresponding to the regression maps for each mode were also checked, and it is 
found that most features shown in Fig. 2 are well above the 90% significant level in the T-test.   We also 
calculated the PCs and the regression patterns with the data not including 2014/15 winter and compared them 
with that from the full dataset as shown in Fig. 2, and found differences to be very small.  

We next reconstruct the DJF 2014/15 observed anomalies based on the EOF modes.  Having examined 
the three leading modes and noting that SST anomaly pattern for DJF 2014/15 fits best the NPM (Fig. 2, 
bottom left panel), the reconstruction procedure starts from the NPM.  The upper row of Fig. 4 is the 
reconstructed SST, Prate and S200 patterns associated with the NPM, that is, the product of PC3 value for 
DJF 2014/15 winter and the spatial patterns associated with the EOF3 of SST shown in Fig. 2 (bottom row).  
Compared to the observed anomalies shown in Fig. 1 (upper row), as expected, the reconstructed SST 

Fig. 4  Reconstructed SST (left), precipitation rate and 200hPa stream 
function (right) for DJF 2014/15 with spatial patterns shown in Fig. 2 
and PCs shown in Fig. 3.  Upper row is for using NPM alone, middle 
row for using both NPM and ENSO mode, and lower row for using 
all NPM, ENSO and warming trend modes. Unites are the same as 
that in Fig. 1. 
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resembles the observation very well, particularly for the warm anomalies over the Pacific domain.  However 
some differences are also obvious.  The strong cold anomaly in the eastern equatorial Pacific is not found in 
the DJF 2014/15 observation, and the intensity of the reconstructed warm SST anomaly is too weak.  For the 
Prate, the reconstructed pattern matches well the observed anomaly not only in the tropics, but also in North 
Pacific and North America.  A major difference is in the intensity in the tropical Pacific, where the 
reconstructed anomaly is much stronger than the observed.  For the S200, as described before, the 
reconstructed pattern is a wave train emanating from the diabatic heating area (correspond to the Prate) in the 
tropical western Pacific, with its features matching well with the observations, particularly over the North 
America.  Major differences are that the anti-cyclonic center in the tropical central Pacific is shifted 
westward, and the intensity of the wave train appears weaker.  Therefore, the NPM, although prominent, it 
alone is not adequate to explain the observed DJF 2014/15 anomalies in the tropical and North Pacific. 

Because the amplitude of the ENSO mode is the strongest among all (Fig. 1) and PC1 value for DJF 
2014/15 is around 1.0 for this winter, the contribution of the ENSO mode needs to be considered.  The middle 
row of the Fig. 4 presents the reconstructed patterns after adding the ENSO mode.  Comparing them with the 
reconstruction with the NPM alone (Fig. 4, upper row) and that from the observations (Fig. 1, upper row), we 
can see that the correspondence with the observed anomalies improved: (a) the cold SST anomaly in the 
eastern equatorial Pacific disappeared and the intensity of the warm SST anomalies increased to the level in 
observations; (b) the intensity of tropical Prate also reduced to the level in the observation; (c) the westward 
shift of the anti-cyclonic center also corrected to some extent; (d) the wave amplitude increased to that in the 
observation.  Improvements, however, were not unanimous, for example, the trough over the northeastern part 
of North America became weaker, and so is the cyclonic pair in the tropical eastern Pacific. 

The results of the reconstruction by adding the mode 3 are displayed in the lower row of Fig. 4.  
As already indicated by the mode’s small PC value of 0.5 and the relatively weak circulation and 
precipitation patterns, the improvement is quite limited.  A discernible improvement for SST is in 
the tropical western Pacific and India Ocean, where the SSTs became a bit warmer.  Overall, the 
SST, precipitation and circulation anomalies in the winter of 2014/15 basically can be explained by 
the NPM and ENSO mode.  The NPM was a dominant factor, which explains why the atmospheric 
anomalies did not conform to the typical ENSO response pattern (Barnston 2015). 

4. Summary and discussion 

In an effort to explain why the atmospheric circulation and SST anomalies of 2014/15 winter in the 
central equatorial Pacific lacked ocean-atmosphere coupling seen in a typical ENSO event, this study 
decomposed the SST, precipitation rate and 200hPa stream function anomalies for the DJF 2014/15 into the 
patterns related to the principal components of the DJF SST variability.  We then identified the relative 
importance of these patterns in contributing to observed DJF 2014/15anomalies.  It is found that the 
anomalies of the three variables were determined by the patterns related to the two SST modes, the NPM and 
the ENSO mode.  The contribution from the NPM dominated and resulted in the seemingly uncoupled air-sea 
relationship in the central equatorial Pacific and the east-west structure of the observed circulation anomalies 
over the North America.  The contribution of the ENSO mode was important for the observed SST anomalies 
in the eastern equatorial Pacific and for the circulation in the central equatorial Pacific.  The ENSO mode was 
also important for the intensity of SST, precipitation rate and circulation patterns to reach the levels in the 
observation.  The impact from the warming trend mode was found to be much small.   

Acknowledgments.   We would like to thank Dr. Caihong Wen for her constructive suggestions. 

References 

Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible 
teleconnection.  J. Geophys. Res., 112, C11007. 

Barnston, T., 2015: Do recent global precipitation anomalies resemble those of El Niño? 
http://www.climate.gov/news-features/blogs/enso. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

42 

Bjerknes, J., 1969:  Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163– 172. 

DeWeaver, E., and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and 
cooling.  J. Climate, 17, 3225–3235. 

Gill, A.E., 1980: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc., 106, 
447–462. 

Hartmann, D., 2015a: Pacific sea surface temperature and the winter of 2014, Geophys. Res. Lett., 42, 
doi:10.1002/2015GL063083. 

Hartmann, D., 2015b: The tropics as a prime suspect behind the warm-cold split over North America during 
recent winters, http://www.climate.gov/news-features/blogs/enso. 

Hoerling, M., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their 
teleconnections.    J. Climate, 10, 1769–1786. 

Hoerling, M., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. 
Climate, 15, 2184–2203. 

Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice 
boundary dataset for the community atmosphere model.  J. Climate, 21, 5145–5153. 

Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate, 
22, 615–632. 

Kalnay, E. and coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 
437-471. 

Peng, P., 1995: Dynamics of stationary wave anomalies associated with ENSO in the COLA GCM.  Ph.D. 
thesis, University of Maryland, College Park, 180 pp. 

Peng, P., A. Kumar, and B. Jha, 2014: Climate mean, variability and dominant patterns of the Northern 
Hemisphere wintertime mean atmospheric circulation in the NCEP CFSv2, Climate Dynamics, 42, 2783-
2799. 

Sardeshmukh, P. and B. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical 
divergence. J. Atmos. Sci., 45, 1228–1251. 

Saha, S. and coauthors, 2014: The NCEP Climate Forecast System Version 2.  J. Climate, 27, 2185–2208. 

Ting, M. and M. Hoerling, 1993: Dynamics of stationary wave anomalies during the 1986/87 El Niño.  
Climate Dynamics, 9, 147-164. 

Wen, C., A. Kumar, and Y. Xue, 2014:  Factors contributing to uncertainty in Pacific Decadal Oscillation 
index, Geophys. Res. Lett., 41, 7980–7986, doi:10.1002/2014GL061992. 

Xie, P., and P. A. Akin, 1996: Analysis of global monthly precipitation using gauge observations, satellite 
estimates, and Numerical model predictions.  J. Climate, 9, 840-858. 

 

 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
40th NOAA Annual Climate Diagnostics and Prediction Workshop  
Denver, CO, 26-29 October 2015 

______________ 
*Correspondence to: Panmao Zhai, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological 
Sciences, 46 Zhong-guan-cun-nan-da-jie, Haidian, Beijing 100081, China; E-mail: pmzhai@cma.gov.cn. 

Teleconnection Patterns Impacting on  
the Summer Consecutive Extreme Rainfall in Central-Eastern China  

Junmei Lü1,2, Yun Li2, Panmao Zhai1*, Junming Chen1, and Tongtiegang Zhao2 
 1Chinese Academy of Meteorological Sciences, Beijing, China 

2CSIRO Mathematics, Informatics and Statistics, Wembley, Western Australia, Australia 

1. Introduction 

Extreme weather and climate events such as deadly heat waves, devastating floods and severe droughts 
can damage human societies and ecosystems. Numerous previous studies have demonstrated that there has 
been an increase in the frequency and intensity of extreme weather events in recent decades (Meehl et al. 
2000; Zhai et al. 2005; Fischer et al. 2007; Kyselý 2008). For instance, heat waves have become longer and 
hotter, and heavy rains and flooding have become more intense and more frequent. Consecutive extreme 
rainfall (CER) events, which usually cause large-scale floods, mudflows and landslides, are defined as 
“consecutive rainfall persisting for at least 3 days with the daily rainfall exceeding 50 mm” (Chen and Zhai 
2013). Chen and Zhai (2013) proposed that individual-station-based CER events occurred mainly in Central-
Eastern and South China, which are the most populated and economically developed regions in China. 

Recent studies have shown that the large-scale systems that produce CER are often related to anomalous 
and persistent atmospheric wave patterns such as blocking anticyclones and cutoff lows, which are 
characterized by slow moving or stagnant features and related to teleconnection patterns (Zhou et al. 2009; 
Lau and Kim 2012；Chen and Zhai 2014). The goal of this study is to investigate the dominant modes of the 
CER over Central-Eastern China and to identify their corresponding persistent circulation patterns. The 
impacts of anomalous SSTs and Rossby wave propagation on the formation of teleconnection patterns are 
also discussed. 

2. Methodology 

The 95th percentile is widely used to evaluate the threshold for extreme rainfall. Chen and Zhai (2013) 
calculated the 95th percentile of daily total precipitation in China during the warm season and found that a 
daily precipitation amount of 50 mm exceeded the 95th percentile at over 90% of stations. Hence, the absolute 
threshold of extreme rainfall is defined as exceeding 50 mm for daily total precipitation. The CER events over 
Central-Eastern China are defined according to the following criteria: (1) the JJA daily rainfall exceeds 50 
mm at one or more weather stations, (2) the extreme rainfall persists for at least 3 consecutive days, and (3) 
the CER events end when daily rainfall is less than 50 mm d-1 over 2 consecutive days. This definition ensures 
the regional occurrences of CER events.  

The CER event definition was applied to a 32-year period (1979-2010) for 210 weather stations. This 
analysis resulted in 86 CER events and 340 event days. Empirical orthogonal function (EOF) analysis was 
performed on 230 event days to assess the dominant modes of the CER (EOFs) and their corresponding time 
series (PCs). The relationship between various circulation patterns and the CER modes was determined by 
correlating grid-point anomalies of an atmospheric field onto an index, for example, the PC of an EOF, or the 
SST index. To find out the mechanisms that maintain the teleconnection wave trains associated with CER 
events, we analyzed the wave-activity flux formulated by Takaya and Nakamura (2001) and the ray paths 
derived by Hoskins and Karoly (1981). Ray equations for stationary waves were given by Wang et al. (2007). 

3. Analysis 

An EOF analysis of the CER revealed three dominant modes that together account for 44% of the total 
CER variance (Fig. 1 left panels). The first mode represents the consistent changes in the CER events over the 
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entire region (Fig. 1a). This mode suggests a climate status that is related to the occurrence of CER events 
over the entire area. The second mode has a dipolar structure with inverse variations of the CER in the 
southern Yangtze River (SYR) and the Yangtze-Huaihe River Valley (YHRV) (Fig. 1d). The third mode is 
characterized by a tripolar structure (Fig. 1g). To compare the dominant modes of the CER versus non-
extreme rainfall (non-ER, <50 mm d-1), the three leading EOFs of non-ER are also shown in Fig. 1 (right 
panels). The three leading EOFs of non-ER explain just 25% of the total non-ER variance, which is much less 
than 44% for the CER. Although the first mode of non-ER (Fig. 1c) has a uniform regional variation similar 
to the first mode for the CER, the spatial correlation between the two EOF1 patterns is -0.16, suggesting that 
the two types of rainfall have totally different distributions. For example, the highest rainfall value is located 
in the center of the area for the CER (Fig. 1a), while the highest values for the non-ER are located in the 
northwestern and southeastern corners (Fig. 1c). The second mode of non-ER has a dipolar structure (Fig. 1f) 
and significantly correlates with the second mode of the CER (r=0.55). The third mode of non-ER (Fig. 1i) 
does not share the tripolar structure of the EOF3 for the CER, although there is a significant correlation 
between the two EOFs (r=0.31). These differences demonstrate the importance of rainfall type classification 
according to rainfall intensity.  

To derive teleconnection pattern associated with the first mode of the CER, one-point correlation is 
performed on 500 hPa geopotential height anomalies at days -6, -4, -2 and 0 with reference to the base point 
denoted by the box [28°- 43° N, 130°- 160° W] in Fig. 2 a-b, and another box [20°- 35° N, 130°- 160° W] in 

 

Fig. 1 The EOF modes of the CER (left panels), PCs of the CER (middle panels), and EOF modes of 
non-ER rainfall (right panels) during JJA. The explained variance of each EOF is indicated at the 
top. Closed circles in (a) show the locations of the 210 observation stations in Central-Eastern 
China. 
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Fig. 2 c-d. A barotropic 
circumglobal teleconnection 
(CGT) pattern with a zonal 
wavenumber-3 structure occurs 
from days -6 to 0. Pressure 
variations over northeastern 
North America, the North 
Atlantic, and the Caspian Sea 
are all in phase with variation 
over the subtropical North 
Pacific (SNP), as shown by 
significant positive correlations. 
In contrast, pressure 
fluctuations over North 
America, northwestern Europe, 
and the Lake Baikal-East Asia 
area exhibit significant 
negative correlations. Ding and 
Wang (2005) also found that a 
CGT pattern with a zonal 
wavenumber-5 structure exists 
during boreal summer. This 
CGT influences rainfall and 
temperature in continental 
regions including East Asia. 

The second mode of the 
CER shows inverse variations 
in the SYR and the YHRV.  
Fig. 3 displays the one-point 
correlation between the base 
point (15°- 25° N, 90°- 130° 
E) and 500 hPa geopotential 
height anomalies at lags of 0, -
5, -10, and -15 days. It is 
apparent that a negative 
Pacific-Japan (PJ) 
teleconnection pattern occurs 
15 days prior to the CER 
events and maintains this wave 
train thereafter. 

The third mode of the CER 
events indicates that the 
probability of CER occurring 
in the YRV is low, while it is 
high in the Huaihe River Valley (HRV) and the SYR. As shown in Fig. 4, a negative Eurasian pattern (EU) 
exists at lags of -6, -4, -2 and 0 days. Significant negative correlations are located in the northeastern Atlantic 
and the area east of the Caspian Sea to Lake Baikal. On the other hand, significant positive correlations exist 
over the Mediterranean Sea to Western Europe and East Asia. It should be noted that the positive correlation 
over the East Asia is related to the Bonin high, suggesting that the negative EU-like teleconnection plays an 
important role on the formation of the Bonin high. 

Fig. 2 One-point correlation map between the base point (box) and 500 hPa 
geopotential height anomalies at day 0 (a), day -2 (b), day -4 (c), and 
day -6 (d). Shaded areas denote significance at the 0.10, 0.05 and 0.01 
levels. 

Fig. 3 One-point correlation map between the base point (box) and 500 hPa 
geopotential height anomalies for day 0 (a), day -5 (b), day -10 (c), and 
day -15 (d). Shaded areas indicate significance at the 0.10, 0.05 and 
0.01 levels. 
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4. Concluding remarks 

In this study, CER events 
over Central-Eastern China 
during the period from 1979-
2010 were identified based on 
the new definition. The 
dominant modes of the CER 
were determined based on EOF 
analysis. Our results show that 
the spatial distribution of the 
CER can be attributed to certain 
persistent circulation patterns, 
which makes sense because 
prolonged weather conditions 
can enhance the possibility of 
extreme events. When CER 
events occur over the entire 
region, the Western Pacific 
Subtropical High (WPSH) 
prevails in South China and the 
northern South China Sea (SCS); 
5 days prior to CER event onset, 
the WPSH is located in the middle of the SCS, after which it migrates northward, bringing water vapor from 
the western North Pacific (WNP) to the SYR and then the YHRV. Additionally, a barotropic CGT pattern 
with two major components, namely the Lake Baikal trough and the Ural blocking high, is found in 
geopotential height and persists from days -6 to 0. On the other hand, a negative PJ pattern is identified in 
geopotential height 15 days before the CER events occur over the YHRV. The WPSH, blocking high around 
the Sea of Okhotsk, and the anomalous low pressure south of Lake Baikal are three components of the 
negative PJ pattern. Furthermore, double blocking highs appear around the Ural mountains and the Sea of 
Okhotsk, distinguishing the persistent circulations of the second CER mode from the first mode. Moisture 
convergence and ascending motion anomalies prevail over the YHRV 5 days prior to CER event onset, 
accompanying the northwestward extension of the WPSH from the WNP to South China and the SYR. The 
third mode is associated with a negative EU-like teleconnection that appears 6 days before CER event onset. 
As one component of the EU-like teleconnection, the Bonin high covers East Asia from days -5 to 0 with 
moisture convergence and ascending motion anomalies over the HRV and SYR. This configuration of 
circulation anomalies favors the occurrence of CER events over the HRV and SYR. Thus, the configuration 
of persistent circulation anomalies is responsible for the CER distributions. 

Rossby wave propagation plays a key role in the formation and persistence of teleconnection patterns. 
Note that the three teleconnection patterns associated with the three CER modes are induced by SST 
anomalies around their base points. The ray paths based on these three base points correspond to the CGT, PJ 
and EU wave trains, suggesting the importance of propagating Rossby waves for the formation of 
teleconnection patterns, although the mechanism through which stationary Rossby waves respond to these 
heat sources needs to be investigated further. 
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1. Introduction 

The Madden-Julian Oscillation (MJO; Madden and Julian 1971; 1972) is a dominant mode of tropical 
atmospheric variability on intraseasonal time scales. To monitor the real-time MJO evolution in magnitude 
and phase, Wheeler and Hendon (2004) developed the all-season Real-time Multivariate MJO (RMM) index 
which has been widely used (e.g., Gottschalck et al. 2010). The index has a notable weakness, however. 
Straub (2013) found that zonal winds play a dominant role while OLR is minor in the index. Consequently, 
the RMM has tremendous difficulty representing the convective initiation of the MJO. 

2. Problematic normalization step 

The RMM index consists of the first two leading 
EOF modes of combined anomalies of OLR, 850-hPa 
zonal wind (U850) and 200-hPa zonal wind (U200). 
Before combination, the anomalies are normalized by the 
globally averaged standard deviation (STD) of respective 
variable: 15.3 W m-2 for OLR, 1.8 m s-1 for U850, and 
4.9 m s-1 for U200. Such normalization is close to the 
conventional approach of dividing the STD of each 
anomalous series. In contrast, the OLR becomes over 
dominant in the RMM index if a covariance approach is 
used. After a series of tests, we found that scaling only 
the OLR with 2 W m-2 would make the contributions 
more balanced to form the revised RMM (RMM-r). 

3. Improvement of RMM-r 

The balance is supported by the wavenumber-
frequency power spectra for each field reconstructed 
from the RMM modes. The difference between RMM-r 
and RMM indicates that RMM-r enhances the OLR 
power by 40-80% at zonal wavenumbers 2-5 and 
produces slight changes at zonal wavenumber 1 (Fig. 1a) 
and reduces power by about 20% in U850 (Fig. 1b), but 
only 10% in U200 (Fig. 1c).  

The improvement can be seen in representing the two 
TOGA-COARE MJO events (Webster and Luckas 1992). 
The first event is evident on the Hovmöller diagrams of 
OLR in raw (color shading in Fig. 2a) and total filtered 

Fig. 1 Differences between the RMM-r and 
RMM in wavenumber-frequency power 
spectrum of anomalies reconstructed by the 
first two CEOF modes. One isoline in each 
is approximately equivalent to 7%, 11%, and 
10%.  
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MJO (contours in Figs. 2a, 2c, and 2d). It started near the 
end of November 1992 in the Western Indian Ocean. A 
large dry patch was then embedded in the evolution for 
about 10 days between 6 and 16 December, causing the 
wet band to be very narrow. This patch disappeared in 
the filtered MJO. After this patch, a wet phase 
redeveloped in the Western Pacific and peaked at about 
170◦E with a magnitude of -50 ~ -70 W m-2 in raw OLR 
while the corresponding value was less than half in the 
filtered MJO (only two contours). The second event was 
initiated over Africa and followed immediately the first 
event. It had two peak phases in raw OLR: one in the 
Central Indian Ocean with a magnitude smaller than -60 
W m-2, and the other near the dateline of about -60 W m-2.  

The amplitudes in RMM and RMM-r overall capture 
both events from their initiation to peak phases (Fig. 2b), 
while notable changes were made by RMM-r during the 
first event. The RMM-r amplitude becomes above 1 
again on 18 December, which is about one week earlier 
than RMM. Between 16 and 25 December, the RMM-r 
amplitude is nearly twice much as RMM, more 
consistent with the evolution and magnitude of the peak 
around 21 December on the Hovmöller diagram (cf. Fig. 
2a). For the second MJO event, RMM-r has two peaks on 
5 and 15 January 1993 and they are about 20-40% larger 
than the RMM peaks, which is more consistent with the 
Hovmöller diagram as well. 

The reconstructed OLR amplitudes are improved as 
on Hovmöller diagrams (Figs. 2c and 2d). For the first 
event, RMM-r (Fig. 2d) has a much larger magnitude than RMM (Fig. 2c), and the duration of the suppressed 
phase before the redevelopment is much shorter. For the second event, the reconstructed OLR between 110°E 
and the date line is about 10-20 W m-2 smaller in RMM-r (Fig. 2d) than in RMM (Fig. 2c), suggesting 
stronger convection in RMM-r and closer to the raw and filtered MJO in Fig. 2a.  

The improvement can be demonstrated on the RMM phase diagram too. For the first TOGA-CORE event 
(Fig. 3a), RMM-r (blue curve) detects it starting over the Western Indian Ocean in Phase 2, which is more 
eastward than RMM (black curve) in 
Phase 1 as shown by the different 
locations of the two black dots. The 
RMM-r remains outside of the unit 
circle for a few days and enters the 
circle at the Central Indian Ocean, also 
more eastward and with larger 
amplitude than the RMM. Later, the 
RMM-r emerges out of the circle in 
Phase 5 slightly to the east of the 
Maritime Continent and remains strong 
for several days towards the end in 
Phase 6 corresponding to the MJO 
redevelopment (cf. Fig. 2a). This phase 
evolution of RMM-r is also in a better 
agreement with the raw OLR than that 

Fig. 2  The two TOGA-CORE MJO events for 
(a) raw OLR anomaly (shading) and filtered 
MJO (contour with interal 10 W m-2 and 0 
being omitted); (b) amplitudes of RMM 
(black) and RMM-r (blue); (c) reconstructed 
anomalies (shading with uneven intervals) 
by RMM and total filtered MJO (contour as 
in a); and (d) same as (c) but by RMM-r. 

Fig. 3 Catesian phase diagrams of RMM (black) and RMM-r 
(blue) for the two events during TOGA-CORE (a) 28 
November 1992 - 5 January 1993 and (b) 1 January - 15 
Febrary 1993.  
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of RMM. The enhanced OLR variance in RMM-r obviously contributes to the change (cf. Fig. 2). For the 
second event during TOGA-CORE, both RMM and RMM-r represent its evolution well (Fig. 3b). There are 
still a couple of notable changes in the RMM-r. It peaks in Phases 3 over the Eastern Indian Ocean and Phase 
4 over the Maritime Continent, while RMM peaks only once over the central Indian Ocean. The RMM-r 
amplitude is larger than RMM in Phases 1-5. Clearly RMM-r is more consistent with the actual MJO 
evolution.  

This work has been published in Monthly Weather Review in 2016. 
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1. Introduction 

Dynamic weather forecasting using numerical models can be done reliably out to approximately seven 
days, and has an absolute limit of about 10-14 days. Beyond this point, statistical forecasts are typically made. 
These limitations are due to the characteristics of the earth and atmosphere, but also the lack of data, 
knowledge of the physical processes, and measurement error (e.g., Haltiner and Williams 1980; Durran 1999). 
Error in the initial and/or boundary conditions can render model forecasts as quickly as a few days (e.g., 
Lorenz 1965), or alternatively two forecasts with slight difference in the initial conditions could evolve in 
radically different ways over the course of time. This problem is referred to as sensitivity to the initial 
conditions. One way to mitigate or qualitatively evaluate this problem is ensemble forecasting, a forecasting 
product that has been available for more than two decades (e.g., Toth and Kalnay 1993, 1997; Tracton and 
Kalnay 1993). 

Forecasting beyond two weeks could also use ensemble forecasting methods, and the Climate Prediction 
Center (CPC) has developed an experimental product that makes probabilistic forecasts in the three to four 
week time period1. This particular time period has not been forecast for traditionally, as there are monthly and 
seasonal forecasts made by the Climate Prediction Center. Renken et al. (2015) demonstrated the success of 
temperature predictions in the 6-30 day period for the United States using the Bering Sea Rule (BSR) and/or 
Typhoon Rule (TR), which showed success over climatology. This skill was especially measurable in 
forecasting events that were two or more standard deviations above or below climatology. The BSR and TR 
are based on Pacific and North American (PNA) region teleconnectivity, which was defined statistically by 
Wallace and Gutzler (1981). Renken et al. (2015) further showed that Pacific Region blocking has a strong 
correlation to weather and climate in the middle part of the USA, via the strong impact on the teleconnection 
patterns within the PNA region. 

The motivation for this work is to demonstrate further the utility of the BSR and TR for prediction in the 
two-to-four week period. Case studies will be presented in order to demonstrate the capabilities of these 
indexes. We will also demonstrate that there is a strong degree of autocorrelation in this time frame by 
examining the PNA index. 

2. Data and methodology 

a. data 

The data used for this work are the National Centers for Environmental Prediction / National Center for 
Atmospheric Research (NCEP/NCAR) re-analyses which are archived in Boulder, CO2. These data were the 
500 hPa height fields on the 2.5o x 2.5o latitude/longitude grid daily from 1948 - present. The daily PNA 

                                                 
1 http://www.cpc.ncep.noaa.gov/products/predictions/WK34/ 
2 http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml 
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index information was also available from CPC 
which used the NCEP/NCAR re-analyses and are 
available from 1 January 1950 - present, which 
represents a 66 year period as of 31 December, 
2015. 

b. Methods and definitions 

In order to determine if there was predictability 
in the PNA index time series, autocorrelation was 
performed by lagging the PNA index from 1 
January 2012 to 31 December 2013. 
Autocorrelation can be used in order to test for 
chaotic or cyclical behavior in a data set. If a 
system has limited predictability, then the 
correlation will fall to zero with further lag and 
remain there. If there is cyclical behavior, 
correlation will increase near the time-scale of the 
forcing function. Additionally, the entire time series was decomposed using Fourier series in order to isolate 
significant power in the time series. 

The BSR correlates 500 hPa heights in the Bering Sea Region to three points in the USA which show 
strong correlation. These three points are in southern Utah, western MO, and near Long Island, using a similar 
methodology to Wallace and Gutzler (1981). The primary correlation time is in the two to three week time-
frame. The TR correlates 500 hPa heights in East Asia to points in the USA, and the primary time-scale in 
one–to-two weeks. 

3. Periodicity in the 500 hPa height field 

The results of testing the PNA index derived from the 500 hPa height field using autocorrelation for the 
two year period of 2012-2013 are shown in Fig 1. The time series was auto-regressed from 1 to 130 days. The 
correlation falls rapidly, but then increases slightly around 20 and 34 days. There is a strong non-zero peak 
also found in the 50-55 day period. While this hints at predictability in the three-to-four week time frame and 
beyond, this test by itself cannot identify recurrence in the desired time frame. Additionally, this period is a 
small segment of the climatological record for the PNA region. Tests on other parts of the 66 year series 
reveal similar behavior to that shown in Fig. 1.  

Next, the time series of the daily PNA index for the 66 year period were decomposed using Fourier series 
decomposition (Fig. 2). The entire decomposition is not shown in order to focus on the time period in 
question. The decomposition shows spectral peaks at several wave numbers, and the period can be determined 
by dividing the wave number by the spectral peak. For example, in addition to those peaks associated with the 
annual cycle there were strong peaks around wave numbers 505, 570, and 610, corresponding to a period of 
about 47, 42, and 39 days (not shown). These peaks probably correspond to a long-period Rossby Wave. This 
analysis cannot determine if these are different peaks forced by different processes, or more likely, the same 

Fig. 1 The autocorrelation of the PNA index from 1 
January 2012 to 31 December 2013. 

Fig. 2 The spectral decomposition of the 66-year time series of the PNA index. The abscissa is wave number 
1000 to 1500, and the ordinate is spectral power.  
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peak whose period may be modulated by annual cycle, El Nino and Southern Oscillation (ENSO), the Pacific 
Decadal Oscillation (PDO), or climate change. The latter seemed to be the case when testing different parts of 
the 66 year time series using auto correlation. Further analysis would be needed to verify this assertion. 

The time period of interest is shown is Fig, 2, which shows the spectral peaks from wave number 1000 to 
1500, and these correspond to periods of 23 to 16 days. There are peaks found near 1000-1010 and in the 
1140-1190 range, which correspond to 24 and 21 days respectively. This analysis, combined with the 
autocorrelation, hint at predictability in the two - three week time scale, which is similar to the result obtained 
from autocorrelation. 

4. Two case studies 

a. 28 April 2014 severe weather 

On 28 April, 2014, severe weather occurred across the middle southeast USA, and the St. Louis region. 
The Storm Prediction Center (SPC) archived several reports of tornadoes, large hail, and strong winds (Fig 
3d), and this was associated with a strong trough at 500 hPa located over the plains states (Fig 3c), and this 
was associated with a well-developed low pressure at the surface. Examining the Bering Sea region about 20 
days prior (8 April, 2014) shows a strong 500 hPa low near the Kamchatka Peninsula and the Aleutians (Fig 
3a). A figure showing the Bering Sea region on 28 April would show a trough in the same area as in Fig. 3a. 
Thus there is an approximately two to four week cycle in the PNA index as shown in Section 3. About eight 
days before the 28 April event, a strong low was located over East Asia (Fig. 3b) which corresponds to the TR. 

Fig. 3  The 500 hPa height anomalies versus the 1981-2010 climatology over the Bering Sea region for a) 8 
April 2014, b) 20 April 2014, and c) over the Continental USA for 28 April 2014.  d) The Continental 
USA severe weather reports. 

(a) 

(b) 

(c) 

(d) 
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Also, low pressure would exist in the Bering Sea 
region again on 28 April (not shown). 

b. Typhoon Nuri, November 2014 

The case of Typhoon Nuri was cited briefly by 
Renken et al. (2015) as a successful example of the 
BSR and TR. In early November, 2014, Typhoon 
Nuri moved poleward in the western Pacific 
becoming extratropical and deepening to 924 hPa as 
the strongest North Pacific cyclone ever. This was 
reflected in the 500 hPa height field as a strong low 
over the western Bering Sea (Fig. 4a) during the 8-10 
November 2014 period. This cyclone was upstream 
of a weak blocking event, which had onset at 1200 
UTC 5 November at about 170o W (see 
http://weather.missouri.edu/gcc/blocknh.pdf). The 
cyclone interacted with the blocking event, 
strengthening the block through the same mechanism 
shown in Lupo and Smith (1995), Lupo (1997), or 
Lupo and Bosart (1999). This blocking event 
induced persistent troughing over North America, 
which was particularly strong in the middle of and 
late in the month (Fig. 4c). In this case the, the PNA 
pattern intensified strongly during the strengthening 
of the surface cyclone and blocking event. During 
late November there was also an upstream trough in 
the Bering Sea region. In the middle of November 
troughing correlating with the TR was present over 
East Asia (Fig 4b). There was also strong indication 
of the mid-November cold event in association with 
the remnants of Nuri using the TR (Fig. 4a). 

5. Discussion, summary, and conclusions 

This work furthers the study presented last year 
which showed that there was skill above climatology 
in using the BSR or TR for making long-range 
forecasts in the one to four week time frame, 
especially for extreme events. The BSR and TR 
simply use two of the action centers from the PNA 
index looking at the two positively correlated centers 
generally (the Bering Sea and the Eastern USA 
primarily). In this study, the PNA index is used as a 
surrogate for the 500 hPa height field in the region. 
Autocorrelation of the PNA time series for 2012-
2013 showed cyclical behavior in the correlation 
series (lagged by up to 130 days), and similar 
behavior was shown in other parts of the time series. 
This test suggested that there may be predictability in 
the 20 and 34 day time period, as well as a strong 
increase in the correlation peaking at 50-55 days. In our study, the focus is on the three and four week time 
period. Spectral analysis using 66 years of daily PNA index time series, and there were peaks with a period in 
the 24 and 21 day time frame. 

Fig. 4. As in Fig. 3a, 3b, and 3c, except for a) 8-10 
November 2014, b) 16 November 2014, and c) 
25-27 November 2014. 

(a) 

(b) 

(c) 
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The predictability implied by the two tests is likely due to a long period Rossby Wave as it propagates 
through the PNA region on a great circle trajectory (e.g., Hoskins and Karoly, 1981). Here, two case studies 
were examined and showed about three-week lag between a strong cyclone in the Bering Sea Region and 
severe weather or very cold weather over some portion of eastern two-thirds of the USA. In both cases, the 
result is the time period consistent with the BSR. Many studies have shown interaction between the longer-
period PNA pattern and synoptic scale eddies (e.g., Lau, 1988, Hall and Derome, 2000, and Reviere and 
Orlanski, 2007), which seems to be the scenario in the Typhoon Nuri case study. A simple index like the BSR 
or TR cannot take into account any changes in the intensity of the PNA pattern, nor can the index take into 
account periods when the PNA exists in an unusual phase or configuration (e.g., Lupo and Bosart). However, 
the BSR does have forecast skill above climatology, and a simple BSR Index (BSRI) can be created for 
operational use by simply adding the height anomalies at the action centers. Interpretation of the BSRI does 
include some interpretation by the forecaster and will be described in a future study, and more information 
about the BSR and TR are found at: http://www.beringsearule.blogspot.com. 
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1. Introduction 

In Central America, the Primera or first rainfall season begins in May and ends roughly in August. In 
2014, the Primera was well below-average and led to drought, which severely impacted many countries. By 
mid-September, the livelihoods of more than 2 million people 
were jeopardized by food insecurity, according to the United 
Nations World Food Programme (Bonifacio 2014). Past 
studies have identified relationships between sea-surface 
temperatures (SST) over the Pacific and Atlantic and rainfall 
anomalies over Central America (Ropelewski and Halpert 
1987; Waylen and Quesada 2002; Magana et al. 2003). 
Studies have also associated the mid-summer drought, a 
period with reduced rainfall in July, with a strong Caribbean 
low-level jet over the Intra-Americas Sea. This surge is linked 
to an amplification and westward extension of the North 
Atlantic subtropical high (Romero-Centeno et al. 2007; Wang 
and Lee 2007; Wang 2007; Small et al. 2007; Munoz et al. 
2008). Understanding drought still poses a challenge, 
particularly over such a complex and narrow land as Central 
America. The main goal of this study is to investigate the 
underlying mechanisms, governing the Central America 
drought during May-August, 2014, with a particular emphasis 
on the role played by SST and its coupling with the 
atmosphere. A better understanding of the forcing associated 
with this particular drought may help improve prediction of 
such extreme climatic event in the future. 

2. Data and methods 

We used the National Centers for Environmental 
Information monthly extended reconstructed sea-surface 
temperatures version 3b (ErSSTv3b) (Smith et al. 2008) for 
the period 1979-2012 and optimum interpolation SST (OI-
SST) (Reynolds et al. 2002) for the period 1982-2014. We 
applied an empirical orthogonal function (EOF) analysis 
similar to the method used in Messie and Chavez (2011) to 
ErSSTv3b to explore the dominant modes of variability of 
global SST. We then applied regression to the Climate 
Prediction Center Merged Analysis of Precipitation (CMAP) 
(Xie and Arkin 1997) onto the principal components (PC) of 
SST. We used the National Aeronautics and Space 
Administration (NASA) daily Tropical Rainfall Measurement 

Fig. 1 Regression of the May-August 
CMAP rainfall onto each of the first 
four (a-d) PCs of SST. 
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Mission 3B42 version 7 (TRMM 3B42 v7) and monthly TRMM 3B43 v7 (Huffman et al. 2007) to quantify 
anomalies during 2014. The climatology was calculated from 1998-2014. We used the NASA Global Land 
Data Assimilation System (GLDAS) version 1 (Rodell et al. 2004) soil moisture content in the 0-10cm layer 
from the NOAH land surface model to quantify soil moisture anomalies. Climatology used was 1981-2010. 
We used the National Centers for Environmental Prediction-National Center for Atmospheric Research 
(NCEP-NCAR) reanalysis (Kalnay et al. 1996) monthly zonal and meridional components of the wind, 
vertical velocity, and specific humidity to examine large-scale atmospheric circulation and moisture transport. 
Climatology was computed for the 1981-2010.  

3. Results 

3.1 Sea-surface temperatures and rainfall 

The dominant mode (EOF1) explains 19.3% of the total variance and exhibits ENSO patterns. The first 
principal component (PC1) strongly correlates with the Oceanic Nino Index (ONI), with a correlation 
coefficient of 0.82. Regression of CMAP onto PC1 displays negative anomalies across Central America, with 
the largest deficits over Guatemala, western El Salvador, Nicaragua, and western Costa Rica (Fig 1a). This 
means El Nino conditions likely result in below-average Primera rainfall. In contrast, regression of rainfall 
onto PC2 shows positive rainfall anomalies over much of Central America, (Fig 1b). Regression of rainfall on 
PC3 indicates near-neutral conditions (Fig 1c), whereas its regression on PC4 displays substantial negative 
anomalies over southern Mexico and western Guatemala (Fig 1d). 

3.2 The 2014 Primera drought 

Large seasonal deficits 
exceeding 3mm day-1 were 
observed over western and 
southern Nicaragua and 
northwestern Costa Rica. An 
analysis of the area-averaged 
(92ºW-83ºW; 10ºN-16ºN) daily 
rainfall during 2014 relative to 
the average daily rainfall 
displays an early onset and 
extended mid-summer drought. 
The mid-summer drought began 
mid-June and ended in late July. 
This corresponded to a 
reduction in rainfall by roughly 
50%. In terms of interannual 
variability, seasonal rainfall 
shows no significant trend over 
the past seventeen years. 
However, a declining trend was 
observed since 2010. With the 
exception of 2001, 2014 was the 
second driest years since 1998, 
with seasonal rainfall falling 
more than one standard 
deviation below the mean. 

3.3 Atmospheric circulation and 
moisture transport 

Well above-average SST was observed across the equatorial eastern Pacific, while the western Atlantic 
and Caribbean Sea remained near-neutral (Fig 2a). A longitude-height cross section of zonal wind coupled 

Fig. 2 a) SST anomalies during May-August, 2014 in the OI-SST. b) 
Longitude-height cross section of the zonal component of the wind 
coupled with vertical velocity (vectors) anomalies and zonal 
component of the wind (shaded and contours) anomalies. c) Vertically-
integrated (850 hPa-200 hPa) of moisture flux (vectors) anomalies and 
moisture divergence anomalies (shaded). d) Mean sea-level pressure 
(shaded) anomalies and 925-hPa zonal component of the wind 
(contours) anomalies. 
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with vertical velocity anomalies averaged between 12°N and 16°N indicates a vertical circulation, with its 
ascending branch over the northeastern Tropical Pacific (Fig 2b). Conversely, the associated descending 
branch is observed over the longitudes of Central America. Stronger than average easterlies, with anomalies 
larger than 2 m s-1 were observed at 925 hPa and correspond to strong Caribbean low-level jet (Romero-
Centeno et al. 2007; Wang and Lee 2007; Small et al. 2007; Munoz et al. 2008). Strong moisture flux 
anomalies exited the Pacific Basin of Central America, thus removing moisture from the region (Fig 2c). 
Positive divergence anomalies were also observed over Central America. Figure 2d shows stronger than 
average Caribbean low-level jet across the southern portions of Central America. Mean sea-level pressure 
anomalies exhibits anomalous cut-off high over the Gulf of Mexico and a westward extension of the North 
Atlantic subtropical high. 

4. Concluding remarks 

We have examined the influence of SST, observed features, atmospheric circulation, and moisture 
transport to better understand the governing mechanisms associated with the drought over Central America 
during May-August, 2014. An EOF analysis was applied to the global SST.  Seasonal rainfall was projected 
onto the PC’s of SST. Anomalies in various flux and atmospheric fields were also analyzed. The following 
results stand out. First, ENSO was found to be the dominant mode of variability in global SST and it tends to 
suppress the Primera, May-August season, over Central America. The fourth leading mode resembles central 
Pacific ENSO and can lead to rainfall deficits in southern Mexico and western Guatemala. Second, the 2014 
drought was characterized by an early onset and extended mid-summer drought, with a reduction in rainfall 
by roughly 50 percent. The 2014 Primera season was among the top driest years since 1998. Third, warmer 
eastern Pacific and relatively colder Atlantic drive vertical circulation, with an ascending branch that 
enhances convection over the northeastern Tropical Pacific and a descending branch, which suppresses 
rainfall over Central America. Enhanced anomalous moisture divergence and moisture flux contributed to the 
reduction in atmospheric humidity. Lastly fourth, in line with previous studies, large-scale remote forcing 
contributed to the drought over Central America. 

References 

Bonifacio, R., 2014: Central and South America the 2014 rainfall season. WFP, VAM Food Security Analysis. 
Available at the URL: 
 http://documents.wfp.org/stellent/groups/public/documents/ena/wfp268824.pdf 

Huffman, G.J., R.F. Adler, D.T. Bolvin, G. Gu, E.J. Nelkin, K.P. Bowman, Y. Hong, E.F. Stocker, and D.B. 
Wolff, 2007: The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-
sensor precipitation estimates at fine scale.  J. Hydrometeor., 8(1), 38-55. 

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 
437–471. 

Magana, V.O., J.L. Vazquez, J.L. Perez, and J.B. Perez, 2003: Impact of El Nino on precipitation in Mexico. 
Geofisica Internacional, 42, 313-330. 

Messie, M., and F. Chavez, 2011: Global modes of sea surface temperature variability in relation to regional 
climate indices.  J. Climate, 24, 4314-4331. 

Munoz, E., A.J. Busalacchi, S. Nigam, and A. Ruiz-Barradas, 2008: Winter and summer structure of the 
Caribbean low-level jet.  J. Climate, 21, 1260-1276. 

Reynolds, R.W., N.A. Rayner, T.M. Smith, D.C. Stokes, and W. Wang, 2002: An improved in situ and 
satellite SST analysis for climate.  J. Climate, 15, 1609-1625. 

Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. 
Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, 2004: The Global Land 
Data Assimilation System.  Bull. Amer. Meteor. Soc., 85, 381-394. 

Romero-Centeno, R., J. Zavala-Hidalgo, and G.B. Raga, 2007: Midsummer gap winds and low-level 
circulation over the eastern tropical Pacific.  J. Climate, 20, 3768-3784. 



ROBJHON AND THIAW 
 

 

59 

Ropelewski, C.F., and M.S. Halpert, 1987: Global and regional scale precipitation patterns associated with the 
El Niño/Southern Oscillation.  Mon. Wea. Rev., 115, 1606-1626. 

Small, R.J.O., S.P. de Szoeke, and S.-P. Xie, 2007: The Central American midsummer drought: Regional 
aspects and large-scale forcing.  J. Climate, 20, 4853-4873. 

Smith, T.M., R.W. Reynolds, T.C. Peterson, and J. Lawrimore, 2008: Improvements to NOAAs historical 
merged land–ocean temp analysis (1880–2006).  J. Climate, 21, 2283–2296. 

Wang, C., 2007: Variability of the Caribbean low-level jet and its relations to climate. Clim. Dyn., 29, 411-
422. 

Wang, C., and S.-K. Lee, 2007: Atlantic warm pool, Caribbean low-level jet, and their potential impact on 
Atlantic hurricanes.  Geophys. Res. Lett., 34, L02703, doi: 10.1029/2006GL028579. 

Waylen, P., and M. Quesada, 2002: The effect of Atlantic and Pacific sea surface temperatures on the mid-
summer drought of Costa Rica.  Environmental Change and Water Sustainability, 197-209. 

Xie, P., and P.A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, 
satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558. 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
40th NOAA Annual Climate Diagnostics and Prediction Workshop  
Denver, CO, 26-29 October 2015 

______________ 

Correspondence to: Monika Barcikowska, NOAA/GFDL, Princeton University;  
E-mail: monikab@princeton.edu. 

Impact of Large-scale Circulation on Precipitation Events in 
the Mediterranean Region  

Monika Barcikowska and Sarah Kapnick 
  NOAA/GFDL, Princeton University   

1. Introduction 

The Mediterranean region is located in-between the dry, subtropical Saharan and the relatively wet 
European climates, making it highly sensitive to changes in the mean climate state. Long-term atmospheric 
circulation changes, either radiatively forced or caused by intrinsic climate features, will likely impact the 
future Mediterranean hydroclimate.  Nevertheless, observations are neither sufficiently long nor homogenous 
to diagnose robust, low-frequency patterns allowing decadal-scale future predictions. Long control 
simulations can serve as a good alternative. However, they often struggle to correctly reproduce the main 
mechanisms controlling Mediterranean hydroclimate and have resolutions that are too coarse to realistically 
simulate extreme hydroclimatic phenomena.  

In this study, long free control simulations of the GFDL CM2.1 and CM2.5 global couple models are 
analyzed to derive a representation of the large-scale circulation variability in the subtropical-midlatitude 
section and determine its relationship to the Mediterranean mean and extreme hydroclimate.  These results 
serve as a basis for further analysis and investigation of possible changes in atmospheric circulation under the 
influence of anthropogenic forcing and associated effects on the Mediterranean hydroclimate. 

2. Data and methodology 

Low-frequency variability of large-scale circulation over the North Atlantic region is analyzed, using 
GFDL CM2.1 and CM2.5 control simulations with fixed radiative forcing at levels from the year 1860. GFDL 
CM2.1 provides 4000yrs data with 2ºx2º horizontal resolution. GFDL CM2.5 provides 1000yrs data on 0.5º x 
0.5º horizontal resolution. Analysis was performed on data for the December – February season (DJF).  The 
climatological mean is computed for SLP and precipitation values in DJF season.  Multi-Channel Singular 
Spectrum Analysis (MSSA, Plaut and Vautard 1994, Allen and Smith 1996, Moron et al. 1998, Ghil et al. 
2002) was used to isolate fingerprints of multi-decadal scale ocean-atmosphere components. Prior to the 
analysis, winter data of sea level pressure (SLP), sea surface temperature (SST) and precipitation were 
interpolated to 5ºx5º horizontal grid, standardized to zero mean and unit variance. Statistical significance of 
derived components has been tested against the red noise hypothesis, using Chi-Square test. 

3. The mean state and variability of winter circulation over the North Atlantic simulated with low-
resolution CM2.1 and high-resolution CM2.5 

Atmospheric circulation in midlatitudes is shaped by the intensity of the meridional SLP gradient, which 
determines zonal mean flow and direction of storm tracks transporting moisture towards Europe and North 
Africa. It is usually northwardly deviated, due to the land-sea contrast. Therefore, simulated mean zonal flow, 
as well as the climatology of North Atlantic storms and their impact on Mediterranean hydroclimate, is 
usually better represented in simulations with finer horizontal resolution (Nakamura and Wallace 1993, 
Woolings et al. 2010, Jung et al. 2012). 

Atmospheric flow in both CM2.1 and CM2.5 shows realistic features including a strong SLP gradient 
between Iceland and the subtropical band. As expected, the SLP gradient is better captured by CM2.5, in 
comparison with the overly zonal gradient in CM2.1. Isobars in CM2.5 are tilted northeastward. This is also 
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consistent with an improved precipitation 
pattern over N Atlantic (NA), which in 
CM2.5 is extended and oriented north-
eastwardly, towards region between Great 
Britain and Iceland.  

Simulated large–scale circulation over 
the North Atlantic shows pronounced 
low-frequency variability, which 
modulates mean atmospheric flow in the 
NA and European sector.  Spatio-
temporal features of those components, 

similarly for both models, closely 
resemble the observation-based North 
Atlantic Oscillation (NAO) and East 
Atlantic (EA) patterns. Here we present 
fingerprints of coupled atmosphere-ocean 
components dominating multi-decadal 
variability, which have been isolated 
using MSSA. 

The first component is an oscillatory 
mode with a time scale of ~45-48 yrs 
(herafter referred to as RC45). Figure 1a,b 
shows that its spatial pattern strongly 
resembles a NAO pattern, with an out-of 
phase SLP relationship between the 
Icelandic Low and Azores High and a 
characteristic tripole SST pattern. 
Reconstructed time series for those regions 
(rc SLP 30-40⁰N, rc SLP 60-70⁰N), as 
shown in Figure 1c, confirm strong 
anticorrelation and explain up to 18% (for rc SLP 35-45⁰N) of SLP decadal variance (smoothed with a 10-yr 
filter). Reconstructed SST changes, centered in the subpolar gyre, northern equatorial region and subtropical 
gyre, contributes mostly to the SST along the Gulf Stream (30-40⁰N, 70-50⁰W), accounting for more than 27% 
of SST (decadal) variance.  

The second component has a longer 
period, which varies between ~55-62 yrs 
(hereafter referred to as RC60). Figure 
2a,b shows that the spatial pattern of 
RC60 strongly resembles features of the 
East Atlantic pattern (EA) pattern 
(Barnston and Livezey, 1987; Woolings et 
al. 2010; Moore and Renfrew 2012; 
Murphy and Washington, 2001). It is 
centered along the 53⁰N latitude band, 
where it accounts for more than 22% of 
decadal SLP. 

 Interannual variability of NAO, has 
been shown to have an impact on 
Mediterranean winter hydroclimate in 
numerous studies (Corte-Real et al. 1998, 

Fig. 1 Signature of RC45 component [SLP, contours; SST, 
shaded], represented in the GFDL CM2.5 model, during 
positive/negative (left/right) phase. Shown are trend 
coefficients of SST [C/decade] and SLP [hPa/decade]. 
Action is centered over mid- and high-latitudes. Pattern of 
SLP anomalies resembles signature of positive/negative 
NAO phase: dipole with opposite sign anomalies centered 
over Azores Islands and Iceland.   

 

Fig. 2  Signature of RC60 component [SLP, contours; SST, 
shaded], represented in the GFDL CM2.5 model, during two 
opposite phases. Shown are linear regression trend 
coefficients. Action regions are shifted southward, with 
lower-latitude center located in the subtropical area. 
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Trigo et al. 2002, Gomes 2001, Gomes 2006).  Mariotti and Dell’ Aquilla (2012) suggested that NAO could 
explain up to 30% of winter decadal variance in Mediterranean precipitation. The EA pattern has been studied 
less extensively, but some studies highlighted its importance for various aspects of European climate, e.g. 
precipitation in the Iberian Peninsula and location of storm track over North Atlantic (e.g. Seierstadt 2007, 
Vicente-Serrano and Lopez-Moreno 2008, Moore et al. 2011). 

In the next part, we will investigate a relationship between reconstructed North Atlantic large-scale 
circulation components (RC45 and RC60) and Mediterranean hydroclimate.  

Fig. 3 Composites of SLP and wind components anomalies tendencies ([%/decade], anomalies normalized 
to unit variance) for a) RC45 and b) RC60 components of the GFDL CM2.5 model. 

4. Relationship between derived large-scale circulation components (RC45 and RC60) and 
Mediterranean hydroclimate 

Reconstructed with RC45 and RC60 large-scale atmospheric changes over North Atlantic are reflected in 
sea level pressure, wind components, vorticity and precipitation fields over Europe and N Africa. Composites 
of SLP and wind vectors (Figure 3a), constructed for the positive and negative RC45 phase show a north-
eastward extension of anomalous atmospheric flow towards Europe and Mediterranean.  Linear regression on 
DJF SLP in RC45 depicts almost zonal bands of opposite sign in the 30-40N latitude band and in the vicinity 

of Icelandic Low for both vorticity 
and precipitation fields. 
Precipitation anomalies in the 
subtropical band extend further east 
through the south Iberian Peninsula, 
the coasts of north-east Africa and 
north-eastward to the Balkan region 
in the north-east part of 
Mediterranean. The out-of-phase 
relationship between SLP and 
vorticity suggests that derived 
changes in precipitation and 
associated anomalous circulation in 
RC45 SLP are due to the low-level 
convergence (divergence) 
facilitating condensation of 
precipitable water.  

Additionally, composites of 
SLP and wind vectors, derived for 
the positive (Figure 3b) RC60 
phase, imply a remarkable 
influence on atmospheric flow over 
Europe and Mediterranean. 
Anticyclonic anomalies in the 

Fig. 4 Signature of RC45 component, represented with SLP (contours) 
and precipitation (shaded) anomalies in GFDL CM2.5 model, 
during four phases: positive (a) /negative(c), and two transition 
phases (b,d). Shown are linear regression trend coefficients, which 
represent decadal change ([%/decade]. 
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midlatitudes extend eastward across Central Europe, while cyclonic anomalies, associated with strengthened 
easterly trade winds over subtropical North Atlantic, spread eastward across North and Central Africa and 
West Indian Ocean. A strengthened SLP gradient and northward vorticity shift suggest a northward shift of 
transient eddies transporting moisture, which is consistent with negative precipitation anomalies over 
Mediterranean Sea, Mediterranean region and South Italy, Adriatic Sea countries. 

4.1 Association of atmospheric circulation and Mediterranean hydroclimate 

Application of MSSA analysis allows also for detailed description of the spatio-temporal evolution of 
derived coupled ocean–atmosphere mechanism. Figure 4 presents four phases of the RC45 cycle 
reconstructed with SLP and precipitation anomalies. It depicts a link between the meridional contrast in SLP 
anomalies and the contrast between the north-vs-south part of Mediterranean precipitation. Phase A and C, 
similarly to Figure 1, resemble a standard NAO pattern, with out-of–phase SLP variability between regions 
surrounding Iceland and the Azores Islands. Intensified precipitation (phase C)/drying (phase A) anomalies, 
associated with cyclonic/anticyclonic circulation over subtropical North Atlantic and Mediterranean, are most 
pronounce in the south Iberian Peninsula and Strait of Gibraltar. Those anomalies extend through the north 
Mediterranean up to the eastern Europe and Black Sea. As Figure 4a indicates, precipitation anomalies in 
Black Sea region area are collocated with strong divergent (convergent) during phase A (phase C) wind field 
and are associated with northwesterly export of moisture. Southward moisture transport leads to the opposite 
sign precipitation anomalies in the south Mediterranean and the Gulf of Persia. Phase B and D are transient 
phases, with SLP anomalies changing sign and precipitation anomalies rotated clockwise. Drying tendencies, 
observed in the Black Sea region during phase A, are during phase B shifted southward. At the same time, 
wetting (drying) tendencies emerge in the vicinity of Iberian Peninsula, and intensify and propagate through 
the north Mediterranean until phase C is reached.  

Figure 5 depicts four phases of 
the RC60 cycle. Out-of–phase 
atmospheric variability (phase A 
and C), between midlatitudes and 
tropical-subtropical regions, leads 
to the latitudinal contrast in 
precipitation tendencies between 
Iberian Peninsula and south 
Mediterranean region. Anomalous 
in phase A (C) cyclonic 
(anticyclonic) circulation in the 
subtropical region extends 
eastward (Figure 3b) and coincides 
with positive precipitation 
anomalies mostly in the west and 
central part of the south 
Mediterranean region. At the same 
time, positive SLP anomalies in the 
midlatitude NA (Figure 3b) 
coincide with drying tendencies 
over whole Iberian Peninsula.  

The model-based relationship 
between North Atlantic low-frequency atmospheric circulation changes and Mediterranean hydroclimate 
described here is consistent with observation-based studies. The high contribution of low-frequency NAO-
type simulated variability in the Iberian Peninsula confirms Mariotti and Dell’ Aquilla 2012, who showed 
NAO accounting up to 30% of winter decadal changes. Gomes 2011, applying MSSA analysis to the winter 
SLP and precipitation fields, identified a quasi-decadal scale oscillatory component with a spatio-temporal 
evolution that closely resembles our model-based component. 

Fig. 5  Like in Figure 4, except for RC60 component. 
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5. Summary 

The GFDL CM2.1 and CM2.5 models have been shown to provide a reliable representation of large-scale 
circulation over North Atlantic, Europe and N Africa. This representation is better captured by high resolution 
CM2.5, which further leads to the improved simulated precipitation fields.    

Analysis of long control runs allowed us to investigate the main components of multidecadal climate 
variability in the North Atlantic sector and their impact on low-frequency changes in the Mediterranean 
hydroclimate. Multi-channel singular spectrum analysis (MSSA) was applied to isolate spatio-temporal 
patterns of two components, RC60 and RC45, which together dominate the coupled ocean-atmosphere 
multidecadal variability over the Northern Atlantic and a large part of Europe.  These components resemble 
the observed North Atlantic Oscillation and Eastern Atlantic Pattern (Hurrell 1995, Hurrel et al. 2003).  Both 
modulate the winter mean state atmospheric flow over the North Atlantic and European regions in their own 
unique way, which impacts precipitation over North Africa, the Mediterranean Sea and southern Europe on 
decadal time scales. 

The results shown here also provide useful information for detection and attribution studies. 
Multidecadal-scale climate changes, caused here only by intrinsic climate variability, significantly impact 
atmospheric circulation and hydroclimate changes.  This suggests that separating internal climate variability 
signal from anthropogenic forcing will require observational data sets much longer than those currently 
available. 

These results provide a necessary foundation for further research investigating the influence of 
anthropogenic forcing on large-scale atmospheric circulation and its associated effects on the Mediterranean 
hydroclimate. 
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1. Introduction 

May and June is the Mei-yu season in Taiwan. It marks the end of the dry half-year (November-April) 
and the beginning of the high-risk period with disastrous rainfall events. The period with intense rainfall 
events during the Mei-yu season is usually located in a narrow time window of about one-month. Therefore, 
forecast the beginning and duration of the intense period and its extremity is of particular importance to 
Taiwan (Wang et al. 2015, Yim et al. 2015). A conceptual downscaling method is presented in this paper to 
show how it can be applied to the global climate forecast model output to generate the frequency information 
of Taiwan Mei-yu season extreme rainfall events for seasonal outlook and climate change assessment. 

2. Data and method 

2.1. Data 

Taiwan station and global gridded data are used in this study. The station data includes 65 years (1951-
2015) of the hourly rainfall data at 10 meteorological stations maintained by Central Weather Bureau (CWB). 
All of the 10 stations are near the coast located to the west of the Central Mountain Range (CMR). The 
stations to the east of the CMR are not selected because the causal factors of the extreme events there are 
different from the stations in the west. To the east of CMR the extreme events are often caused by sporadic 
convective disturbances from the tropics, while to the west of CMR the extreme events are often associated 
with strong southwest winds of the monsoonal flow.  

The global gridded data used for large-scale index design and seasonal prediction experiment are the daily 
data of the National Centers for Environmental Prediction/National Center for Atmospheric Research 
(NCEP/NCAR) Reanalysis (Kalnay et al. 1996) and the NCEP CFSv2 Reanalysis (Saha et al. 2010). The 
formal is used to design the large-scale index and the latter is used as a perfect model to test the usefulness of 
the seasonal prediction concept.  

The CMIP5data and extended range weather forecast data generated by CWB forecast system TCWB2T2 
are used to explore the feasibility of using the proposed concept to project or predict the extreme rainfall 
frequency. 

2.2. Method 

Taiwan Mei-yu season extreme rainfall events are often associated with organized meso-scale convective 
systems (MCSs) embedded in the cloud band along the Mei-yu front. The southwesterly low-level jet (LLJ) 
located on the equatorward side of the Mei-yu front is an essential factor to MCS development. In order to 
objectively describe the LLJ an index based on the common large-scale features of the extreme rainfall events 
is proposed and tested with a perfect prediction framework for the period of from 2001-2015. 

a. Define the extreme rainfall events 

The extreme rainfall events are identified on the station basis. At each station a threshold value of extreme 
event is determined as the median of the annual maximum daily rainfall during the Mey-yu season (May 1st - 
June 30th) in 50 years (1951-2000). For the 10 stations of study the threshold values range from 88.6mm/day 



LU ET AL. 
 

 

67 

to 118.2 mm/day, which is above 
CWB’s official definition of the heavy 
rain (80mm/day) event and exceeds the 
95th percentile value (R95) of the 
rainfall events with the rainfall amount 
R > 1.0 mm/day. During the 50 Mei-yu 
seasons 179 days are identified with 
rainfall extremes, which means at least 
one in ten stations received above-
threshold daily rainfall amount.  

The composite daily anomalies of 
the 850-hPa winds and vorticity of the 
179 days of the rainfall extremes is 
presented in Fig.1a. A clear positive 
vorticity anomaly pattern stretching 
from southern China northeastwardly 
through Taiwan and Ryukyu Islands to 
the south of Japan is observed. To the 
north of the positive vorticity anomaly is 
the negative vorticity anomalies over 
central China along the Yangtze River 
and to the south is the negative vorticity 
stretching from the South China Sea 
through the Luzon Island to the 
Philippine Sea. Between the positive 
anomaly over Taiwan and the negative 
anomaly over the South China Sea are 
the anomalously strong southwesterly 
winds. The composite wind and 
vorticity patterns are consistent with a 
prior knowledge of the raining 
mechanism associated with LLJ from 
the South China Sea to the western 
North Pacific through Taiwan. For the 
low-level southwesterly flow to last for 
few days, it often requires an anticyclone 
to the south of Taiwan and a cyclone to 
the north of Taiwan. 
b. Define the large-scale circulation 
index SWFI 

The large-scale circulation index for 
the extreme rainfall events is determined 
by two criteria. The 850-hPa vorticity criterion requires positive vorticity over S. China and Taiwan (red grid 
in Fig. 1b) and negative vorticity over the SCS and Philippine Sea (blue grid in Fig. 1b). The southwesterly 
flow criterion (green grid in Fig. 1b) requires the mean value of the 850hPa u component of the wind (U850), 
termed as SWU, exceed a critical value SWUc. For the application of real time forecast, the SWUc is the 
median value of SWU in 50 years (1951-2000), while for the application of climate change assessment the 
SWUc is the median value of SWU in 20 years (1986-2005) simulated by each CMIP5 model. The large-scale 
circulation index SWFI is determined as the count of the days in May and June that both vorticity and 
southwesterly flow criteria are satisfied. 

(a) 

(b) 

Fig. 1  (a) The composite daily anomalies of the 850-hPa winds and 
vorticity (colors) of the 179 days of the rainfall extremes. The 
vectors (contours) mark the composite wind (vorticity) 
anomalies are significant at the 95% confidence level. (b) The 
key grid points selected for identifying the favorable large-scale 
conditions represented by 850-hPa vorticity (red dots: positive, 
blue dots: negative) and U (green dots: mean value exceed the 
critical value SWUc) for Taiwan Mei-yu extreme rainfall 
events. 
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3. Results 

3.1 The forecast potential 
estimated from the perfect 
global forecast 

The relationship between 
SWFI and the observed seasonal 
frequency of the extreme events 
is presented in Fig. 2. Here the 
frequency of the extreme events 
is counted as the sum of the 
daily rainfall extreme events 
over the 10 stations during the 
entire Mei-yu season of May 
and June, excluding the 
extremes associated with 
tropical cyclones. The tropical 
cyclone event means the 
extreme event occurred 
concurrently with a tropical 
cyclone of which the center is 
located within the boundary of 
less than 300km away from 
Taiwan coastline.   

Fig. 2 shows significant 
correlation of SWFI and the 
frequency of the extreme events. The correlation coefficient during the training period from 1951-2000 
reaches 0.62, which is significant at the confidence level of 99%. For the forecast period from 2001-2015 the 
correlation 0.74 also reaches the 99% confidence level. The hit rate during the training period of two-category 
forecast is 70%, while during the prediction period is 60%.  

3.2 Project the future changes of the frequency of the extreme events 

 The proposed downscaling concept can also be applied to assess the influence of global climate change 
on the frequency of extreme events of Taiwan Mei-yu.  After the method is applied to six CMIP3 and ten 
CMIP5 models whose daily U850 data are available at PCMDI web site (http://cmip-
pcmdi.llnl.gov/cmip5/data_portal.html) under the A1B for CMIP3 and RCP8.5 for CMIP5 climate scenarios, 
it turns out that 75% of the models shows in the near-term future (2046-2065) the frequency is less than the 
frequency in the historical climate (1986-2005). For the long-term future (2081-2100), the percentage of the 
decreased frequency model drops to 56%. It suggests in the long-term future the occurrence probability of 
extreme events is larger than that in the near-term future. However, the relation has very weak statistical 
significance. 

4. Ongoing/future work 

The proposed method of applying the global climate model product to predict the frequency of Mei-yu 
season extreme rainfall events in Taiwan is proved skillful in terms of two-category forecast. It can also be 
applied to assess the climate change influence on Taiwan Mei-yu. An on-going research is to apply the 
method to the forecast product of CWB’s S2S prediction system that updates the forecasts of 1-90 days on 
daily basis. It is hoped that the downscaled information can be useful for bettering disaster preparedness in 
Taiwan. 
  

Fig. 2  The scatter diagram of the predictor: SWFI and the predictand: 
frequency of the extreme events. The colors in the rectangular 
boxes symbolize the hit (red, blue) and miss (green, yellow) 
domain of two-category forecast. 



LU ET AL. 
 

 

69 

References 

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 
437–471. 

Saha, S. and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull.  Amer. Meteor. Soc., 91, 
1015-1057. 

Wang, S.-Y., Y.-H. Lin, and C.-H. Wu, 2015: Interdecadal shift of the active-phase East Asian summer 
monsoon (Meiyu).   Atmospheric Science Letters,  doi: 10.1002/asl.603. 

Yim, S.-Y., B. Wang, W. Xing, and M.-M. Lu, 2015: Prediction of Meiyu rainfall in Taiwan by multi-lead 
physical-empirical models. Clim. Dyn., 44, 3033-3042. doi:10.1007/s00382-014-2340-0. 

 



Science and Technology Infusion Climate Bulletin 

NOAA’s National Weather Service  

40
th
 NOAA Annual Climate Diagnostics and Prediction Workshop  

Denver, CO, 26-29 October 2015 

______________ 

Correspondence to: Lindsey N. Long, 5830 University Research Court, Climate Prediction Center, NOAA/NWS/NCEP, 

College Park, Maryland; E-mail: lindsey.long@noaa.gov 

Intraseasonal Tropical Storm Prediction in the NCEP CFSv2 45-Day Forecasts 

Lindsey N. Long
1,2

, Jae-Kyung E. Schemm
1
, Stephen Baxter

1
 

 1Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland 
2
Innovim LLC, Greenbelt, Maryland 

1. Introduction and motivation 

The majority of tropical storm (TS) forecasts focus on either the short-term (1-5 days) or the seasonal 

aspect by ocean basin.  Although studies have shown predictability at the intraseasonal timescale using 

mechanisms such as the Madden Julian Oscillation (MJO) (Maloney and Hartmann, 2000; Klotzbach, 2010), 

there are few products which attempt to utilize these signals to produce operational products.  With the 

availability of the Climate Forecast System Version 2 (CFSv2) 45-Day forecasts, the ability to forecast at the 

intraseasonal timescale can be more thoroughly examined.  Because the CFS is a fully-coupled climate 

system, it is well equipped to handle forecasts out to weeks 1 to 4. 

The Climate Prediction Center (CPC) currently issues the Global Tropics Hazards and Benefits (GTHB) 

Outlook (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/ghazards/), which produces forecasts for 

tropical precipitation and TS formation globally for weeks 1 and 2.  Shaded regions indicate either high or 

moderate confidence of TS formation and weekly total rainfall in the upper/lower third of the historical range.  

This product is released each Tuesday and contains both a graphical representation of this information and a 

detailed discussion.  During the active TS season for the Northern Hemisphere (June 1
st
 – November 30

th
), the 

outlook is also updated on Friday for a limited region (120°E-0° and 0°-40°N) which encompasses the 

Atlantic and both the Eastern and Western North Pacific basins.  

The shaded areas in the GTHB Outlook, which represent areas with favorable conditions for tropical 

cyclogenesis, are determined subjectively based on a few forecasts tools.  With the creation of a year-round 

forecast of TSs for Weeks 1-4 by CFSv2, we hope to provide these forecasters with an objective tool for the 

Outlook.  It may also assist in the possible expansion to include Week 3 in the Outlook.   

2. Data and tracking methods 

a)  CFSv2 45-day forecasts 

The CFSv2 is a fully coupled atmosphere-ocean-land model run operationally at the National Centers for 

Environmental Prediction (NCEP) since April 2011 (Saha et al. 2014).   The CFSv2 45-Day forecasts are 

currently run four times daily at the 00Z, 06Z, 12Z, and 18Z cycles with four ensemble members each.  The 

sixteen members created daily have output saved every six hours.  A 14-year hindcast has also been produced 

for 1999-2012 with only one member for each of the four initializations.  Because of the sparse number of 

daily ensemble members in the hindcasts, the five days prior to the forecasted day are used to create a more 

robust 20-member ensemble.    For verification, observations from the National Hurricane Center (NHC) and 

the Joint Typhoon Warning Center’s (JTWC) Best-Track datasets are utilized.  Since the 2015 best-track data 

are not yet available, the advisories from operational centers are used for corresponding basins. 

b) TS tracking and filtering 

The detection and tracking method used in this study is based on the algorithm created by Camargo and 

Zebiak (2002).  With this method, a point must meet seven criteria in order to be considered a TS.  Many of 

the thresholds used in the criteria are basin and model-dependent.  The seven basins used in this study are the 

Atlantic (ATL), eastern North Pacific (ENP), western North Pacific (WNP), North Indian (NI), South Indian 
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(SI), Australian (AUS), and South Pacific (SP).  Once a point 

is detected as a possible TS, it is tracked forward and 

backward in time following a vorticity maximum that must 

exceed 3.5×10
-5

 s
-1

.  Tracks are compared and duplicate tracks 

are removed.  

Once TSs have been detected and tracked for each 

member, forecasts of storm counts and storm tracks by basin 

are created for each weekly period out to week 4.  As 

discussed above, these forecasts are based on a 16-member 

ensemble for the operational forecasts and a 20-member 

ensemble for the hindcast runs.  With the storm activity 

analysis on the 14-year hindcast data, the CFSv2 storm 

activity climatology is established and utilized to remove the 

storm activity bias from future forecast runs. 

While examining the storm analysis results from the 

hindcast runs, it was discovered that the CFSv2 produced too 

many storms.  These erroneous storms, or False Alarms (FA), 

are storms that do not occur in observations.  In order to filter 

these FA storms, the storm tracks are converted to storm track 

density values, meaning each track point is converted into a 

grid point.   Every time a storm track touches a grid box, the 

box value increases by one.  This process is continued for each 

ensemble member, and the grid boxes are divided by the total 

number of ensembles, creating a storm track density 

distribution. Figure 1 illustrates how FA’s are removed from 

forecast storm activity.  Figure 1a shows an example of a 

storm track density distribution from a forecast ensemble suite.  

The FAs are then filtered by removing the weekly storm track 

climatology (Figure 1b), the weekly FA climatology (Figure 

1c), and finally, using a 0.5 threshold on the remaining points.  

This threshold assures that at least one member still contains a 

storm.  Any remaining grid points are considered likely areas 

for TS activity (Figure 1d).   The forecast shows a high 

confidence for storms in the WNP and ENP basins.  The 

observations (Figure 1e) show that one storm in the WNP and 

two storms in the ENP verify, although the WNP storm is 

closer to the coast than forecasted.  

3. Hindcast storm activity evaluations 

Using the 20-member ensemble, the average numbers of 

storms present for Weeks 1-4 are calculated for each basin for 

the 14-year hindcasts.  The anomaly is then computed to 

remove the seasonal variability. Figure 2 shows the anomaly 

correlations for Week 1 through Week 4 with the average 

correlations represented by a straight, solid line.  The basins 

with the highest Week 1 scores are the ENP, WNP, SI and SP 

basins with average values between 0.49 and 0.51.   The 

average correlation for the ATL basin (0.33) is brought down 

by two bad years (2002 and 2003). After looking closer at the 

Fig. 1  An example of the storm track filtering 

technique by step for August 1, 1999:  a) 

original storm track density distribution, 

b) storm tracks with weekly climatology 

removed, c) false alarm weekly 

climatology for July 30-Aug 5, d) final 

filtered tracks with weekly FA 

climatology removed, and e) observed 

storm track for verification. 
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storm counts in the basin’s subregions and also wind shear anomalies, it was found that the forecasts in the 

subtropical, Northern Atlantic accounted for these low scores.  As expected, skill drops with lead time, but 

there is still skill evident in most basins for Weeks 2-4 with scores for Week 4 remaining above 0.2.  

Fig. 2  Tropical storm count anomaly correlations by week for the a) Atlantic, b) Eastern North Pacific, c) 

Western North Pacific, and d) North Indian basins for 1999-2012, and the e) South Indian, f) Australian, 

and g) South Pacific basins for 2000-2012.  Because the 1999 SH season begins in 1998, it is not included.  

The average correlation is shown using a straight, solid line. 
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Fig. 3  Heidke skill scores for filtered storm tracks by week for the a) Atlantic, b) Eastern North Pacific, c) 

Western North Pacific, and d) North Indian basins for 1999-2012 (solid lines), and the e) South Indian, f) 

Australian, and g) South Pacific basins for 2000-2012 (solid lines).  Dotted lines are for the real-time evaluation 

from 2014-2015. 

After performing the filtering described above, the Heidke Skill Scores (HSS) are computed for the storm 

tracks in each basin.   Because of the nature of the HSS, months with no storms will have a score of zero.  No 

credit is given for a correct forecast of zero storms when there is also a verification of zero storms.  Skill is 

achieved through the correct forecast of a storm track (Hits).  Therefore, as expected, skill scores increase 
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with increased seasonal activity.   Figure 3 shows the HSS for each weekly lead by basin (solid lines).  The 

highest Week 1 scores are present in the ATL, ENP and WNP basins, with scores between 0.25 and 0.35 

during the most active part of the season.  The SI and AUS basins show an increase in scores during the latter 

half of the season instead of during the peak in the seasonal cycle for these basins.  This indicates the model is 

either missing the observed storms or producing too many FAs during these months.  Skill scores for Week 2 

decrease, but they then remain steady for Weeks 3 and 4.  

 

Fig. 4   Genesis lag day plots by week for the a) Atlantic, b) Eastern North Pacific, c) Western North Pacific, d) 

North Indian basins, e) South Indian, f) Australian, and g) South Pacific basins averaged for each storm 

from 1999-2012.  The black vertical line indicates the day of genesis (Lag Day 0). 
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Fig. 5  Same as Figure 4, but for the 2014-2015 real-time evaluation.  Numbers in parentheses indicate the total 

number of observed storms for the 2-year period. 

Another way to view the model’s skill in forecasting storm track is to compare the number of grid point 

hits (model and observations both showing a storm present) as a lag from the genesis point for individual 

storms.  Unlike the HSS, this takes into account only hits or misses by the model and not FAs.   Figure 4 

shows this lag as a percentage of model hits versus the total possible hits for all storms in a basin during the 

14-year period.   The genesis day (Lag day 0) is highlighted with a vertical black line.  During Week 1, the 

storm is included in the model’s initial conditions (IC) starting at day 0.  Therefore, negative lags (left of the 

black line) forecast both track and cyclogenesis, while positive lags (right of the black line) forecast only the 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

 

 

76 

track.  For weeks 2-4, the entire period is forecasting both track and cyclogenesis with the exception of a 

storm that lasts over seven days.  In this case, the storm is present in the ICs for the 7
th
 and 8

th
 lag day of 

Week 2. 

Because of the influence of the ICs in Week 1, the percentage of hits, or hit rate, increases once the TS 

has formed (Figure 4).  However, there is still considerable skill during the negative lags, most notably in the 

NI and Southern Hemisphere (SH) basins.  This indicates that the lower skill in the HSSs for these basins is 

due to a high number of FA storms and not a missed forecast of observed storms.   The NI and SP basins also 

show promise during Week 2.  The opposite is true for the ATL, ENP, and WNP during the longer leads.  

Although the HSS shows higher scores for weeks 2-4 in these basins, the hit rate is very low, indicating more 

misses of observed storms and less FAs.  

4. Real-time forecasting 

In December 2013, ongoing, 

real-time prediction began using the 

16-member operational runs 

described above.  Because this began 

in the middle of the SH season, the 

results described below for the 2014 

season are for January 1-May 30 only 

for the SH basins.  The storm count 

anomaly correlations are given in 

Table 1.   Numbers in bold represent 

those above the hindcast average seen 

in Figure 2.   Because all sixteen 

ensemble members use ICs within a 

24-hour period versus the five-day 

average of ensemble members needed for the hindcast runs, higher values are expected; however, this is not 

true for all basins.  The WNP basin is the only basin with higher values for all weekly leads.  The ATL and 

ENP basins also have many weekly leads above the hindcast average, with more occurring in 2014.  The 

basins in the SH and the NI basin show mostly lower skill than the hindcasts runs, meaning there is little 

improvement with decreased lead time. 

The dotted lines in Figure 3 represent the HSSs for the 2014-2015 operational evaluation.  For most of the 

basins, the scores increase in magnitude, but overall show a similar pattern.  The biggest score increases occur 

in the ENP, NI and AUS basins.  The highest scores for AUS remain in the latter part of the season, peaking 

in March, while the highest scores for SI tend to shift more towards January, the peak in the seasonal cycle. 

Although the genesis lag day plots for the 2014-2015 forecasts (Figure 5) are much noisier than those for 

the 14-year hindcast runs, they are overall very similar in structure.  There is, however, increased skill for the 

real-time prediction in every basin at each weekly lead except for the ATL basin.  These results are consistent 

with the increased HSS.    An interesting point to note is that although the SI and AUS basins show relatively 

good skill in predicting the observed storms in the genesis lag day plots, the count correlations are relatively 

low except for the early week leads for the SI basin in 2014.  This indicates an abundance of FAs still 

remaining in these basins.   

5.  Conclusion 

With the availability of the CFSv2 45-day runs at NCEP, a new product on TS intraseasonal prediction 

has been developed to assist CPC forecasters.  This product provides guidance on both storm count and storm 

location.  Although skill drops with lead time, Weeks 2-4 still show skill for both storm count and storm 

track.  Real-time experimental predictions for the 2014 and 2015 seasons show increased skill for many 

basins.  It indicates predictability for the ATL, ENP and WNP basins, while the SH basins still struggle with 

FAs.  This product is currently available as a non-operational product on the CPC ftp site at:  

ftp://ftp.cpc.ncep.noaa.gov/llong/main.html.  Comments and suggestions are always welcome. 

Year Week ATL ENP WNP NI SI AUS SP 

2014 

Week 1 0.49 0.36 0.76 0.24 0.72 0.06 0.25 

Week 2 0.43 0.45 0.55 0.14 0.53 -0.28 0.34 

Week 3 0.26 0.36 0.39 0.05 0.06 -0.37 0.37 

Week 4 0.27 0.31 0.41 -0.04 -0.13 -0.30 0.29 

2015 

Week 1 0.32 0.49 0.63 0.43 0.36 0.36 0.52 

Week 2 0.12 0.33 0.74 0.16 0.19 0.30 0.27 

Week 3 0.10 0.21 0.47 -0.04 0.13 0.05 0.03 

Week 4 0.08 0.12 0.32 -0.05 0.18 -0.19 -0.03 

Table 1   Storm track count anomaly correlations for 2014 and 2015 

during the active seasons.  For 2014, SH basin correlations are for 

the shortened forecast period Jan 1 - May 31.  Bold values are for 

those higher than the climatological value. 

ftp://ftp.cpc.ncep.noaa.gov/llong/main.html
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1. Introduction 

The El Niño/Southern Oscillation (ENSO) has a large influence on the seasonal precipitation (P) and 

temperature (T) patterns over the United States and across the globe (Ropelewski and Halpert 1986, 1987; 

Trenberth et al. 1998; Dai and Wigley 2000). At NOAA Climate Prediction Center (CPC), a large effort is 

devoted to monitoring and forecasting of Niño-3.4 sea surface temperature (SST) and the tropical Pacific 

Ocean conditions, in order to provide the most up-to-date information on the phase of the ENSO cycle. 

Statistical tools have been developed for objective seasonal prediction using Niño-3.4 SST forecasts in 

conjunction with observed P and T composites keyed to phases of the ENSO cycle (Higgins et al. 2004). On 

the other hand, many studies (e.g., Kumar et al. 1996; Mathieu et al. 2004) have shown that improved skill of 

P and T prediction in climate models can be attributed to the known impacts of ENSO signals, especially 

during the Northern Hemisphere cold season. Recent developments in multi-model ensembles provide a 

promising way to increase P and T predictive skill using dynamical model forecasts (Graham et al. 2000; 

Kirtman et al. 2014). 

In this study, we examine P and T forecasts during ENSO events in six models in the North American 

Multi-Model Ensemble (NMME), including the CFSv2, CanCM3, CanCM4, FLOR, GEOS5, and CCSM4 

models, by comparing the model-based ENSO composites to the observed. The composite analysis is 

conducted using the 1982-2010 hindcasts for each of the six models with selected ENSO episodes based on 

the seasonal Ocean Niño Index (ONI) just prior to the date the forecasts were initiated. Two types of 

composites are constructed over the North American continent: one based on mean precipitation and 

temperature anomalies in physical units, the other based on their probability of occurrence in a three-class 

forecast system. They are referred as anomaly and probability composites, respectively, hereafter. The 

composites apply to monthly mean conditions in November, December, January, February, and March, 

respectively, as well as to the five-month aggregates (NDJFM) representing the winter conditions. For 

anomaly composites, we use the anomaly correlation coefficient (ACC) and root-mean-square error (RMSE) 

against the observed composites for evaluation. For probability composites, we develop a probability anomaly 

correlation (PAC) measure and a root-mean probability score (RMPS) for assessment (Chen et al. 2016). 

2. ENSO composites 

a. Anomaly composites 

For each model, monthly ensemble mean P and T forecasts are first obtained by averaging all members. 

The P and T anomalies for a given start and lead times are then computed as the difference between the 

ensemble mean P and T forecasts and the lead-specific model climatology derived from the hindcast mean of 

all members and all years excluding the forecast year. The P and T anomaly composites for the warm ENSO 

(El Niño) events and cold ENSO (La Niña) events are simply the average of the ensemble P and T anomaly 

maps of selected years. The years are chosen based on the historical ONI published on the CPC website at 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. If the seasonal ONI 
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just prior to the date the forecasts were initiated indicates a warm or cold ENSO episode, the forecasts are 

selected for the composite analysis. The NMME composites are the equally weighted mean of the six models’ 

composites.  

Fig. 1  La Niña precipitation anomaly composites for NDJFM based on (a) 1982-2010 observations, (b) 

1950-2010 observations, (c) NMME, (d) CFSv2, (e) CanCM3, (f) CanCM4, (g) FLOR, (h) GEOS5, 

and (i) CCSM4 forecasts over the North American continent. The anomaly unit is mm/day. 

b. Probability composites 

For each model, P and T forecasts for a given start and lead times are classified into three categories 

(above, near, and below normal) based on the terciles derived from the hindcasts of all members excluding the 

forecast year. For P forecasts, the tercile thresholds are the 33th and 67th percentiles determined by fitting a 

gamma distribution to the hindcasts. For T forecasts, the tercile thresholds are set as mean plus/minus 

0.431×standard deviation by assuming a Gaussian distribution. The classification applies to each individual 

member forecast, and the number of ensemble members that fell into the three categories under the El Niño 

and La Niña events are counted for the selected ENSO years. At each grid point, the probability of occurrence 

for each category under the El Niño (or La Niña) condition is then calculated by dividing the total number of 

counts by the product of the number of the selected ENSO years and the number of ensemble members for 

each model. The ENSO probability composites for NDJFM are the combination of all five winter months, that 

is, the probability of occurrence for each category is calculated by summing all counts in each of the five 

months (all at Lead 1) divided by the total number of events from all five months. Similarly, the NMME 
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probability composites are the combination of all six models by adding all counts in each category from the 

six models together, but note that the classification of each model is determined separately in respect to 

model’s own hindcast distribution for a particular month. 

Fig. 2  El Niño temperature probability composites for NDJFM based on (a) 1982-2010 observations, (b) 

1950-2010 observations, (c) NMME, (d) CFSv2, (e) CanCM3, (f) CanCM4, (g) FLOR, (h) GEOS5, and 

(i) CCSM4 forecasts over the North American continent. 

3. Composite analysis and validation 

Figure 1 shows the La Niña P anomaly composites for NDJFM based on 1982-2010 and 1950-2010 

observations, NMME, and the six models. All model and the 1950-2010 observed composites present drier 

than normal conditions over the southern U.S. and enhanced rainfall over the Pacific Northwest, consistent 

with the pattern suggested by Ropelewski and Halpert (1986, 1987). The 1982-2010 observed NDJFM P 

anomaly composite also displays similar La Niña pattern to the 1950-2010 observed. In contrast to the 

NMME and 1950-2010 observed composites, the 1982-2010 observed has below-normal rainfall over the 

Pacific Northwest, likely a sampling error due to small sample size. There are some variations among the six 

models but all models are reasonably good. CFSv2 has the biggest North-South contrast in the anomalies and 

its dry area is spread farther into central Mexico, while both CanCM models produce large negative deviation 

over the southeastern U.S. Despite the subtle differences, the remarkable similarity between the NMME and 

observed P anomaly composites under both El Niño (not shown) and La Niña conditions demonstrates the 
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significant progress in ENSO-precipitation relationships from seasonal dynamical models since Smith and 

Ropelewski (1997).  

Fig. 3  ACC of all models and months for (a) El Niño precipitation anomaly composites, (b) La Niña 

precipitation anomaly composites, (c) El Niño temperature anomaly composites, and (d) La Niña 

temperature anomaly composites, validated with 1950-2010 observations. 

Figure 2 presents the El Niño T probability composites for NDJFM based on 1982-2010 and 1950-2010 

observations, NMME, and the six models. Unlike the observed P composites, there are larger differences 

between the 1982-2010 and 1950-2010 observed T probability composites. The 1982-2010 observed 

composite has bigger warm-cold (North-South) contrast, and its below-normal area is centered over Texas 
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and northern Mexico and does not cover the southeast U.S. Similar to the findings from the T anomaly 

composites (not shown), T probability composites vary greatly with model. GEOS5, CanCM4, and FLOR 

models have the largest deviations and are the main contributors to the difference between the NMME and 

observed probability composites.  

In order to present a quantitative evaluation of how well NMME models predict P and T patterns under 

ENSO conditions, we compute the ACC and RMSE for P and T anomaly composites, and PAC and RMPS 

for P and T probability composites (Chen et al. 2016). Figure 3 shows the matrix charts of ACC for all models 

and months, including NMME and NDJFM, using the 1950-2010 observations for validation. Several features 

are worth highlighting in Figure 3. First, the fidelity is generally higher for NMME composites, as well as 

NDJFM composites, though a given model at a given month may have slightly larger ACC score. Second, 

predictive skill varies with month. All models, as well as NMME, have greater ACC for February prediction, 

and this is seen for both P and T anomaly composites under either El Niño or La Niña condition. Third, most 

models perform marginally better in predicting El Niño P and T anomaly patterns than La Niña patterns. 

Fourth and last, CFSv2 is the overall best individual model in predicting ENSO P and T patterns during 

wintertime. The findings from the RMSE for anomaly composites and PAC and RMPS for probability 

composites are similar to the ACC results. However, PAC is able to discriminate the performance between the 

P and T prediction more and shows larger scores for P probability composites than T probability composites 

under both El Niño and La Niña conditions.  

4. Summary and conclusions 

We have compared and validated precipitation and temperature forecasts under ENSO conditions in six 

NMME models with long-term climate observations. Our aim is to understand whether coupled seasonal 

dynamical models can adequately predict ENSO’s impacts on North American precipitation and temperature 

patterns while an El Niño or La Niña event is in progress. We focus on the overall model performance, and 

provide a comprehensive analysis and validation of both the anomaly and probability composites constructed 

from selected warm or cold ENSO episodes based on the tropical Pacific Ocean conditions during the 

Northern Hemisphere winter season. The key findings from the study are summarized below. 

• NMME predicts ENSO precipitation patterns well during wintertime. All models are reasonably good. 

CFSv2 performs particularly well. This result gives us confidence in NMME precipitation forecasts 

during an ENSO episode and models’ ability in simulating teleconnections. 

• There are some discrepancies between the NMME and observed composites for temperature forecasts, 

in terms of both magnitude and spatial distribution. The differences are mainly contributed by the 

GEOS5, CanCM4, and FLOR models, and thus the NMME aggregates have difficulties in reproducing 

the ENSO-temperature relationships. 

• For all ENSO precipitation and temperature composites, the fidelity is greater for the multi-model 

ensemble, as well as the five-month aggregates. February tends to have higher performance score than 

other winter months. 

• For anomaly composites, most models perform slightly better in predicting El Niño patterns than La 

Niña patterns. 

• For probability composites, all models have superior performance in predicting ENSO precipitation 

patterns than temperature patterns. 

A full-length technical paper (Chen et al. 2016) documenting details of this study has been submitted to 

Journal of Climate for publication. The complete set of ENSO composites for all models and months 

(including all the figures not shown in this abstract), along with global composites, are available on CPC 

NMME website at http://www.cpc.ncep.noaa.gov/products/NMME/enso/. 
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ABSTRACT 

Even though the vital role of thermocline fluctuation in ENSO cycle has been established previously, the 
direct relationship between the thermocline depth and SST anomalies in the equatorial Pacific is yet to be 
fully understood, especially its seasonality. Thermocline depth anomalies were found to lead SST anomalies 
in time with a longitude-dependent delay, but our study suggests that the relationship shows strong seasonal 
dependency, which is the most (least) significant during the boreal spring (summer). Over the eastern 

equatorial Pacific where there is the 
least delay comparing with western and 
central Pacific, the connection between 
thermocline and SST is the weakest 
during the boreal spring (Fig. 1). This 
feature is one of origins for ENSO 
spring persistence barrier, as evidenced 
by the weakest thermocline and 
Bjerknes feedbacks occurring in spring 
(Fig. 2). Furthermore, the thermocline-
SST connections exhibit significant 
decadal variations, which are 
remarkably consistent with the decadal 
changes in the persistence barrier of 
SST anomalies over the eastern Pacific. 
It is also found that the decadal shift in 
the timing of the thermocline-SST 
connection barrier is caused by the 

Fig. 1 Lead-lag correlations between 
observed Z20 and SST anomalies for 
(a) all months regardless of season, (c) 
January, (d) April, (e) July and (f) 
October. (b) Simultaneous correlations 
between observed Z20 and SST 
anomalies as a function of season. 
Positive lag means Z20 leads SST. All 
calculations are based on 1982-2011 
and presented along the equator 
(averaged over 2ºS-2ºN). 
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changes in the seasonal cycle of tropical trade winds and thermocline depths (Fig. 3).  

This work has been published in Geophysical Research Letters in 2015. 
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Fig. 2 Simultaneous correlations as a 
function of season between the 
observed Z20 and SST anomalies 
averaged over the Niño3 region (red 
curve), and between the observed 
SST zonal gradients and the surface 
zonal wind stress anomalies 
averaged over the Niño 4 region 
(black curve). The SST zonal 
gradient is defined as the difference 
between the western Pacific region 
(120ºE-160ºE, 5ºS-5ºN) and the 
Niño 3 region. Calculations are 
performed for 1982-2011. 

Fig. 3 Simultaneous correlations 
between Z20 and SST anomalies 
averaged over the Niño3 region as a 
function of season within an 11-
year moving window, with SST 
data from ERSST3 and Z20 data 
from (a) ORA-S3, (b) ORA-S4 and 
(c) SODA. (d) Seasonality of Niño3 
SST anomalies persistence within 
an 11-year moving window. The 
persistence for a given month (e.g., 
March) is defined as the correlation 
between two time series for one 
month earlier (February) and later 
(April) than the month. The 11-year 
window is shifted year by year 
from 1958 to 2013.  
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Surfline celebrated 30 years of delivering surf reports and forecasts in 2015. The company has grown 
from an organization that initially produced surf reports and forecasts solely in Southern California in 1985 to 
a global marine, surf, and fish forecasting and editorial solution. The last 30 years of acquiring surf and swell 
observations have uniquely positioned us to analyze long term wave climate trends on a global scale.  

This is an overview of Surfline’s historical wave data, 
presented as it relates to the warm phases of the El Niño 
Southern Oscillation. The data presented in the plots for 
specified locations are daily mean significant wave height 
values (m) for the given months and year. The affects of El 
Niño on the Northern Hemisphere winter have been covered 
quite extensively, and plots from both the North Pacific and 
North Atlantic provide fairly clear, expected signals for many 
locations (Fig. 1). 

Looking back through 30+ years of wind and wave data, 
the seasonal predictors associated with moderate and especially 
strong El Niño events are quite clear. During the winter peak, 
most notably during strong events, we see an appreciable 
uptick in swell energy after the holidays during the months of 
January, February, and March. In terms of the fall and early 
winter months of October, November, and December, the 
signal is far less clear. This is represented quite well in the 
cases of Southern California and New York (Fig. 2, 3). The 
locations of interest were offshore to the west of Point 
Conception, and to the southeast of the mouth of the Hudson 
River, respectively.  

As the Southern Hemisphere winter typically bookends the 
peak of ENSO events, we have highlighted the years pre and 
post peak to try and better identify possible trends in swell 
activity. Looking back on swell data  for key markets that rely on the fruits of the Southern Hemisphere’s 
storminess, there were mixed findings. While the signals for the North Pacific, and North Atlantic for that 
matter,  are quite clear for a myriad of destinations, the Southern Hemisphere is not so clear cut. 

The impact the warm phase of ENSO has had, and potentially will have, on swell production during the 
Southern Hemisphere winter has been documented less and is more difficult to discern when looking back 
through the wave climatology (Fig. 4). That said it is interesting to note the uptick in swell for Fiji preceding 
the peak in strong El Niño events, likely attributable to increased tradeswell. 

For more info on how this impacts the surf in the North Pacific and North Atlantic basins through the 
winter, please check out our Seasonal Outlooks for each respective basin. They can be found below. 

Fig. 1  Average significant wave heights, 
(a) OND 1982 and (b) JFM 1983.           

(a) 

(b) 
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North Pacific Winter Outlook - http://www.surfline.com/surf-news/heres-what-we-can-expect-for-the-west-
coast-hawaii-and-beyond-this-winter-thanks-to-a-robust-el-nino-event-off_133236/ 

North Atlantic Winter Outlook - http://www.surfline.com/surf-news/a-strong-el-nino-event-is-a-shoo-in-and-
likely-to-enhance-surf-for-some-locations-official-15-16-atlantic-wint_133370/ 

Fig. 2  Average significant wave heights for Southern California, (left) OND and (right) JFM.  

Fig. 3  Average significant wave heights for New York, (left) OND and (right) JFM.  

Fig. 4  Average Significant Wave Heights for Chile during the Southern Hemisphere winter pre and post peak 
of moderate to strong El Niño events, (left) Chile, (right) Fiji. 
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The tropical Pacific region is one of the world’s most vulnerable areas with respect to weather-related 
natural disasters and extreme hydro-meteorological events. Short-term climate fluctuations, such as the El 
Niño-Southern Oscillation (ENSO) phenomenon and its recurring warm and cold episodes, are found to play 
an important role in the climate variability over the Hawaiian and tropical Pacific region.  

The influence of ENSO episodes on Pacific Basin precipitation is described in greater detail using 
composite analysis, in which responses to warm ENSO episodes are considered separately from responses to 
cold episodes. The degree of realism of the assumption of linearity in the ENSO-rainfall relationship, which is 
needed in the overall interpretation of the correlations, is evaluated in composite analysis. If rainfall anomaly 
composites are fairly equal-but-opposite for warm versus cold ENSO conditions, approximate linearity is 
confirmed. While the resulting set of winters is in general agreement with the sets as defined earlier by Loon 
and Madden (1981), Rasmusson and Carpenter (1983) and Ropelewski and Jones (1987), a few differences 
exist. 

As an example, Fig. 1 shows ENSO 
composite rainfall results for Kahului, 
Hawaii. The differences between the 
composited rainfall totals for the samples 
representing the warm or cold phases of 
ENSO versus the totals of the remaining 
years (neutral-plus-oppositely phased 
years) were statistically tested with the 
Student's t-test. It should be noted that the 
statistical assumptions underlying the t-test 
(e.g. Gaussian distributions) may not be 
sufficiently satisfied. Nonetheless, we use 
it as a rough guide for indicating 
significant mean differences in rainfalls as 
a function of ENSO category. Near the 
time of the mature episode boreal winter at 
Kahului, warm episodes are associated 
with deficient precipitation with 0.05 or 
stronger statistical significance in Dec-Jan-
Feb, Jan-Feb-Mar, Feb-Mar-Apr. Cold 
episodes associate with slightly enhanced 
rainfall but not at the 0.05 significance 
level. More detailed information (e.g., the 
seasonal variation of the tropical rainfall 
with ENSO) can be found in the He et al. 
1998. Recent study (O'Connor et al. 2015) 
shows a drying trend in Hawaii rainfall 

Fig. 1  Composite rainfall amounts for Kahului, Hawaii, by 
ENSO status. The dashed line denotes the climatological 
mean rainfall for all years, the red line the mean for the 
composited warm ENSO episode years, and the blue line 
the mean for the cold episode years. Differences between 
the composited rainfalls for the samples representing the 
warm phases of ENSO versus that of the remaining (neutral 
plus cold phase) years passing a 2-tailed significance test at 
the 0.05 level are indicated with a hollow square along the 
red line. Significant differences at the 0.05 level with 
respect to the cold phase composite rainfalls versus 
remaining (neutral plus warm phase) years are indicated 
with a solid square along the blue line.  
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during La Niña years. A change-
point analysis determined that the 
shift occurs in 1983. 

In looking at the time of 
mature episode boreal winter over 
66 tropical Pacific stations (not 
shown), the general relationship 
between ENSO and rainfall 
described in Ropelewski and 
Halpert (1987) is found: At the 
off-equator stations (such as many 
of the U.S.-affiliated stations) 
warm ENSO is associated with 
suppressed rainfall, while at the 
near-equatorial stations from the 
date line eastward to the South 
American coast, where the SST 
anomaly is positive, rainfall is 
enhanced. Enhanced rainfall with 
El Niño is particularly dramatic at 
Kiribati stations (Banaba, 
Butaritari, Tarawa, Beru, Arorae, 
Fanning and Christmas), at Nauru, 
and at two of four Tuvalu stations (Nui and Atafu). All of these effects tend to occur in reverse for cold ENSO 
episodes. Because equatorial Christmas Island (Fig. 2) is surrounded by a somewhat cool ocean most of the 
year, it receives fairly light climatological rainfall, but with very large positive deviations occurring during El 
Niño episodes. Many of the more off-equator locations, especially west of 170°W, experience drought with El 
Niño.  

ENSO-rainfall correlations can be examined both contemporaneously and at lag (in which the ENSO 
index occurs before the rainfall, and is thus viewed as a predictor). Fig. 3 shows the spatial distribution of 
correlation between a standardized Southern Oscillation Index (SOI) and rainfall, where SOI leads rainfall by 
6 months. To simplify interpretation, the sign of the SOI is reversed so that positive SOI is associated with El 
Nino. The maps show that the SOI offers some meaningful hints about rainfall anomalies to occur 6 months 
later, especially for northern winter rainfall. The Hawaiian result at 2 season lag was also obtained by Chu 
and He (1994), and implies that useful precipitation forecasts can be made for Jan-Feb-Mar as early as early 
autumn, providing several months for impact mitigation efforts by water managers in affected regions. 
Significant relationships at 6 months lead also exist in parts of Fiji and southern Tonga, and form a familiar 
horseshoe-shaped pattern of off-equator El Niño-related dryness surrounding the equatorial wet zone, with 
northern and southern dry regions nearly meeting in the western equatorial Pacific. Moderately strong 
correlations for Jan-Feb-Mar at 6 months lag appear close to the equator both east and slightly west of the 
date line, at most of the Kiribati stations. The general geographical extent of the predictive potential shown 
here is qualitatively similar to that described by Ropelewski and Halpert (1987, 1996), the canonical 
correlation analysis (CCA) studies of Barnston and He (1996) for Hawaii, and He and Barnston (1996) for the 
tropical Pacific islands in general. When an ENSO phase has developed by boreal mid-summer, that phase 
tends to persist through the remainder of the calendar year (Barnston and Ropelewski 1992). This causes the 
lagged correlation relationships with Jan-Feb-Mar rainfall to be somewhat more similar to the Jan-Feb-Mar 
simultaneous relationships than is the case for other target seasons. By contrast, the "spring barrier" in the 
continuity of the ENSO state causes the ENSO-rainfall relationships to weaken more quickly for boreal 
summer and fall target periods when lag time is introduced (not shown). Some ENSO phase-specific rainfall 
impacts are distinguishable in Fig. 1 that are not visible in the overall correlation results of Fig. 3. 

Fig. 2  Annual cycle of climatological running total 3-month 
precipitation for Christmas Island. The median (50 percentile) 
amount is indicated by the white horizontal strip inside the dark box, 
whose upper and lower limits show the 75 percentile and 25 
percentile amounts, respectively. The extreme or record amounts are 
indicated by the horizontal bracket symbols at the top and bottom 
ends of the vertical dotted lines. 
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In general, ENSO effects during periods other than the boreal late summer through fall, winter and spring 
of the mature phase, are not very noteworthy. However, in some cases an apparent ENSO effect can be noted 
in the boreal winters a year before or a year after the mature episode boreal winter. At Kahului, for example, 
there is a significant tendency toward a wet winter the year following the mature warm episode, which itself 
tends to be dry. Adjacent winter responses may be associated with the episode that peaks a year beforehand or 
a year afterward (e.g. positive temperature anomalies in Hawaii are seen to occur the boreal winter one year 
after a mature El Nino as much as during the El Nino boreal winter itself; Barnston and He 1996). However, 
they may also be explained in part by adjacent year mature episodes in their own right.  

The potential utility of seasonal precipitation prediction and climate information on many of the 
populated tropical Pacific islands that is clear, given their agricultural and otherwise water-dependent 
economies. The strong ENSO (i.e. 97-98) events also give us a unique chance to study the oceanic and 
atmospheric anomalies. Predictability is related mainly to the phenomenon known to dominate the region’s 
climate (i.e. ENSO), but also to a lesser extent to phenomena of which our knowledge is only now emerging 
(e.g. interdecadal variability).  It is also  a  challenge for our long-lead climate forecast for the Hawaiian and 
tropical Pacific region due to the interannual variability compounded by decadal variability in rainfall (i.e. 
predicting La Niña rainfall be conditioned on short-time scale phenomenon such as ENSO).     

Fig.3. Spatial distribution of correlation between SOI (where SOI is multiplied by –1 so that it is positive 
correlated with the ENSO-related east-central tropical pacific SST anomaly) and rainfall for Jan-Feb-Mar 
(top left), Apr-May-Jun (top right), Jul-Aug-Sep (bottom left) and Oct-Nov-Dec (bottom right).  Panels 
show results where the ENSO index is centered 6-months earlier than the target period. Light shading 
denotes statistically significant negative correlations at the 0.05 significance level, and dark shading shows 
significant positive correlations. 
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1. What was known by 1975 

Since the early to middle 20th century, climate and ocean scientists have come a very long way in their 

understanding of the El Niño/Southern Oscillation (ENSO) phenomenon, and their ability to predict the 

ENSO state out to two to four seasons into the future. 

Some observational knowledge of ENSO had already been achieved between the 1930s and 1975. Sir 

Gilbert Walker documented a relationship between the wetness of the Indian monsoon and the sea level 

pressure and precipitation behavior in various other parts of the world, particularly in the vicinity of the 

tropical Pacific Ocean (Walker and Bliss 1934). He realized there was a seesaw in sea level pressure between 

the eastern tropical Pacific region and northern Australia, called the Southern Oscillation, and identified 

specific weather patterns associated with the two opposing phases of this seesaw. This pressure seasaw also 

determined the strength of the low-level trade winds and upper level westerly winds that form what we now 

call the Walker circulation. Later, Berlage (1966) organized and expanded this body of knowledge in an 

extensive description of the Southern Oscillation and its worldwide teleconnections in the form of seasonally 

averaged climate anomalies.  

 A somewhat independent body of knowledge had 

already existed along the shores of Ecuador and northern 

Peru, where for several centuries fishermen had noticed that 

every several years the coastal ocean waters were much 

warmer than average, particularly around the end of the 

calendar year. Later in the 1960s, Bjerknes (1966,1969) 

discovered a physical mechanism for the coupling of the 

SST anomalies (not only near the South American coast, but 

well off shore along the equator, toward the international 

date line) with the sea level pressure anomaly pattern. The 

key to his discovery is that when the Southern Oscillation is 

negative (sea level pressure in eastern Pacific below average, 

and pressure in northern Australia above average), the low-

level equatorial Pacific trade winds are weaker than average, 

and the SST from the central tropical Pacific eastward to the 

South American coast tends to be warmer than average. Not 

only did he see this Southern Oscillation – SST relationship, 

but also hypothesized a positive feedback between the two, 

so that when one of them deviates from average, the other 

does likewise, which in turn causes the first to deviate even 

farther from average, and so forth. This is a key mechanism 

for the growth of an El Niño (or La Niña) episode. This new 

understanding of the ENSO phenomena offered explanations 

for some of its observational aspects, and the long duration 

of one phase of the seesaw.  

Fig. 1 Ship tracks providing the SST 

observations used in the analyses of 

Rasmussen and Carpenter (1982). The 

heavy portion of each track is the 8º 

latitude section of maximum interannual 

SST variability. The time series of 

monthly average anomalies were 

computed for this section of each of the 6 

tracks. 
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2. Advances from the mid-

1970s to early 1980s 

In the mid-1970s, Wyrtki 

(1975) observed changed in sea 

level associated with ENSO and 

the zonal wind anomalies in the 

western tropical Pacific. The 

latter events, later called westerly 

wind bursts (because sometimes 

the total wind direction would 

actually become westerly instead 

of the usual easterly), led later to 

the discovery of equatorial 

oceanic Kelvin waves and their 

role in increasing the sub-surface 

sea temperature during a 

developing El Niño. Modeling 

studies in the later 1970s and 

early 1980 supported these 

concepts in large-scale ocean 

dynamics. During that time, 

however, the subsurface sea 

temperatures were scantily 

observed, making a definitive 

validation difficult. 

In the early 1980s Zebiak 

(1982) applied a model 

developed from Gill (1980) to the 

case of ENSO, diagnosing the 

wind response to an area of 

heated water in the tropical 

Pacific. As expected, weakened 

trade winds resulted from the 

warmed water, particularly on the 

west side of the warmed water. 

Also in early 1980s, Hoskins and 

Karoly (1981) made major 

advances in simulating and 

understanding the global-scale 

atmospheric responses to El Niño and La Niña. The mechanisms involved heating of the upper atmosphere 

overlying the warmed water in the tropical Pacific, a strengthening of the Hadley cells both north and south of 

the equator, and substantial deviations from average of the extratropical circulation patterns (e.g., the jet 

streams), affecting the seasonal average climate in many regions remote from the tropical Pacific. 

A more fully developed observational basis for the theories and models of ENSO described above 

emerged in a comprehensive study by Rasmussen and Carpenter (1982), showing in detail the wind, SST and 

rainfall anomaly fields throughout the stages of an El Niño event, based on 6 El Niño events during the 1949-

1975 period. During the early 1980s, coverage of SST data in the tropical Pacific was less than what we are 

used to today in the 2010s. Figure 1 shows the locations of the densest SST data in the early 1980s, coming 

mainly from ships cruising their standard routes between various ports. The four original “Niño” regions 

(Niño1, Niño2, Niño3 and Niño4) were defined largely on the basis of the locations of these ship track data 

sources. 

Fig. 2  Time series of SST anomalies in ship track 1 (solid line) and ship 

track 6 (dotted line) from 1949 to 1978 (see Fig. 1 for ship track 

numbers). Ship track 1 is closely related to the subsequently defined 

Niño1+2 region, and ship track 6 to the eastern portion of the Niño4 

region (and western boundary of the still later defined Niño3.4 region). 

The first year of the 6 events used for El Niño composites by 

Rasmussen and Carpenter (1982) is indicated by a vertical arrow and 

the year. 
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 Rasmussen and Carpenter 

(1982) computed composites of 

various ENSO-related variables 

based on the 6 El Niño events 

considered strongest during 1949-

1975—namely 1951-52, 1953-54, 

1957-58, 1965-66, 1969-70, and 

1972-73. At the time of the study, 

El Niño was regarded largely as a 

warming along the immediate 

coast of western South America, 

with warming farther offshore, 

out to the dateline, considered a 

subsequent effect of the primary 

far eastern Pacific warming. 

Figure 2 shows time series of 

SST anomalies in two ship track 

locations: (1) ship track 1 (along 

the immediate South American 

coast) and ship track 6 (crossing 

the equator near 170°W). The 

darker line shows the anomaly in 

ship track 1, consistent with the 

perception of the coastal SST as 

the hallmark of El Niño, while the 

dotted line shows the anomaly at 

ship track 6. They noted that the 

eastern Pacific typically warms 

earliest, followed by a 

propagation of warming toward 

the central Pacific several months 

later. An entire El Niño episode 

was thought to take place over 

approximately 1.5 years, going 

through four phases: (1) onset 

phase, occurring around 

December of the year prior to the 

year of the main event, (2) peak 

phase, around April of the main 

year (based on the peak warming in ship track 1), (3) transition phase, around September, and (4) mature 

phase, occurring in January of the following year. This breakdown of phases is quite different from our 

current knowledge that events typically begin during April to July, peak during November to January, and die 

during February to June of the following year. Much of this disagreement is related to the fact that today we 

consider El Niño as a Pacific basin-wide event, with largest signal in the east-central portion of the basin 

(Barnston et al. 1997), with the far eastern tropical Pacific making up just one small part of the phenomenon 

(but a part that has great societal impacts along the Ecuadorian and northern Peruvian coasts).  

Rasmussen and Carpenter (1982) developed composites of SST and wind anomalies at specified stages of 

an El Niño event, using the 6 above-mentioned defined events. Figure 3 shows their results for SST anomaly 

during August-October, low-level wind anomalies during this same season, and SST anomalies during May-

July of the year following the main event. These composites, developed using data that were not easily 

assembled as they could be today, show patterns of SST and wind anomalies roughly consistent with our 

current knowledge of an El Niño event. Interestingly, the eastern portion of a La Niña pattern is seen in the 

Fig. 3  Composite El Niño anomalies based on 6 events from 1949 to 

1976 (see Fig. 2). Top: SST anomaly during August-October of the 

main year of the event. Middle: Wind anomaly during August-

October. Bottom: SST for May-July for the year following the main 

year of the event.  (From Rasmussen and Carpenter 1982.) 
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composite for early summer of the year following the El Niño, also not inconsistent with what we know today 

regarding La Niña often following one year after a strong El Niño. Their reliance on just 6 events for the 

composite, some of which are fairly weak, inevitably engenders sampling issues that would be ameliorated 

with use of a longer base period.  

 

Fig. 4  SST anomaly for December 1982, during the peak of the 1982-83 El Niño, using the merged gauge 

and satellite data analysis developed long afterwards.  

3. The surprise 1982-83 El Niño and the research that followed 

The strong 1982-83 El Niño took us nearly completely by surprise. Although it developed steadily in 

spring and summer1982, most experts did not recognize it was in progress even at the Climate Diagnostics 

Workshop in October 1982 when it had become strong. The main reason for this blindness was the lack of 

coherent, believable data. Satellite data had been developed since the mid-1970s, but there were some breaks 

in that data before 1979, so a climatology was unable to be defined with so few years in the history. The ship 

track data were viewed separately from the satellite data, and some of the ship data showed positive 

anomalies so strong that they were believed to be erroneous, being more than 3 standard deviations above the 

mean. While this data may have been puzzling, few (or no) leading scientists actually considered that a huge 

El Niño was in progress. Figure 4 shows the SST anomaly pattern in December 1982, using data that were 

established long afterwards using the more advanced gauge-plus-satellite merged analysis (Reynolds et al. 

2002) of today. 

The evolution of the 1982-83 El Niño turned out not to follow the stages expected on the basis of the 

composites of previous El Niño events. The sea level did not build up in the western part of the Pacific basin 

the year prior to the event as Wyrtki (1975) had observed, and, perhaps more importantly, the warming did 

not begin in the far eastern part of the basin and propagate westward. Also, new teleconnection regions were 

noted, expanding the smaller set of regions whose climate was already known to be sensitive to El Niño (e.g., 

weak Indian summer monsoon, dryness in Indonesia, and differing Pacific island rainfall anomalies). 

The surprises related to the 1982-83 El Niño spurred a new wave of ENSO research, most notably the 10-

year Tropical Ocean-Global Atmosphere (TOGA) project to study and predict ENSO and its global climate 

impacts (McPhaden et al. 2010). The work coming out of TOGA led to advances in both observational and 

dynamical fronts. Dynamical models began successfully reproducing ENSO behavior, including the seasonal 

timing and the 2-7 year periodicity (e.g., Zebiak and Cane 1987; Schopf and Suarez1988). In Suarez and 

Schopf (1988), the delayed oscillator theory was put forth. The theory states that besides the eastward-moving 

oceanic Kelvin waves, westerly wind anomalies also produce westward propagating Rossby waves that 

reduce subsurface sea temperature, and, after reflecting off the western boundary of the tropical Pacific Ocean 

(around Indonesia), “kill” El Niño around 6 months after the wind anomaly. In other words, the Bjerknes 
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positive feedback process is interrupted months later, terminating an El Niño event, as we now know occurs 

in the first half of the calendar year (often by the end of April) following the year of the main event. 

  
Fig. 5  The strengths and seasons of ENSO composite precipitation, plotted as factors. The vectors are based on 

a 24-month harmonic fitted to the composites for the ENSO episodes defined on the basis of the Southern 

Oscillation Index (SOI). The scaling of the vector lengths and directions are defined by the vector clock 

legend in the figure. Arrows pointing upward indicate above-average rainfall occurring in July of the main 

El Niño year, and to the right indicate same in January of the year following the main El Niño year.  (From 

Ropelewski and Halpert 1987.) 

On the observational side, Ropelewski and Halpert (1987) used a much larger set of data they had 

organized from the global telecommunication system (GTS), which they called the climate anomaly 

monitoring system (CAMS; Ropelewski et al. 1984), to describe the seasons and locations receiving climate 

impacts from ENSO. The ENSO state was defined using a long history of the Southern Oscillation Index (SOI) 

of tropical Pacific sea level pressure, rather than SST whose better data quality began only more recently. 

Figure 5 shows the ENSO effects on precipitation globally, using vectors showing anomaly strengths and 

seasonality. Using the vector clock key shown in the figure, we see, for example, that in the southern U.S. 

there is above-average rainfall during the winter following the main calendar year of the event (arrows 

pointing toward the right), while in the central tropical Pacific the impact is stronger, and occurs a few months 

earlier (i.e., around October).  

Another very major TOGA-

related advance on the observational 

front was the planning and 

installation of an extensive system of 

moored ocean buoys that issued real-

time oceanographic and atmospheric 

data for improved detection, 

understanding and prediction of El 

Niño and La Niña (McPhaden et al. 

1998, 2010). Data from this network 

(see Fig. 6) is heavily relied upon 

today, and the particularly important 

role of the subsurface sea 

temperature anomalies is widely 

recognized. 

Fig. 6  The configuration of the TAO/TRITON array of moored buoys 

across the tropical Pacific Ocean, developed in the 1990s in 

association with the 10-year TOGA program aimed to better 

understand and predict ENSO. (From the Tao project overview at 

http://www.pmel.noaa.gov/tao/proj_over/proj_over.html) 
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4. Systematic development of El Niño/La 

Niña prediction systems 

Improved understanding of ENSO and 

its location- and season-specific climate 

effects led to more focused efforts to predict 

ENSO events and to incorporate their 

expected climate effects into seasonal 

climate forecasts. Both empirical and 

dynamical approaches were used. Empirical 

(or statistical) methods to predict ENSO, 

based on antecedent conditions (e.g., 

tropical Pacific wind or sea level pressure 

anomalies), were developed by Hasselmann 

and Barnett (1981), Barnett (1984), and 

Inoue and O’Brien (1984), among others. 

These suggested some predictive potential. 

Successful dynamical simulations of ENSO 

led to real-time forecasts of ENSO-related 

SST in the east-central tropical Pacific. The 

first successful real-time forecast was by 

Cane et al. (1986), where the late forming El 

Niño of 1986 was predicted by their simple 

linear dynamical model. By the early 1990s, 

approaches to ENSO prediction took three 

paths: (1) purely statistical, as in Barnston 

and Ropelewski (1992), which used 

multivariate statistical methods based on 

latest observed conditions of, e.g., sea level 

pressure and SST; (2) hybrid statistical/dynamical, as in Barnett et al. (1993), where a dynamical ocean model 

was coupled to a statistical atmospheric model (the wind stress was specified by the ocean model’s SST); and 

(3) dynamical, which progressed from the simple model of Cane et al. (1986) to more fully comprehensive, 

global coupled general circulation models with advanced data assimilation techniques (Latif et al. 1993; Ji et 

al. 1994; Stockdale et al. 2011).    

 In the late 1980s and early 1990s, a sizeable portion (but not all) of the potential ENSO predictive skill 

was already being captured by statistical models and by some hybrid and dynamical models (Barnston et al. 

1994). Over the course of the 2000s and 2010s, dynamical models gradually became more skillful, while 

statistical models mainly did not, so that today’s best dynamical models slightly outperform statistical models 

(Tippett et al. 2012; Barnston et al. 2012). Certain specific weaknesses remain with us when intrinsic 

predictability is relatively low, such as during the ENSO phase transition period of March-June each year (the 

so-called ENSO predictability barrier); this weakness is somewhat mollified with the use of subsurface sea 

temperature anomaly data, as the subsurface anomalies may sometimes act as a bridge to the SST conditions a 

few months in advance, even during the season of the predictability barrier. ENSO forecasts are usually 

expressed probabilistically, where a range of outcomes is predicted. The use of a large ensemble of forecasts 

from a given model, and a combination of such ensemble sets (Kirtman et al. 2014), is common practice 

today. Figure 7 is an example of a multi-model ensemble ENSO forecast from NOAA’s Climate Prediction 

Center in late 2015.  

5. Likely improvements in ENSO prediction skill in the future 

Even with today’s healthy set of state-of-the-art dynamical ENSO prediction models, plenty of examples 

of large forecast errors still occur. A recent example is the aborted El Niño in late summer 2012, which was 

forecast to continue to strengthen by most models. Another example is the borderline El Niño of 2014-15, 

Fig. 7 The North American multi-model ensemble (NMME) 

forecast for east-central tropical Pacific SST through 

summer 2016, made from early November 2015 during 

the peak of the strong El Niño of 2015-16. Individual 

coupled models are denoted by line colors, and individual 

ensemble members of each model are visible. The average 

of the ensemble members of each model is shown by solid 

colored lines and symbols at each month. The average of 

all of the ensemble forecasts of all models is shown by the 

dotted black line. 
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which was predicted to become a moderate or even strong event by many models in northern spring 2014. 

Chen and Cane (2008) discussed the extent to which forecasts are limited by intrinsic predictability, versus 

our suboptimum modeling techniques, and concluded that improvements in our modeling would likely 

increase ENSO predictive skill noticeably but not greatly. Current modeling weaknesses that can potentially 

be overcome include an incomplete model representation of all of the relevant physics (e.g., parameterization 

of processes too small-scale to be captured in data at grid points of the sizes currently used), insufficient 

observational data (e.g., subsurface sea temperatures), and computer power (for higher spatial resolution, and 

more ensemble members). Implementing such improvements is currently far too expensive to attempt, but 

may become increasingly possible in the future. However, even with these weaknesses eliminated, an inherent 

natural limit of seasonal ENSO predictability is clearly acknowledged, implying that ENSO and climate 

forecasts will never have average skills as great as those of 1- or 2-day weather forecasts.  
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The first a few Climate Diagnostics Workshops (CDWs) from the mid-1970s through the early 1980s 
were held during a period of rather extreme seasonal weather events, ranging from a sequence of extremely 
cold winters (1976–77 through 1978–79) (Diaz and Quayle, 1980) in the U.S. (Figure 1) to the occurrence of 
worldwide impacts associated with the great 1982–83 El Niño—which was then labeled the El Niño of the 
century (Figure 2).  

The series of late 1970s very cold winters and the Great El Niño of 1982–83 spurred national action on 
the role of climate variability on the Nation’s socioeconomic activities and led to enhanced funding for 
research activities and a greater focus on improving observations and prediction capabilities (e.g., EPOCS, 
TOGA). Some of the major accomplishments resulting from those efforts include the Comprehensive Ocean-
Atmosphere Data Set (COADS—now referred to as ICOADS), the TOGA-TAO array of equatorial buoys, 
and the development of the Multivariate ENSO 
index (MEI) (Wolter et al., 2011). Furthermore, 
that event engendered a renaissance of interest in 
the global workings of the El Niño phenomenon 
and its atmospheric twin the Southern Oscillation 
(concatenated into ENSO).   

 Subsequent studies (e.g., Kiladis and Diaz, 
1986) showed that a close analog to the 1982-83 
event occurred in 1877-78, but with much greater 
societal impacts—with famines resulting in the 
death of more than a million people worldwide 
(Davis, 2001). Fifteen years after the early 1980s 
event, the 1997-98 El Niño matched and in some 
areas exceeded the strength and impacts of the 
earlier event (McPhaden, 1999). Eighteen years 
later a powerful El Niño is developing again in the 
equatorial Pacific with impacts already being felt in 
many parts of the world (Figure 3), with resulting 
anomalous rainfall patterns already evident in mid-
October of 2015 (Figure 4). An ongoing extreme 4-
year drought in California (Diaz and Wahl, 2015) 
may turn into severe flooding this 2015-16 winter 
with attendant severe geomorphic impacts 
throughout the State.  
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Fig 2  April to March averaged MEI time series (1871–
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Fig. 4 Average OLR anomaly map for 
the 30-day period ending October 
22, 2015. Extreme drought is 
evident in Australasia and wetter 
than normal in the usual regions 
typically affected by El Niño. 
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1. Introduction 

CPC’s African Desk was established in 1994 as part of the NCEP International Desks.  The historical 
context in which the African Desk was established is reported in Thiaw and Kumar (2015), and is 
summarized here.  The persistent drought in the Sahel in the 1970s led to the establishment in the mid-1980s 
of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS) and its technical body the 
Agriculture Hydrology and Meteorology (AgrHyMet) Center.  The U.S. Agency for International 
Development (USAID) established the Famine Early Warning System (FEWS) to assist Sahel countries 
mitigate the impacts of the drought.  USAID/FEWS quickly recognized the importance of weather and 
climate information to monitor drought and to plan for humanitarian action.  CPC began to provide FEWS 
with gauge-based 10-day weather summaries to enable real-time monitoring of crop conditions in the Sahel.  
In the early 1990s, CPC began to provide FEWS with access to satellite rainfall estimates, which also helped 
refine the 10-day weather summary.  The presentation discusses the evolution of CPC’s international outreach 
from the African Desk to the International Desks, with a focus on real-time products at all time scales from 
weather to sub-seasonal and seasonal forecasts, and the monitoring of recent evolution of climate conditions.  
These products are made available to the international community through in support of decision making in 
various socio-economic sectors.  The presentation will also discuss capacity development with ongoing 
professional development training for professionals at National Meteorological and Hydrological Services 
(NMHSs).  

2. The CPC International Desks website 

The African Desk was initially established to provide NMHSs with access to real time weather and 
climate information to serve as guidance for national forecasts.  However, with increasing demand for climate 
services around the world, and to better serve the mission of USAID, the African Desk website evolved into 
the CPC International Desks website (Figure 1), featuring regionalized weather and climate forecasts and 
climate monitoring tools.  The public can access forecasts derived from the NCEP global forecast system 
(GFS), the global ensemble forecast system (GEFS), the Climate Forecast System (CFS) version 2, the U.S. 
National Multimodel Ensemble Forecast (NMME), the Global Data Assimilation System (GDAS), and many 
other satellite derived products such as rainfall estimates, normalized difference vegetation index (NDVI), etc.   
The website also features expert assessment products, including forecast bulletins, regional hazards outlooks, 
and monsoon briefs.  In addition, NCEP products on Africa are also being broadcast to Africa through a 
EUMETCast platform such that all NMHSs in Africa can receive the information directly through a reception 
station.  

3. Expert assessment products 

The operational products prepared in the CPC International Desks include daily weather forecasts and 
week-1 and week-2 outlooks for Africa.  The weather forecasts are prepared in support of the WMO Severe 
Weather Forecast Demonstration Project (SWFDP).  Sub-Seasonal forecasts are issued weekly for Week-1 
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and Week-2 time scales.  The main tools are the Madden Julian Oscillation, SST, NCEP GFS and CFS model 
guidance. The forecaster examines a number of products including the probability of exceedance, wind, 
divergence fields, etc., to reinforce the forecasts.  For the seasonal forecasts, outputs from NCEP CFSv2 and 
the U.S. NMME are regionalized and calibrated with CPC gridded rainfall data, and forecasts expressed in 
probabilistic form.  These are compared with CCA forecasts to issue consensus seasonal outlooks that feed 
into the Regional Climate Outlook Forums (RCOFs).  Of the various products, the regional hazards outlooks 
for food security provide the most tangible applications to humanitarian relief planning and therefore are 
discussed in detail in the following. 

3.1 Regional hazards outlooks 

The hazards outlooks bulletin for food security are prepared weekly in collaboration with FEWSNET 
partners, including the U.S. Geological Survey (USGS), NASA, USAID, and Chemonix  (Thiaw and Kumar, 
2015).  The bulletin features both the evolution of the most recent climate conditions throughout the season 
and outlooks into the near future about one week to a season. The objective is to provide targeted forecasts for 
areas that are vulnerable to droughts or flooding that might result in adverse impact on crops or pastures. 
Hence the hazards outlooks are based on a wide range of products, including rain gauge data and satellite 
rainfall estimates, rainfall and surface temperature forecasts up to 16 days, sub-seasonal and seasonal climate 
forecasts. Other inputs to the hazards outlooks include USGS’ river flow forecasts and water requirement 
satisfaction index (WRSI) for crops and rangelands, NASA’ s normalized difference vegetation index (NDVI), 
NOAA’s vegetation health index (VHI), and field observations.  The hazards outlooks process is designed as 
a loop that begins with the identification of areas that exhibit consistent rainfall deficits or frequent flooding 
through routine in-depth monitoring of the climate system.  These areas are often faced with a high risk of 
food insecurity. Then model guidance tools are used to examine both short range and extended range forecasts. 
The reliability of these forecasts is qualitatively assessed by looking at consistency both within each model 
and between different models. Then based on current conditions and forecasts, a Geographical Information 
System (GIS) software is employed to draw polygons on a map to highlight areas at risk for food security. 
The preliminary hazards outlook bulletin is distributed to partners within FEWSNET including the field 
representatives who have expert knowledge of conditions on the ground. Then a teleconference takes place 
for a live discussion of current weather and climate conditions and the preliminary hazards outlooks.  The 

Fig. 1  CPC International Desks website. NCEP global forecast system (GFS) and ensemble (GEFS), global 
data assimilation system (GDAS), Climate Forecast System (CFS) and National Multi-model Ensemble 
Forecasts (NMME), satellite rainfall estimates, and sea surface temperature (SST) are made available 
over each geographical region through the clickable maps or through the menu on the left of the page. 
Expert assessment products are also available for Africa and other regions of special interest. 
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feedback received allows for the finalization of the 
hazards outlooks. A compilation of hazards outlooks 
issued between September and December 2015 is 
displayed in Figure 2. The color shades of the 
polygons determine the nature and severity of the 
hazards. In the example shown in the figure, 
consecutive weeks of above average rains caused 
flooding to persist during the West Africa summer 
monsoon rains and in East Africa during the fall rains.  
Disease outbreaks and human fatalities were reported 
in some of these areas.  In contrast major rainfall 
deficits during the Belg (Feb-May) and Kiremt (Jul-
Sep) rainfall seasons resulted in drought and failed 
crops in Ethiopia.  Millions of people are believed to 
be in need of food assistance according to the United 
Nations.  Similarly, in southern Africa, the ongoing 
drought due to the 2015-16 El Nino associated with 
extreme heat has caused many governments to 
declare some provinces in state of emergency.  
Human and livestock mortalities have already been 
reported.  The hazards outlooks are disseminated 
through the website and an email distribution list. 
FEWSNET uses the information together with current 
climate forecasts and trends and other food security 
indicators to issue monthly food security outlooks.  
Finally, this information is provided to USAID for 
informed decision in humanitarian response planning 
based on the level of food insecurity. 

4. Professional development training program 

4.1 The Residency Training Program 

The African Desk became operational one year after it was established and hosted its first trainee in 
March 1995. The four-month residency training program is a U.S. contribution to the WMO Voluntary 
Cooperation Programme (VCP) managed by NWS. Each trainee receives a WMO fellowship. They arrive 
in staggered intervals of two months for a maximum capacity of 12 trainees per year. This approach allows 
the visitors who have been in training the longest to contribute to the training of the new trainees.  The 
objective of the training program is to work with NMSs in Africa to enhance their capacity to deliver 
improved weather and climate forecasts. Each trainee returns to his or her home institution, equipped with a 
new set of tools that could be applied to improve forecasts.  To date the African Desk has trained 170 
professional meteorologists and scientists from approximately 40 countries in Africa. The programs take into 
account the diversity of the climate system in Africa. Hence fellows are selected from each region of Africa 
on a rotating basis and invited to participate in the training program during the active rainfall seasons of the 
respective regions. The Climate Desk and the Weather Desk have separate daily schedules. However, the 
desks share some common activities. Upon arrival at the desk, the trainees are introduced to the CPC online 
tutorial on major modes of variability including ENSO and the Madden Julian Oscillation (MJO). Then, they 
spend time learning the use of basic UNIX commands, shell programming, and the use of graphical packages 
such as the Grid Analysis Display System (GrADS), and applications of the GIS. These basic tools enable the 
trainees to access and process NCEP data for future use in climate diagnostics studies or in model forecasts 
verifications.  A typical work environment for the trainees is displayed in figure 3. The trainees also spend 
time practicing the use of GIS to prepare forecast graphics. 
  

Fig. 2  Regional hazards outlooks for food security 
issued between September and December 2015.     
Included in the hazards outlooks are the long terms 
conditions in the field and the current 
meteorological and climate forecasts. 
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4.2 The NOAA-USAID climate training workshop series 

The residency training program is 
complemented by a NOAA-USAID 
climate training workshop series (Thiaw 
et al., 2014) initiated in 2009 that have 
enabled the training in climate of far more 
professionals from different regions of the 
world than NCEP could host in the 
residency program. The training 
workshops have been organized for all the 
ocean basins of the world. A total over 
300 meteorologists and scientists from 
countries in Africa, Asia, Caribbean, 
Central America, South America, and 
Southeast Europe have participated in 
either or both the NCEP residency 
training program or the NOAA-USAID 
series. In these series emphasis is on 
practical exercises combined with lectures 
on recent advances in climate variability 
and change. The trainees then learn how 
to set up seasonal climate prediction 
experiments using CCA and how to 
downscale model outputs to improve 
forecast skills. They also learn how to verify the forecasts. The trainees return to their home institutions with 
an improved understanding of the global climate system and how modes of variability can influence the 
climate in their respective regions. They also take home tools to improve forecast operations. The long term 
goal is for the trainees to become resource persons in their countries and regions to train other professionals.  
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Fig. 3  Four trainees in the African Desk in 2009 as part of the 
NCEP residency training program, featuring clockwise from 
top left, Fatou Sima (The Gambia), Aissatou Diallo 
(Guinea), Chali Gurji (Ethiopia) and Mamadou Savadogo 
(Burkina Faso). 
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1. Introduction 

 Estimating limits of seasonal predictability, while important, continues to be a controversial issue. A 

National Research Council report on the “Assessment of Intraseasonal to Interannual Climate Prediction and 

Predictability” (2010) stated that “The true limits of predictability cannot be quantified with any certainty 

because there is no way of estimating predictability without models or, in the case of observational data, ad 

hoc assumptions.” However, there are various methodologies based on observational data and model 

simulations that can be used to provide estimates of seasonal predictability, and further, these methods follow 

a hierarchy of approximations. An overview of predictability estimates spanning last 40-years is presented to 

assess where we currently stand on our estimates of seasonal climate predictability, and what gaps remain. 

2. Historical review of estimate of predictability 

Given the observational data, one can 

estimate the total variability of seasonal 

means, for example, based on the reanalysis 

data extending back to 1950s, an estimate of 

variability in December-January-February 

(DJF) seasonal mean can be made (Fig. 1). In 

the context of what fraction of observed 

variability is predictable, either as an initial 

value or boundary value problem, has been a 

focus of analysis in last 40-years. The 

fundamental problem in estimating 

predictability is estimating the fraction of 

total observed variance that can be linked to 

external causes such as slowly evolving 

boundary conditions or to the initial 

conditions. 

The methods for estimating predictable 

component of seasonal variability can be 

grouped into based entirely on the 

observational data or based on model 

simulations (or a combination of the two). 

Based on observational data, Madden (1976) presented an estimate of predictable component of seasonal 

mean variability in surface pressure and surface temperature and concluded that over the continental US, 

about 20% of seasonal mean variability can be predicted at certain geographical locations. Based on this 

estimate, the author concluded that low fraction of variance that can be predicted “places important 

limitations on our ability to make long-range predictions.” Horel and Wallace (1981) based on a regression 

analysis of 700 hPa seasonal mean heights reached a similar conclusion for a low estimate of predictability. 

Fig. 1  Total variability of the observed December-January-

February (DJF) seasonal mean heights estimated from 

the NCEP/NCAR reanalysis over 1979-2010 period. 

Estimating seasonal predictability entails partitioning 

observed seasonal variability into causes that are external 

(and can potentially be predicted), and causes that are 

related to initial perturbations that grow with lead time 

during model integrations. 
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Robust estimates of seasonal 

predictability can be made from 

ensemble of model simulations and 

initialized predictions. The basic 

premise of model based estimates is 

based on the assumption that among an 

ensemble of simulations the common 

variability (defined as the variability of 

ensemble mean) is the predictable 

component of seasonal variability while 

the variability different from ensemble 

mean is the unpredictable component. 

One of the earliest model estimates of 

seasonal mean predictability of 

wintertime 200 hPa heights was made 

by Kumar and Hoerling (1995), and the 

results were consistent with the 

estimates of low predictability of 

Madden (1976) and Horel and Wallace 

(1981) in extratropical latitudes. Kumar 

and Hoerling (1995) also demonstrated 

that the predictability was largest in the 

tropical latitudes (and was associated 

with interannual variability of sea 

surface temperatures), and decreased 

monotonically in extratropical latitudes.  

The predictability estimate of Kumar and Hoerling (1995) was based on the analysis of a single model 

and which could be erroneous due to model biases. To rectify this issue, Kumar et al. (2007) presented an 

analysis based on simulations from multiple models. More recently this estimate based on this approach was 

updated based on initialized forecasts from the North American Multi-Model Ensemble (NMME) (Kirtman et 

al. 2014). The latest estimate of predictability (Fig. 2) still corroborate results from Madden (1976) and Horel 

and Wallace (1981) in that the predictability in the extratropical latitudes is only a small fraction of total 

variability. These results are consistent with the low skill of seasonal predictions in extratropical latitudes 

(Peng et al. 2012). 

3. Summary 

Over last 40 years, vigorous research efforts have gone into estimating the predictable component of the 

observed seasonal variability. These estimates are based on observational data and ensemble of model 

simulations. Further, different methods rely on different level of sophistication with estimates based on 

methods ranging from linear to non-linear procedures. Irrespective to the methodologies used, however, the 

general conclusions have remained quite robust – largest predictability in seasonal means is in tropical 

latitudes and decreases monotonically towards the extratropical latitudes; a large fraction of variability in 

extratropical latitudes, consistent with the growth of initial forecast perturbations, is unpredictable. A 

continued update in estimates of predictability based on newer generation of seasonal forecast systems will be 

useful in the validation for the current estimates of predictability.  
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tropical (extratropical) latitudes. 
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ABSTRACT 

 To quantify uncertainties in the current generation of ocean reanalysis products, CLIVAR Global 
Synthesis and Observations Panel (GSOP) and the GODAE OceanView (GOV) jointly initiated Ocean 
Reanalysis (ORA) Intercomparison Project (ORA-IP). For those ocean reanalyses produced by operational 
centers for initialization of climate models or short-range ocean forecast models, there is an opportunity to 
conduct ORA intercomparison in near real-time, and to use the ensemble approach to quantify the signal 
(ensemble mean) and noise (ensemble spread) in our estimation of ocean climate variability. Motivated by the 
Tropical Pacific Observing System (TPOS) 2020 Workshop held in January 2014 in La Jolla, CA, with 
support from NOAA Climate Observation Division, the CPC initiated and led a Real-Time ORA-IP. An 
ensemble of nine operational ORAs is been routinely collected, and they are used to monitor consistency and 
discrepancy in the tropical Pacific temperature analysis in real time in support of ENSO monitoring and 
prediction.  

The role of the TAO/TRITON buoy data on constraining the ocean reanalyses is assessed by root-mean-
square error (RMSE) and anomaly correlation (AC) with the buoy temperature data directly. The ensemble 
mean is shown to have a higher accuracy (smaller RMSE and larger AC) than individual product, suggesting 
the ensemble approach is an effective tool in reducing uncertainties in temperature analysis for ENSO. The 
spread among the ensemble mean and its time variability measures how uncertainties vary with location and 
time. The temporal variability of the spread can be partially linked to the temporal variability of in situ 
observations which reduce ocean analysis errors and increase consistency among them. The important 
outcomes of the project are to 1) provide estimation where uncertainties are large and if sustained or enhanced 
ocean observations are needed to reduce uncertainties, 2) to provide the most reliable estimate of climate 
signal such as ENSO, and 3) to provide the signal to noise ratio for the climate signal in real time. 
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1 Introduction 

Ocean reanalyses (ORAs) aim to provide an optimal estimation of 3-dimensional structures of the ocean 
by combining model solutions with ocean observations via data assimilation methods.  However, the time 
evolution represented by an ORA will be sensitive to the temporal variations of the observing system, to the 
errors of the ocean model, atmospheric fluxes and assimilation systems, which are often flow-dependent, and 
not easy to estimate.  A crude and pragmatic way of estimating uncertainties in ORAs is to carry out an 
intercomparison of ORAs within the framework of an ensemble approach.   

The multi-analysis ensemble approach is adopted by the Ocean Reanalyses Intercomparison Project 
(ORA-IP) jointly coordinated by the CLIVAR Global Synthesis and Observation Panel (GSOP) and GODAE 
OceanView (Balmaseda et al. 2015). Some ORAs in the ORA-IP are continuously updated in real-time in 
operational centers for initialization of seasonal forecast models or short-range ocean forecast models.  Those 
real-time ORAs, often referred to as operational ORAs, have the additional advantage that they allow 
monitoring of climate variability such as El Niño/Southern Oscillation (ENSO) and those beyond ENSO (Xue 
et al. 2010).  The operational ORAs are now routinely used at national climate centers for ENSO monitoring, 
and prediction efforts.   

The quality of the ORAs for monitoring ENSO depends critically on the Tropical Pacific Observing 
Systems (TPOS), which was initially populated by the Tropical Atmospheric Ocean (TAO) array in early-
1980s (McPhaden et al. 1998), and was later enhanced by the Triangle Trans-Ocean Buoy Network (TRITON) 
array in the western tropical Pacific (west of 160˚E) after 2000 (Ando et al., 2005).   The TAO/TRITON array 
is considered as the cornerstone of the ENSO observing system, as it systematically measures upper ocean 
temperature, current and air-sea fluxes etc. at geographically fixed locations. The implementation of the 
TAO/TRITON array stimulated a rapid development of operational ocean reanalyses (e.g. Behringer et al. 
1998; Alves et al. 2004; Zhang et al. 2007; Yin et al. 2011; Balmaseda et al. 2013).  

Product Forcing Configuration Data Assim. 
Method 

Analysis 
Period 

GFDL/NOAA 
(ECDA) Coupled DA 1ox1/3° MOM4 coupled EnKF (T/S/SST) 1979-present 

GMAO/NASA 
(MERRA Ocean) Merra + Bulk 0.5° MOM4 EnOI (SLA/T/S/SST/SIC) 1979-present 

NCEP/NOAA 
(GODAS) NCEP-R2 Flux. 1°x1/3° MOM3 3DVAR (SST/T) 1979-present 

NCEP/NOAA 
(CFSR) Coupled DA 0.5°x1/4° 3DVAR (SST/T) 1979-present 

CAWCR/BOM 

(PEODAS) 
ERA40 to 2002; NCEP-R2  

thereafter. Flux 1°x2° MOM2 EnKF (T/S/SST) 1979-present 

ECMWF 

(ORAS4) 
ERA40 to 1988; ERAi 

thereafter. Flux. 1°x 1/3° NEMO3 3DVAR (SLA/T/S/SST) 1979-present 

MRI/JMA 

(MOVE-G2) JRA-55 corr+ CORE Bulk 1ox0.5° MRI.COM3 3DVAR (SLA/T/S/SST) 1979-present 

UK MET 
(GloSea5) ERAi+CORE Bulk 1/4° NEMO3.2 3DVAR 

(SLA/T/S/SST/SIC) 1993-present 

MERCATOR 
(GLORYS2V3) ERAi corr+ CORE Bulk 1/4° NEMO3.1 EnKF+3DVAR 

(SLA/T/S/SST/SIC) 1993-present 

§Table 1  List of ocean reanalysis products entering the inter-comparison. 

 § The data assimilation column lists the observation types used for their estimation (T/S for temperature and 
salinity; SLA: altimeter-derived sea level anomalies; SST: sea surface temperature, SIC: sea-ice concentration), 
as well as assimilation techniques used for reanalysis: Ensemble Optimal Interpolation (EnOI), Ensemble 
Kalman Filter (EnKF), variational methods (3D-Var). The atmospheric surface forcing is usually provided by 
atmospheric reanalyses, using either direct daily fluxes, or different bulk formulations. There are also systems 
that use fluxes from coupled data assimilation systems (Coupled DA), which come in multiple flavours 
(parameter estimation, EnKF, weakly coupled). 
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The rapid decline of the TAO array after summer 2012 and anticipating substantial reduction in the 
TRITON array in next few years raised a serious concern among the ocean data assimilation community if the 
quality of the operational ORAs has been compromised due to the data loss. One of the recommendations 
from the TPOS 2020 workshop (http://www.ioc-goos.org/tpos2020) is to monitor the consistency and 
discrepancy across the operational ORAs in real time to support ENSO forecast, and to monitor the impacts of 
the TAO/TRITON data loss on the quality of ORAs (Fujii et al. 2015). 

With the support from NOAA Climate Observation Division, the Climate Prediction Center (CPC) of 
National Centers for Environmental Prediction (NCEP) initiated and led the Real-Time ORA-IP following the 
TPOS 2020 Workshop. An ensemble of nine operational ORAs (Table 1) is been routinely collected, and an 
experimental web site has been constructed to display the ensemble ORA products with a focus on monitoring 
the consistency and discrepancy in tropical Pacific temperature analyses in real time in support of ENSO 
monitoring and prediction (http://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html for the 
1981-2010 climatology; http://www.cpc.ncep.noaa.gov/products/GODAS/multiora93_body.html for the 
1993-2013 climatology that is partially finished). The objectives of the project are to 1) provide estimation 
where uncertainties among operational ORAs are largest and if sustained or enhanced ocean observations are 
needed to reduce uncertainties, 2) to provide the most reliable estimate of climate signal such as ENSO, and 3) 
to provide the signal to noise ratio for climate signal in real time.  

2 Results 

2.1 Comparison with the TAO/TRITON data 

In the tropical Pacific, in addition to assimilating the TAO/TRITON data, ORAs also assimilate 
temperature and salinity observations from the Argo floats and expendable bathythermographs (XBTs). It is 
important to know how well each ORA fits to the TAO/TRITON data. The temperature observations from 66 
buoys that have more than 10 year record of monthly values are included in the comparison. The buoy data 
are linearly interpolated onto the same vertical grid (with 10m interval) as that in the ORAs. For the 
comparison, each ORA is sampled identically in time as the buoy data and temperature anomalies are 
constructed by removing the climatology for each ORA and buoy data separately. The root-mean-square error 
(RMSE) and anomaly correlation (AC) are then calculated at each level for every buoy site. Normalized 
RMSE (NRMSE) is calculated as the RMSE divided by the standard deviation (STD) of TAO temperature 
anomalies at each level for every buoy site. To get an integrated measurement of the fit to the buoy data, 
RMSE, NRMSE and AC are averaged at all levels in the upper 300m. 

Table 2 shows the averaged RMSE and NRMSE over the upper 300m in five regions. The NRMSE of 
each ORA is compared with that of the ensemble mean (EM), defined as the average of the nine ORAs, which 

 
RMSE of 
EM  (

oC) 
NRMSE of 

EM (%) 

NRMSE Difference from EM  (%) 
NCEP 

GODAS 
JMA ECMWF GFDL NASA BOM 

UK 
MET 

MERCATOR 
NCEP 
CFSR 

EEPac 0.26 21 7 10 5 14 13 7 -3 9 19 
WEPac 0.25 24 8 11 4 19 10 8 1 14 17 
NEPac 0.33 38 15 14 2 17 27 16 -11 6 24 
NWPac 0.29 27 7 11 0 20 13 19 -4 10 20 

SPac 0.21 24 3 7 3 27 12 10 -2 11 23 

Table 2  Root-mean-square error (RMSE, the second column) and normalized RMSE (NRMSE, the third column) 
of temperature anomaly from TAO observations averaged in upper 300m in 1993-2014 for the ensemble mean 
(EM). NRMSE is RMSE divided by standard deviation (STD) of TAO temperature anomalies expressed as 
percentage (%). Positive (negative) difference of NRMSE of each ORA from EM (the 4th-11th column) 
indicates increased (decreased) NRMSE from that of EM (values higher than 15% are in bold). Shown are the 
values calculated for each TAO/TRITON buoy and averaged in the eastern equatorial Pacific (170oW-90oW, 
2oS/0/2oN, EEPac), the western equatorial Pacific (120oE-180oW, 2oS/0/2oN, WEPac), the northeastern 
subtropical Pacific (170oW-90oW, 5oN/8oN, NEPac), the northwestern subtropical Pacific (120oE-180oW, 
5oN/8oN, NWPac), and the southern subtropical Pacific (120oE-90oW, 5oS/8oS, SPac). 
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is expected to have the smallest RMSE. For the eastern equatorial Pacific (EEPac), the RMSE of EM is 
0.26oC and NRMSE is about 21% of STD. Individual ORA tends to have larger NRMSE (5-19% STD) except 
the MET. This is consistent with the wisdom that the ensemble mean tends to cancel out noises in individual 
ORA and to provide a better analysis than individual ORA.  In the western equatorial Pacific (WEPac), the 
RMSE and NRMSE are similar to those in EEPac and the EM is generally superior to individual ORA. In the 
northeastern Pacific (NEPac), the RMSE (0.33oC) and NRMSE (38%) are considerably higher than those in 
other regions. Compared to the EM, individual ORA has higher NRMSE except the MET which has smaller 
NRMSE. For the northwestern Pacific (NWPac) and southern Pacific (SPac), the conclusion is similar to the 
above. Individual ORA tends to have larger NRMSE than the EM except the MET. We will discuss next why 
the MET fits to the buoy data much better than other ORAs. If the NRMSE in the five regions is averaged, the 
ORAs ranked from the lowest to highest NRMSE are MET, ECMWF, NCEP GODAS, MERCATOR, JMA, 
BOM, NASA, GFDL and NCEP CFSR. We will explain in next section that the better fit to the buoy data at 
limited buoy sites may not represent a better analysis when all the grid points are considered. 

2.2 Comparison with the ensemble mean 

It is shown earlier that the ensemble mean (EM) tends to be superior to individual ORA in the fit to the 
TAO/TRITION data. Another advantage of the EM is that it has a uniform coverage of all grid points and 
provides us the best estimation of climate signal in locations where not covered by the isolated mooring sites. 

Fig. 1  Root-mean-square error (RMSE) of temperature anomaly for (a) NCEP_GODAS, (b) ECMWF, (c) 
JMA, (d) GFDL, (e) NASA, (f) BOM, (g) MET, (h) MERCATOR, and (i) NCEP_CFSR computed against 
the ensemble mean and averaged in upper 300m. The RMSE is computed over 1993-2014. Unit is oC. 
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In the ensemble approach, the true signal in the ocean state is estimated as the ensemble mean (EM) based 
on all ORAs 

        (1) 

where  denotes an individual ORA and N is the total number of ORAs. The root-mean-square error 
(RMSE) relative to the EM measures how well each ORA agrees with the EM. Fig. 1 shows that the RMSE is 
generally small (< 0.3oC) in the equatorial belt where TAO observations help constrain the analysis. A 
noticeable exception is larger values in the MET west of 180oE, and in locations between the mooring sites. 
Another exception is larger values in the CFSR (> 0.4oC) east of 150oW and in the GFDL west of 150oE. The 
RMSE is much larger in the off-equatorial belt, and the MET, the NCEP_GODAS and NCEP_CFSR, along 
with the GFDL product, stand out as the ones with the largest RMSE.  

The RMSE at the equator (Fig. 2) shows that the largest error is located near the mean thermocline. The 
UK MET and the two NCEP reanalyses have the largest departure from the EM. The large RMSE in the UK 
MET is largely due to a too strong fit to observations in the presence of large model biases. The large RMSE 
in the NCEP CFSR can be partially attributed to a sudden shift in climatology near 1999 (Xue et al. 2011), 
and for the GODAS is largely due to the warm biases before 1990.  

Fig. 2  Root-mean-square error (RMSE) of temperature anomaly at the equator for (a) NCEP_GODAS, (b) 
ECMWF, (c) JMA, (d) GFDL, (e) NASA, (f) BOM, (g) MET, (h) MERCATOR, and (i) NCEP_CFSR 
computed against the ensemble mean. The RMSE is computed over 1993-2014. Unit is oC. 
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2.3 Uncertainties among ocean reanalyses 

The uncertainty in the ocean state estimation can be quantified by the spread of ocean reanalyses from the 
ensemble mean 

 

                  (2) 

 

                           (3) 

where M is the number of samples in the time series.  

To see how temporal variations in ocean observations contribute to reduce  Fig.3 shows the and 
the corresponding data counts during the period 

a) prior to the completion of TAO array (1985 to 1993), 
b) after the completion of TAO array but prior to the ARGO (1994 to 2003), and  
c) 2004 to 2011 after the full deployment of TAO/TRITON and ARGO.  

 The full deployment of the TAO array significantly reduces the analysis uncertainty in the equatorial 
Pacific, and the availability of Argo reduces the analysis uncertainty in off-equatorial regions, thus clearly 
highlight the positive influence of ocean observations on constraining the ocean analysis. However, there is 
still large spread in the northwestern tropical 
Pacific, in the SPCZ region and central and 
northeastern tropical Pacific. Fig. 3 also indicates 
that the data assimilation systems tend to 
constrain the solution very locally, only where 
there are in situ observations. This suggests that 
enhancing ocean observing systems should go 
hand in hand with improving ocean data 
assimilation systems such that ocean observations 
can be optimally utilized by those systems. 

Considering the significant loss of the TAO 
data in the equatorial eastern Pacific in 2012-13, 
we examined the temporal variations of the 
spread in the equatorial eastern Pacific (EEPac), 
and related it to the temporal variability of signal 
and data counts. Fig. 4 shows that the spread is 
relatively large before 1990 when where was little 
data, and stays relatively low from 1990 to 2005 
except during the 1982/83 and 1997/98 El Nino. 
However, there is a gradual increase of the spread 
after 2005 and a noticeable peak in 2012-2013 
when there was a significant loss of the TAO data. 

3 Summary and discussions 

Since the inception of this project at CPC in 
2014, major accomplishments include: 

• Establishing protocols for routine 
collection of ocean reanalyses from 
different operational centers; 

• A web page to display ocean reanalyses 

Fig. 3  (Left column) The ensemble spread of 
temperature anomaly averaged in the upper 300m in 
(a) from 1985 to 1993, (b) from 1994 to 2003, and 
(c) from 2004 to 2011, along with (right column) the 
associated data counts (number of daily temperature 
profiles in each 1x1 degree box). 
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and uncertainty among them; 
• An ability to provide a sanity 

check for potential issues among 
various ocean reanalyses; 

• A demonstration of possible 
issues with NCEP ocean 
reanalyses systems, i.e., GODAS 
and CFSR; 

• Evidence for the influence of 
temporal variations in situ data on 
the uncertainty among ocean 
reanalyses, viz a reduction in in 
situ data leading to an increase in 
analysis uncertainty. 

As the data delivery from external 
centers is now mostly routine, we plan to 
devote additional time in better 
quantification of the impacts of evolution 
of TPOS on the ocean analysis and 
uncertainty among them. In future, results 
from this project will  

a) provide support for the 
framework of TPOS 2020 
(http://tpos2020.org/) project on 
the design of the future tropical 
Pacific observing system; 

b) continue to deliver real-time 
information to the user 
community with stake in ENSO 
monitoring and prediction, and  

c) support a comprehensive 
assessment of the next generation 
of ocean reanalysis at NCEP. 
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1. Introduction 

Accurate seasonal prediction of Arctic sea ice is an essential need for stakeholders in that region.  
However, current commonly used metrics of sea ice extent or sea ice area, which provide an integrated total 
over the entire Arctic, are of limited use to those who seek information on a more local scale.   Shipping 
operations in the Arctic are concerned with the sea ice melt in the summer which impacts transportation 
routes.  As Arctic warming continues, a greater region will experience melt, which will lead to a thinner 
winter ice pack.  More frequent melting will also enhance the Arctic albedo feedback leading to additional 
warming and thus more melting (Stroeve et al. 2011 and references within).  Therefore, an accurate prediction 
of sea ice melt on a local scale will prove valuable for a variety of Arctic initiatives. 

Previous studies have examined passive microwave satellite data to determine the observed first sea ice 
melt day (IMD) (Smith 1998; Kwok et al. 2003; Belchansky et al. 2004; Howell et al. 2009; Markus et al. 
2009; Stroeve et al. 2014; and others).  Observed trends generally show earlier ice melt dates.  Specifically 
Markus et al. (2009) and Stroeve et al. (2014) show mean trends in IMD of -2.5 and -1.9 days/decade 
respectively across the Arctic.   The goal of this work is to analyze the performance of the Climate Forecast 
System version 2 (CFSv2, Saha et al. 2014) in representing IMD using both the operational settings and an 
experimental configuration. 

2. Data and methods 

Modeled sea ice concentration data from CFSv2 hindcasts are used.  Two model configurations are used, 
the operational setting (CFSv2CFSR) which uses initial conditions from the Climate Forecast System 
Reanalysis (CFSR, Saha et al. 2010), and an experimental version (CFSv2PIOMp) used in Collow et al. 
(2015).  CFSv2PIOMp proved to be more representative of the downward trend in sea ice during later years 
than CFSv2CFSR.  For CFSv2PIOMp, the model was initialized with sea ice thickness from the Pan-Arctic 
Ice Ocean Modeling and Assimilation System (Zhang and Rothrock 2003) and additional modifications were 
made to the internal physics settings.  Observed data used are the NASA Team sea ice concentrations from 
Nimbus-7 SMMR and DMSP SSM/I (available at ftp://sidads.colorado.edu/DATASETS).   Observations 
were studied from 1985-2014 to get a sense of changes in the last 30 years.  Model runs were then initialized 
8-12 March 00 UTC 2005-2014 and run through 31 December for a total of 50 simulations for each model 
configuration, five for each year.  The melt season from 1 April through 30 September is analyzed and 
compared with observations from this period to assess model performance. 

 CFSv2 sea ice concentrations are output at 12-hour intervals.  Therefore, these are interpolated to match 
the daily frequency of the NASA Team data by averaging the two model data time steps on each day. NASA 
Team data prior to August 1987, which is available every other day, is linearly interpolated to a daily 
resolution.   For all years, IMD is determined as the first day sea ice concentration drops below 15% after 1 
April following the traditional definition of sea ice extent from the Intergovernmental Panel on Climate 
Change assessment report (Vaughan et al. 2013).  Points that never cross the 15% threshold (permanently 
frozen or permanently melted) are set to undefined, thereby limiting data to seasonal sea ice regions only.  
Means are determined for modeled and observed IMD for each grid point.  For modeled data, IMD from each 
of the 5 ensembles is averaged to determine the mean for that year to compare to observations. 
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3. Comparison of modeled and observed means 

First observed NASA Team IMD means are compared over two different time periods, 1985-1994 and 
2005-2014.   As seen in Figure 1b, the later period has a more expansive region of ice melt over the Arctic 
Ocean than in the early period (Figure 1a).  Differences (Figure 1c) show generally earlier ice melt days 
throughout the entire Arctic.   Using a t-test, significant differences at 95% confidence are found over the 
Hudson Bay, Davis Strait, Barents Sea, and somewhat over the Chukchi Sea.  There are some regions which 
experienced later melt in 2005-2014 than in 1985-1994, specifically in the Bering Strait and the East Siberian 
Sea but changes in these regions do not show significance.  

Fig. 1  Mean of observed IMD from NASA Team for the 1985-1994 period (a) and the 2005-2014 period 
(b).  Difference between the two (b minus a) is shown in c.  Hatching in c denotes differences are 
significant at 95% confidence based on a t-test.  

 Fig. 2  Mean 2005-2014 IMD from CFSv2CFSR (a) and CFSv2PIOMp (b); CFSv2CFSR bias with respect 
to NASA Team observations (c); CFSv2PIOMp bias with respect to NASA Team observations (d); 
Difference between CFSv2PIOMp and CFSv2CFSR (e); mean absolute error difference between 
CFSv2PIOMp and CFSv2CFSR (abs[CFSv2PIOMp-NASA] minus abs[CFSv2CFSR-NASA]) (f.). 
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Using CFSv2 hindcasts to compare with the observations during the 2005-2014 period, it is evident from 
Figure 2 that CFSv2PIOMp has more extensive sea ice melt (Figure 2b) than CFSv2CFSR (Figure 2a) in the 
Arctic which is in line with the observations for this period.  Differences with respect to the observations 
show that positive biases in the modeled IMD are smaller for CFSv2PIOMp (Figure 2d) than CFSv2CFSR 
(Figure 2c).  However, both model configurations show ice melt occurring too early over the Bering Strait.  
Across the Arctic Ocean and Barents Sea, CFSv2PIOMp has a significantly earlier IMD than CFSv2CFSR 
(Figure 2e).  There is a significant increase in IMD over southern Hudson Bay.  Improvements in the 
prediction of IMD from each model configuration were determined using mean absolute error differences and 
it was found that CFSv2PIOMp significantly improved IMD prediction over the Barents Sea and a small part 
of the Chukchi Sea (Figure 2f).  However, the skill using CFSv2PIOMp was degraded over southern Hudson 
Bay.  One caveat is that taking differences only accounts for points that appear in both datasets or are 
common to the two time periods, which will not quantify differences over places with new melt over the last 
decade such as the interior Arctic Ocean.  Changes in this region are addressed in the next section. 

Fig. 3  Histogram showing the mean area of sea ice melt for each day of the year over the Arctic Ocean (a, b) 
and Hudson Bay (c, d); Panels a and c show the mean distribution for the NASA Team data for 1985-
1994 (dashed line) and 2005-2014 (solid line); Panels b and d show the mean distribution for the CFSv2 
2005-2014 hindcasts for CFSv2CFSR (blue line) and CFSv2PIOMp (red line).  A 15-day smoothing 
was applied to all lines. 
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4. Distribution over the Arctic Ocean and Hudson Bay 

Looking at the mean distribution of IMD over the Arctic Ocean, it is apparent that there has been a 
substantial increase in the area of the observed melt region in the 2005-2014 period over the 1985-1994 
period (Figure 3a).  CFSv2PIOMp shows the large area of melt in the Arctic Ocean but CFSv2CFSR fails to 
do so (Figure 3b) highlighting that the experimental modeling system is superior for this region.  The peak 
melt days for the NASA Team observations for 1985-1994 and 2005-2014 are 207 and 209 respectively 
indicating little change in the timing of melt.  The peak melt day in the models is also very similar (206 for 
CFSv2CFSR and 207 for CFSv2PIOMp) indicating that the issue is not necessarily in the temporal cycle of 
sea ice melt, but in the magnitude.  Similar distribution plots are also shown for Hudson Bay.  There is a 
noticeable shift in the observed distribution toward an earlier peak melt (Figure 3c, peak melt was 192 in the 
1995-2004 in the early period and 178 in the 2005-2014 period).  However, as previously shown in the last 
section, CFSv2PIOMp was not as skillful in this region and it is reflected in Figure 3d.  For CFSv2CFSR the 
peak melt day for the 2005-2014 period was 177, closely matching the observed.  For CFSv2PIOMp this 
increased to 183, which is actually further from the observed.  

5. Summary and conclusions 

The largest observed changes in IMD between the 1985-1994 and 2005-2014 periods occur over select 
regions of the Arctic, namely the Hudson Bay, Davis Strait, Barents Sea, and the Arctic Ocean.  The 
operational system (CFSv2CFSR) does not capture early melting over the Arctic Ocean and Barents Sea but 
performs better over the Hudson Bay.  Conversely the experimental set-up (CFSv2PIOMp) improves 
prediction over the Arctic Ocean and Barents Sea but degrades the prediction slightly over Hudson Bay.  The 
improvements in the Arctic Ocean are mostly seen in the distribution, not direct differences, where there are 
only a small number of common IMD points between the two periods.   The more realistic melting in the 
Arctic Ocean in CFSv2PIOMp is likely attributed to a better representation of initial sea ice thickness, which 
is covered in detail in Collow et al. (2015).   Overall, exact IMD dates are hard to predict, primarily due to 
issues in model resolution and atmospheric influences that cannot possibly be predicted months in advance.  
However, by removing model biases and quantifying spread, it is possible to issue forecasts of IMD which 
can be used by stakeholders for decision making. 

Work is ongoing in extending CFSv2 hindcasts back through 1980 to compare modeled and observed 
trends in not only IMD, but also the first ice freeze date and the melt season length. 
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A North American Multi-Model Ensemble (NMME)-based hybrid statistical-dynamical prediction system 
for Atlantic hurricane season tropical storm activity has been developed at Climate Prediction Center to 
support the NOAA Hurricane Season Outlooks. Multiple-linear regression relationships have been previously 
established between combinations of observed and coupled general circulation model (GCM) forecast 
atmospheric and oceanic states and subsequent hurricane season activity (e.g. Wang et al. 2009) and have 
been used in operations at the Climate Prediction Center to support NOAA’s Hurricane Seasonal Outlook.  
This work addresses whether aggregation of multiple GCM forecasts from the North American Multi-model 
Ensemble (NMME; Kirtman et al. 2014) can improve upon single GCM inputs with a similar hybrid 
approach. 

Predictors are selected as the forecast August-October (ASO) zonal wind shear (difference between 850 
and 200 hPa) over the Atlantic Main Development Region (MDR; 10-20°N, 20-80°W) and preseason sea 
surface temperature (SST) for the North Atlantic (55-65°N, 30-60°W) averaged over the preceding 3 months 
to the forecast being made.  Predictands are seasonal total hurricane count, tropical storm count, major 
hurricane count, and accumulated cyclone energy (ACE) as a percentage of median.  The prediction system 
was evaluated in cross-validation mode for the hindcast period of 1982-2010. Table 1 details the performance 
of the hybrid model predictions of seasonal hurricane count for each of the four member GCMs (CanCM3, 
CanCM4, CCSM4, and CFSv2) and the NMME multi-model mean in terms of correlation and root mean 
squared error.  The NMME multi-model mean correlations exceed those of each individual member GCMs, 
while reducing RMSE by 19% and 25% relative to the best performing GCMs initialized in April and July 
respectively. Comparable relationships are also obtained for other predictands, with the NMME consistently 
displaying improved correlations with observed hurricane activity and reducing RMSE relative to the best 

Predictand CanCM3 CanCM4 CCSM4 CFSv2 NMME Observed 

Hurricanes 3 (1-5) 2 (0-3) 5 (4-6) 6 (5-7) 4 (3-5) 4 

Tropical Storms 6 (1-10) 4 (1-6) 9 (8-10) 11 (9-13) 7 (5-10) 11 

Major Hurricanes 1 (0-2) 1 (0-1) 2 (2-2) 2 (2-3) 1 (1-2) 2 

ACE (% Median) 50 (5-94) 21 (0-45) 80 (64-96) 102 (75-128) 62 (35-91) 64% 

Init. Cond. CanCM3 (10) CanCM4 (10) CCSM4 (10) CFSv2 (12) NMME (4) 

April 0.42 (2.87) 0.47 (2.80) 0.46 (2.80) 0.46 (2.80) 0.49 (2.27) 

July 0.67 (2.36) 0.66 (2.37) 0.62 (2.47) 0.67 (2.36) 0.71 (1.76) 

Table 2:  Hybrid model forecasts for April 2015 utilizing predictors of forecast ASO wind shear over the MDR 
and observed January-March mean North Atlantic SST.  Columns indicate GCM used to force the hybrid 
model, with NMME referring to the multimodel mean.  Last column denotes preliminary observed 2015 
hurricane activity.  Numbers in bold indicate the observations fell within the forecasted range. 

Table 1:  Hindcast ensemble mean correlations and RMSE (in parentheses) for hybrid model cross-validation 
with April and July initial conditions.  Columns indicate GCM used to force hybrid model and number of 
ensemble members, with NMME referring to the multi-model mean. 
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GCM member. 

The hindcast evaluation indicated that the hybrid 
prediction system provides skillful prediction of 
seasonal tropical storm activity and gave impetus to 
attempt a real-time test for the 2015 hurricane season. 
For the April 2015 NMME hybrid model forecast the 
ensemble mean anomalous wind shear for ASO across 
the Atlantic is shown in Figure 1.  While all GCMs 
forecast above normal wind shear across the MDR 
associated with the developing El Niño, the two 
Canadian GCMs portrayed strong shear focused within 
the MDR while the CCSM4 and CFSv2 kept the 
strongest shear south of the MDR.  The resulting 
NMME mean ASO forecast wind shear anomaly of 
3.20 m/s lies between the four individual GCM 
projections, while also keeping the strongest shear 
south of the MDR.  These shear values were then used 
to drive the hybrid forecast to generate an initial 
forecast of 2015 hurricane activity for each ensemble 
mean, with additional uncertainty conveyed by adding 
and subtracting one standard deviation of the ensemble 
member predictions.  Table 2 provides the details of 
the April 2015 hybrid model forecast for each of the 
NMME members and the multi-model mean forecast.  
The four hurricanes observed in the Atlantic during 
2015 matched the NMME prediction, while also falling 
within the forecast ranges of the CanCM3 and CCSM4.  
CFSv2 was the only model to accurately depict tropical 
storm activity in 2015, with the mean prediction 
matching the observed eleven tropical storms, while 
the NMME forecast predicted fewer storms due to the 
low forecast values from the CanCM3 and CanCM4.  
The two observed major hurricanes fell within the 
forecast ranges of all GCMs and the NMME mean with 
the exception of the CanCM4.  ACE activity was 
correctly forecast by the CanCM3, CCSM4, and 
NMME ranges with the NMME mean prediction only 
2% removed from the preliminary observed value.  The 
2015 season marked an early success for the NMME 
hybrid hurricane prediction model, with optimism for 
improved skill as additional GCMs have their hindcasts 
added to the NMME Phase 2 archive.  Expectations are 
for the NMME hybrid prediction system to remain a 
critical component in developing the NOAA Hurricane 
Seasonal Outlooks for years to come.  

For much more on this work please see a 
forthcoming manuscript of the same title in a special 
NMME edition of Climate Dynamics.  
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Fig. 1  Forecast anomalous ensemble mean vertical 
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NMME multi-model mean (E).  MDR region is 
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MDR shear anomaly are listed in each panel’s title.  
Contour interval is 2 m/s. 
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1. Introduction 

Because snow is an important boundary forcing in the global climate system, much effort has been aimed 
at prediction and sources of predictability of snow cover variability and its climatic influences (e.g., Yang 
1996, Serreze et al. 1997, Corti et al. 2000, Bamzai 2003, Bojariu and Gimeno 2003, Sobolowski and Frei 
2007). Snow physical properties such as albedo, thermal conductivity, emissivity and latent heat flux affect 
atmospheric circulations and render snow as a potential source of climate predictability on regional to 
hemispheric scales. Snow water equivalent (SWE), defined as the depth of water that would result if the mass 
of snow melted completely, is particularly useful for climate predictability as it contains regional information 
about previous climate anomalies (e.g., temperature and precipitation) and can influence future climate on 
seasonal to longer time-scales. SWE is also essential to river and flood forecasting, and thus water resources 
planning and hazard mitigation (e.g., droughts and floods), as it can be factored in with precipitation to 
determine the amount of runoff that might go into rivers and streams. Conversely, atmospheric circulations 
affect snowfall, snow mass and spring runoff predictability (e.g., Sobolowski and Frei 2007). For example, 
snow anomalies respond to climate variability patterns such as the El Niño Southern Oscillation (ENSO), 
which is the largest single source of interannual variability in the tropics and is thus a major source of climate 
predictability with extratropical reach through its teleconnections (Groisman et al. 1994, Yang 1996, Ferranti 
and Molteni 1999, Martineu et al. 1999, Corti et al. 2000, Shaman and Tziperman 2005, Wu et al. 2012).  

Here, we highlight key results on the potential and actual predictability of SWE historical forecasts 
(hindcasts) in the Fourth-Generation Coupled Climate Model (CanCM4), which is employed with CanCM3 to 
produce ensemble multi-seasonal forecasts by the Canadian Seasonal to Interannual Prediction System 
(CanSIPS; Merryfield et al. 2013) and contributes to the North American Multi-Model Ensemble (NMME; 
Kirtman et al. 2014).  Specifically, we summarize sources and behaviour of potential and actual predictability 
of SWE hindcasts in CanCM4 at short and long time leads. Previously, the ability of CanSIPS to provide 
realistic initial conditions for snow cover forecasts was examined by Sospedra-Alfonso et al. (2015a). 

2. Data and  methods 

CanCM4 was developed at the Canadian Centre for Climate Modelling and Analysis (CCCma). With 
CanCM3, it has been employed by CanSIPS to provide Environment Canada's operational seasonal forecasts 
since late 2011. CanCM4 is based on the Canadian Fourth-Generation Ocean Model (CanOM4), the Canadian 
Fourth-Generation Atmospheric General Circulation Model CanAM4 (also known as AGCM4), version 2.7 
of the Canadian Land Surface Scheme (CLASS) and a sea ice cavitating fluid model. Details and relevant 
bibliography about these model components can be found in Merryfield et al. (2013). 

In CanSIPS, each of the 10 CanCM4 forecast ensemble members is initialized from a separate 
assimilating run in which atmospheric winds, temperature, and humidity as well as sea surface temperature 
and sea ice concentration are constrained near observed values. Forecast initial conditions for the land 
component including snow cover are determined by the response of CLASS to forcing from model 
atmospheric fields constrained by 6-hourly reanalysis data. Thus, SWE initial conditions differ among 
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ensemble members. CanSIPS hindcasts 
are initialized at the beginning of each 
month during a multidecadal hindcast 
period and have a 12 month range. 

We consider CanCM4 SWE 
hindcasts (1981–2010) in the Northern 
Hemisphere on the approximately 2.8°  
atmospheric/land surface model grid. 
We employ the following metrics: 

 • Potential predictability (PP) of 
monthly mean SWE in CanCM4 is 
examined by employing analysis of 
variance (ANOVA) (e.g., von Storch 
and Swiers 1999) on the 10 ensemble 
members to estimate the fraction of 
internnual SWE variability that is 
potentially predictable. In this 
framework, the total interannual variability of SWE is partitioned into two components; (1) unpredictable 
chaotic fluctuations or noise, and (2) potentially predictable variability or “signal” variance associated with 
internal climate variability modes (e.g., ENSO) and/or external forcing (e.g., solar variability, explosive 
volcano eruptions, anthropogenic radiative forcing). The potential predictability of SWE is defined as the 
ratio of the signal to the total variance. 

• Persistence of initial anomalies in CanCM4 SWE forecasts is given in terms of the temporal 
autocorrelation (AC) of predicted SWE anomalies, which is defined as the correlation between SWE forecast 
anomalies and the initial ensemble mean anomaly, averaged across the ensemble. The initial ensemble mean 
anomaly is employed instead of initial anomalies of individual ensemble members to account for uncertainty 
in the initial conditions of SWE anomalies, which results in a degradation of autocorrelation at the zero lead 
time. AC2 is a measure of the fraction of SWE variability that can be linearly attributed to the initial SWE 
anomalies, and can be compared with PP of SWE to assess the contribution of the memory of snowpack 
initial conditions to the potential predictability. 

• ENSO influence on SWE is investigated by regressing CanCM4 forecast monthly mean SWE, surface 
temperature and precipitation on the monthly Niño 3.4 index (defined as the averaged sea surface temperature 
anomaly over the Pacific Ocean region 5°S-5°N, 120°-170°W). 

• Actual skill in CanCM4 SWE forecasts is examined by computing the temporal anomaly correlation 
coefficient (ACC) between forecasts ensemble mean and a blend of 5 SWE observation-based products 
(Blended-5) developed by Mudryk et al. (2015), re-gridded to CanSIPS resolution. Blended-5 combines SWE 
from (1) the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for 
Research and Application (MERRA; Rienecker et al. 2011), (2) the European Centre for Medium-Range 
Forecasts Interim Land Reanalysis (ERA-Interim/Land; Balsamo et al. 2013), (3) GlobSnow analysis, version 
2, developed through the European Space Agency GlobSnow project and produced by the Finnish 
Meteorological Institute (Takala et al. 2011),  (4) the Global Land Data Assimilation System Version 2 
(GLDAS-2) product (Rodell et al. 2004), and (5) the Crocus snow scheme driven by ERA-Interim (Brun et al. 
2013).   

3. Summary of results and discussion 

We identify two main sources of potential predictability and actual skill in CanCM4 SWE forecasts: (i) 
persistence of initial SWE anomalies, and (ii) SWE response to climate variations that are potentially 
predictable at longer time-scales, including ENSO. 

Fig. 1  Scatter plots of Northern Hemisphere spatial means of AC2 
for CanCM4 (vertical axis) vs (a) PP for CanCM4 (horizontal 
axis) and  (b) AC2 for Blended-5 (horizontal axis) for each 
month and lead time in the forecast. Dots correspond to target 
months and colors denote lead times. 
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SWE depends cumulatively on 
previous snowfall and snowmelt events, 
therefore this “memory” in the form of 
anomaly persistence should contribute 
to PP. Spatial averages of PP and AC2 
over the Northern Hemisphere tend to 
be large and comparable to each other 
for short lead times (0-2 months) and 
much smaller for longer leads (over 4-
month), with values that depend on the 
target month and initialization date (Fig. 
1a). The short-range behaviour of PP is 
thus strongly determined by the 
persistence of initial SWE anomalies, 
particularly in regions of mature 
snowpack and/or initialization times in 
the core of the snow season. For 
example, for March-averaged SWE 
forecasts at 1-month lead (i.e., 
initialized in February), which is prior 
to the start of the snowmelt and long 
after the snow onset in the mid-latitudes, 
high PP (> 0.8) occurs in the higher 
latitudes (> 60°N), western Canada, and 
the Karakoram region (Fig. 2a). 
Geographic patterns of AC2 (not shown) 
indicate that these regions are 
characterized by high SWE anomaly 
persistence. 

PP determined by SWE anomaly 
persistence tends to decrease with lead 
time as the result of a relative increase 
in noise variance (due to ensemble 
dispersion), and with decreasing 
latitude and/or elevation due to a 
relative decrease in signal variance associated with shorter snow seasons. For example, PP of March-averaged 
SWE at 11-month lead is  insignificant (< 0.1) in most of the Northern Hemisphere, with the exception of the 
Pacific Northwest, the southern Rocky Mountains and Karakoram (up to ≈ 0.5), and a few scattered regions in 
Asia and North America (Fig. 2b). 

Spatially averaged AC2 in CanCM4 SWE forecasts behaves similarly to that of the verifying observations 
(Fig. 1b). This suggests that CanCM4 should capitalize on SWE anomaly persistence as a source of actual 
skill, at least for short lead times. For example, ACC2 for March-averaged SWE forecasts at 1-month lead 
(Fig. 2c) has similar geographic patterns as PP (Fig. 2a), except in the Tibetan Plateau where PP is relatively 
high but ACC2 is <0.1. As for PP, ACC2 tends to decay with lead time and is statistically insignificant at 11-
month lead in most of the Northern Hemisphere, with the exception of the Pacific Northwest, the Karakoram 
region and a few scattered regions in Asia and North America (Fig. 2d).  

The long-range behaviour of PP in CanCM4 (e.g., Fig. 2b) is likely the result of SWE response to ENSO 
variability, combined with the ability of the forecasts to predict ENSO. Regression patterns of December and 
March-averaged SWE in forecasts initialized in the preceding April show that the regions where March-
averaged SWE is potentially predictable (Fig. 2b) largely correspond with those where SWE anomalies 
associated with ENSO variability are statistically significant (Figs. 3a, b). 

Fig. 2  (top) PP and (bottom) ACC2 against Blended-5 of CanCM4 
March-averaged SWE forecasts at (left) 1-month and (right) 
11-month lead times indicating the time from forecast initial 
values. 
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SWE response to ENSO is likely driven by 
ENSO influences on temperature (T) and 
precipitation (P). Because of the SWE anomaly 
persistence discussed earlier, T and P influence 
on SWE is not limited to contemporary months 
but has contributions from previous months in 
the snow season (e.g., Sospedra-Alfonso et al. 
2015b). For example, regression patterns of 
December and March-averaged T and P 
corresponding to the forecasts initialized in 
April (Figs. 3c-f) reveal that negative anomalies 
of March-averaged SWE (Fig. 3b) in western 
Canada are likely the result of positive T and 
negative P anomalies already present in 
December (Fig. 3c, e) and November (not 
shown). This is likely the reason for the 
increased amplitude of ENSO-related SWE 
anomalies in March relative to December (Fig. 
3a, b). Positive anomalies of December-
averaged SWE (Fig. 3a) found in the southern 
U.S. Rocky Mountains are most likely due to 
negative T and positive P anomalies in 
December (Fig. 3c, e) and November (not 
shown). In the Karakoram, statistically 
significant positive anomalies of December-
averaged SWE (Fig. 3a) are associated with 
positive P anomalies in December (Fig. 3e) and 
November (not shown), despite the slightly 
positive T anomalies in the region. These results 
support the idea that relatively high values of 
PP (Fig. 2b) and actual skill (Fig. 2d) for 
March-averaged SWE in the western North 
America and the Karakoram at 11-month lead is 
a signature of ENSO teleconnections. 

4. Concluding remarks 

CanCM4 forecasts of SWE can display 
appreciable potential and actual skill depending 
on region, target month and initialization date. 
The behaviour of PP of SWE at short leads can 
be largely explained in terms of persistence of 
initial anomalies. Exploiting this source of PP 
as actual skill thus requires a reasonably 
accurate initialization of SWE, as occurs in 
CanSIPS (Sospedra-Alfonso et al. 2015a). The 
relative contribution of anomaly persistence to 
PP diminishes at longer lead times, implying 
that ability to predict future climate anomalies 
(e.g., temperature and precipitation anomalies) 
contributes increasingly to PP as lead time increases.  For long leads, PP of CanCM4 SWE forecasts appears 
to be mainly the result of SWE response to ENSO variability, combined with the ability of the forecasts to 
predict ENSO.    

Fig. 3  Regressions of CanCM4 predicted (left) December 
and (right) March averaged (a, b) SWE, (c, d) surface 
air temperature and (e, f) precipitation against 
CanCM4 predicted Niño 3.4 index for the forecasts 
initialized in April. Lead times are (left) 8 months and 
(right) 11 months. Cross hatched regions correspond 
to correlations >0.3. 
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Disclaimer.  This note complements a detailed work on potential and actual predictability of snow in 
CanSIPS submitted for publication in the Journal of Hydrometeorology. 
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 The seasonal predictability of 200-hPa height (Z200) was estimated based on North American Multi-

Model Ensemble (NMME) forecast system. In this analysis, a simple procedure was adopted based on finding 

the minimum value of Mean Square Error (MSE) between observed and NMME forecast system (Kumar et al. 

2007) and it was argued that the minimum MSE is a best estimate of the atmospheric seasonal internal 

variability. 

The updated estimates of seasonal 

internal variability based on NMME 

forecast show significant reduction in 

MSE over tropical region as compared to 

Atmospheric Modeling Intercomparison 

Project (AMIP) and Development of 

European Multimodel Ensemble System 

for Seasonal to Interannual Prediction 

(DEMETER) based estimates. The top 

and middle panels of Fig. 1 are based on 

AMIP simulation and DEMETER data 

sets (Kumar et al. 2007) and bottom 

panel is the current estimate of seasonal 

internal variability based on NMME 

forecast. However, the amplitude of 

seasonal internal variability based on 

NMME forecast system shows little 

reduction over Pacific North America 

(PNA), Greenland region, northern and 

southern higher latitude compared to 

AMIP and DEMETER. Overall seasonal 

observed variability looks broadly similar 

over northern and southern higher latitude.  

In this work, the analysis was focused 

on predictability of Z200 in Northern Hemisphere winter. It is clear that the predictability should be seasonal 

and variable dependent, e.g. it is expected that the predictability is lower in Northern Hemisphere summer 

than in winter, which needs further investigation. 

Last, next generation forecast system and corresponding spatial map of MSE can be used to update the 

spatial map of internal variability as well as the predictability. It remains to be seen how much of the internal 

variability estimates based on NMME forecast (Fig. 1 bottom panel), can be further improved because of 

improved models by higher resolution, better initial condition and larger ensemble sizes. The present estimate 

can be used as a benchmark that could be used to document such improvement. 

This work has been submitted to Climate Dynamics. 

Fig. 1 The internal variance from grid-to-grid point is best 

estimated by the minimum value of MSE. Left panel (top) 

for AMIP, (middle) for DEMETER and (bottom) for 

NMME. The right panel is the same plot as the left panel 

except for shading that indicates the significance of 

estimated MSE at 95% level based on Monte Carlo 

approach. 
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 1. Introduction 

Warm season precipitation, defined as April/May/June (AMJ), in the central and eastern US is driven by 
the northward transport of heat and moisture by the low-level atmospheric circulation (the North American 
low-level Jet; NALLJ). The NALLJ’s main role in the climate system is to communicate the large scale 
climate influences (i.e. sea surface temperature; SST) to regional scales. Thus understanding SST influences 
on NALLJ variability is fundamental to understanding how the large scale remote climate influences are 
manifest in the context of regional climate variability and change.  

Previous studies have shown significant 
correlations between NALLJ variability and modes of 
SST are present from 1950-2010. However, the extent 
of influence SSTs have on NALLJ and regional 
precipitation variability is difficult to obtain from 
observations alone. To further characterize SST 
influence on NALLJ and precipitation variability, the 
observational analyses are repeated using the National 
Center for Environmental Prediction Climate Forecast 
System Version 2 (CFSv2) Atmospheric Model 
Intercomparison Project (AMIP) simulations.  

2. Data 

This study utilizes multiple datasets due to its 
focus on comparing observations to simulations. 
Rainfall observations are from the Precipitation 
Reconstruction updated by the NOAA Climate 
Prediction Center (CPC) and are available from the 
CPC website. The NALLJ observations are identified 
from the 850hpa V-wind from the NCAR/NCEP 
reanalysis. With the main goal of determining SST 
influence on precipitation variability, the ERSSTv3 
SST dataset is chosen to determine the correlation 
between SSTs and the NALLJ observations. The 
simulated dataset is from the CFSv2 AMIP dataset. 
The simulations consist of 12 ensemble members with 
monthly output from 1950-2010. Isolating the SST 
influence from the CFSv2 AMIP simulations is 
accomplished by comparing the ensemble mean value 
to the observations.  

Fig. 1  Correlations between the first 3 modes of the 
NALLJ and the SST observations. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 
 

 

138 

3. Summary of results 

(a) NALLJ and SST 

The first three modes of the EOF analysis performed on the  
NALLJ region bounded by 105° – 80°W 20° – 50°N are 
correlated to the SST observations for 1950-2010 (Figure 1). 
Mode 1 accounts for approximately 41% of the variance. It also 
shows the strongest correlations with the largest values in the 
North Pacific. Correlation patterns in the Pacific are similar to 
spatial pattern of the Pacific Decadal Oscillation. Atlantic 
correlations are weaker than the Pacific with a spatial pattern 
similar to the Atlantic Multidecadal Oscillation. Mode 2 
accounts for approximately 20% of the variance with the 
weakest correlations of the three modes. Mode 3 accounts for 
approximately 11 % of the variance with correlations focused in 
the tropical pacific region.  

(b) Precipitation & 850hpa V-wind climatology 

The observations of the AMJ NALLJ stretches from the 
western Gulf of Mexico into the central plains with the NALLJ 
maximum centered over Texas. Precipitation observations are 
focused east of NALLJ position in the Southern Plains and 
Southeastern regions. CFSv2 AMIP NALLJ is centered over 
same region as observations. AMIP NALLJ is stronger than 
observations with tighter gradient along topography in western 
Texas. AMIP precipitation is focused further north in Great 
Plains region. 

(c) Precipitation variability (standard deviation) 

Comparisons of the precipitation are shown in Figure 2. The 
largest variability is focused in Southern Great Plains and 
Southeastern regions. Observations and total AMIP mean in 
relative agreement in location and magnitude of variability with 
total AMIP slightly larger (around .2 mm day-1) in Northern Plains region. The SST influence is greatest over 
Southern Plains and Southeastern US with values slightly less than half of both the observed and AMIP total. 

(d) Regional breakdown 

Figure 3 gives the regional breakdown of the precipitation variability. For the Northern Great Plains, the 
observations fall within envelope of AMIP ensemble spread. The moving standard deviation AMIP mean 
value (isolating SST influence) is around 0.1 which accounts for around 25% of total variability.  For the 
Southern Great Plains, the observations fall within the AMIP spread. AMIP mean value varies from 0.2 to 0.4 
which accounts for around 30% of the total variability. Finally, the Southeast region, the observations fall 

Fig. 2  Comparison of precipitation 
variability from the observations (top 
panel) to the total AMIP mean (middle 
panel) and the AMIP mean isolating 
SST influence (bottom panel). 

Fig. 3  30-year moving standard deviation of precipitation (mm/day) for the Northern Great Plains (left 
panel), Southern Great Plains (middle panel), and the Southeast (right panel). Dashed black line is the 
total AMIP mean with light blue shading indicating the ensemble spread. Red line is the observations. 
Dark blue line is the AMIP mean isolating the SST influence.  
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within the spread of the ensemble. The AMIP mean value is around 0.4 which accounts for about 50% of the 
total variability.  

4. Discussion 

There are similar spatial patterns between observations and CFSv2 for NALLJ location, with a slightly 
stronger jet and larger precipitation values in CFSv2 AMIP dataset. Precipitation variability as represented by 
precipitation standard deviation shows similar spatial patterns when comparing observations and total AMIP 
variability. AMIP SST influence shows largest variability over Southern Plains and Southeastern US with 
values slightly less than half of both the observed and AMIP total.  Regional comparisons of precipitation 
anomalies show observations fall within spread of all 12 AMIP ensemble members. Moving standard 
deviations of regional variability show SST AMIP mean below observations and ensemble spread. SST 
influence accounts for anywhere from ~25 – 50% of the total variability. 

Acknowledgements.  This study was supported by NOAA's Climate Program Office's Modeling, Analysis, 
Predictions, and Projections program. 
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1. Data and methodology 

Most of the data used in this study are obtained from the latest European Centre for Medium-range 
Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim; Uppala et al. 2008; Dee et al. 2011). The 
time series of the annual mean CO2 concentration from 1984 to 2013 is downloaded from the Earth System 
Research Laboratory website (http://www.esrl.noaa.gov/gmd/ccgg/trends/).  

 We have adopted the same package of a climate feedback-response analysis method (CFRAM) analysis 
reported in Deng et al. (2012) and Sejas et al. (2014) to attribute the near-surface temperature anomalies 
(STAs) shown in Fig. 1c to external forcing and various climate feedback processes (radiative and non-
radiative feedback processes, shown in Equation (1)), based on the energy balance. 

∆T𝑀+1 = �∂R
��⃗

∂T��⃗
�
𝑀+1

−1
�

∆S�⃗ (solar) + ∆R��⃗ (𝐶𝐶2) + ∆S�⃗ (α) + �∆S�⃗ (w) − ∆R��⃗ (w)�+ �∆S�⃗ (c) − ∆R��⃗ (c)�
+�∆S�⃗ �O3� − ∆R��⃗ �O3��+ ∆Q��⃗ 𝐿𝐿 + ∆Q��⃗ 𝑆𝐿 + ∆Q��⃗ 𝑜𝑜𝑜_𝑑𝑑𝑜+𝑠𝑠𝑜𝑠𝑠𝑠𝑠 + ∆Q��⃗ 𝑠𝑠𝑎_𝑑𝑑𝑜

�      (1) 

2. Results 

The decade of 1984-95 is 
regarded as the accelerated 
warming period whereas the 
decade of 2002-13 
corresponds to a weaker 
warming period. This work 
examines the mean state 
difference between the two 
periods (Fig. 1). The key 
features of the mean state in 
2002-13 in reference to that 
in the accelerated warming 
period are (i) a La Niña like 
pattern over the tropical 
Pacific, (ii) a pronounced 
polar warming amplification 
pattern in the northern 
extratropics, and (iii) cold 
temperature anomalies over 
the Southern Ocean 
sandwiched by the dominance 
of warm temperature 
anomalies in the north and 

Fig. 1 Annual mean STAs of the period of (a) 1984-95, and (b) 2002-13, (Unit: 
K). (c) The difference in SAT between the two periods (Unit: K). And (d) 
the sum of CFRAM-derived partial temperature changes due to individual 
processes. The dotted areas indicate values achieving 0.1 level of statistical 
significance. The blue box outlines the tropical Pacific region (20°S-20°N, 
150°-100°W), one of the three key regions discussed in the text. 
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south in the southern 
extratropics. 

A climate feedback-
response analysis method is 
applied to attribute the 
changes in the climatological 
mean surface temperature 
between the two periods to 
various dynamic and 
thermodynamic processes 
(Fig. 2). The La Niña like 
pattern is associated with the 
strengthening of the Walker 
Circulation over the tropical 
Pacific. Increase of low level 
clouds, reduction of 
atmospheric water vapor, and 
increase of surface latent heat 
fluxes are the main processes 
contributing to the cooling in 
the eastern tropical Pacific. 
Surface processes contribute 
positively to the spatial 
pattern of the mean state 
difference in both the northern 
and southern extratropics. The 
atmospheric dynamic 
processes contribute positively 
to the difference in the 
northern extratropics, but 
negatively to the difference in 
the southern extratropics, 
responsible for the greater 
warming over the northern 
extratropics than the southern 
extratropics (Fig. 3; Note that 
the term labeled as “Others” is 
for the sum of partial STAs due 
to differences in solar radiation, 
CO2, and ozone between the 
two periods whereas the “Sum” is the PAP coefficient obtained from the sum of all CFRAM-derived STAs. Bars 
with dots overlay the corresponding bars labeled with “Sum”, indicating that the sum of all CFRAM-derived STAs 
indeed approximates to observed STAs.).  
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Fig. 2 Partial STAs (units: K) due to the (a) surface processes (including 
surface sensible heat flux, surface latent heat flux, and the oceanic 
dynamic process plus ocean/land heat storage term), (b) atmospheric 
dynamic processes, (c) water vapor feedback, and (d) cloud feedback. 

  Fig. 3 Pattern-amplitude projection 
(PAP) coefficients (units: K) of the 
CFRAM-derived partial STAs 
associated with various radiative 
and non-radiative processes in (a) 
Tropical Pacific, (b) Northern 
extratropics (30°-90°N)and (c) 
Southern extratropics (30°-90°S).  
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1. Introduction 

Over the Eurasian continent, the summertime upper-tropospheric westerlies are located around 40ºN 
where the Asian westerly jet stream (AWJS) exists. Diagnostic analyses are performed to investigate the 
relationship between the AWJS and the associated rainfall pattern over the AWJS region in boreal summer on 
interannual time scales. The physical mechanisms on the relationship between the AWJS and the rainfall 
pattern are revealed by exploring the effects of the Indian summer monsoon (ISM) and the South Asian high 
(SAH).   

The interannual variation of the AWJS is 
depicted by the principal component of the 
first EOF mode of the 200-hPa zonal wind 
over the AWJS region (u200_PC1). It 
indicates the significant southeast-northwest 
(SE-NW) fluctuation of the AWJS. The 
South Asian high index (SAHI: Z200(20º-27.5ºN, 

85º-115ºE) minus Z200(27.5º-35ºN, 50º-80ºE)) defined 
by Wei et al. (2015) provides an accurate 
depiction of the SE-NW displacement of the 
SAH. And we also use the all-India rainfall 
index (AIRI) to measure the intensity of the 
ISM. These indices are employed to analyze 
the relationships of the SAH, AWJS and ISM 
with the rainfall over the AWJS region. 

2. Summer rainfall over the AWJS region 

A regression analysis of summer rainfall 
against the SAHI shows a pronounced 
inverse relationship between the arid region 
in central Asia (CA) and the monsoon region 
in North China (NC) (Fig. 1). Such a 
relationship indicates that when the SAH 
moves to the southeast, rainfall increases to 
the northwest of the Tibetan Plateau (TP) 
over CA and decreases in the monsoon 
region of the same latitudes over NC (Fig. 
1a). Figure 1b provides a zonal distribution of 
regressed rainfall anomalies along 36º-41ºN. 
It illustrates that positive anomalies 

Fig. 1 (a) Regressed JJA rainfall anomalies against the SAHI 
(shadings; unit: mm). Areas exceeding the 0.05 
significance level are highlighted by thick contours. Mid-
latitude CA (36º-41ºN, 70º-90ºE) and NC (36º-41ºN, 
105º-120ºE) regions are indicated by red boxes. (b) 
Zonal distribution of regressed JJA rainfall anomalies 
along 36º-41ºN. (c) Standardized time series of CA 
rainfall (blue solid line) and NC rainfall (red dashed line) 
from 1958 to 2002. 
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consistently appear to the west of about 102ºE, with the maximum value at approximately 70º-80ºE. To the 
east of about 102ºE, negative rainfall anomalies enhance from the west to the east. Affected by the EASM, the 
rainfall anomalies over NC is much larger than those over CA. Figure 1c shows the time series for 
standardized summer rainfall over CA (36º-41ºN, 70º-90ºE) and NC (36º-41ºN, 105º-120ºE). The out-of-
phase relationship of the summer rainfall over these two regions is obvious on interannual time scale. The 
coefficient of correlation between the rainfalls over CA and NC is -0.33, which exceeds the 0.05 significance 
level.  

The out-of-phase variations in the rainfall over the AWJS region are significantly related to the 
fluctuations of the AWJS, the SAH, and the ISM (see Table 1). When the ISM is weak, the AWJS and the 
SAH shift to the southeast, and the summer rainfall increases in the arid CA region and decreases in NC of 
the EASM region. Moreover, the significant correlation (see Table 1) among these three systems indicates 
that the fluctuations of these three systems may be interdependent from each other. 

Table 1  Correlation coefficients among rainfall over CA, NC, SAHI, u200_PC1, and AIRI 

Note:  * and * * indicate correlation coefficients exceeding the 0.01 and 0.05 significance level, respectively. 

3. Physical links among the SAH, AWJS and ISM 

3.1 Effect of SAH on the AWJS rainfall 

A regression analysis of the circulation 
anomalies at 200 hPa against the SAHI 
shows that when the SAH moves to the 
southeast, the anomalous cyclone to the 
northwest of TP strengthens the westerlies to 
the south of the AWJS and causes a 
southward movement of the AWJS (Fig. 2). 
In the eastern portion of the AWJS over the 
EASM region, strong anomalous 
northwesterlies are generated between the 
anomalous cyclone over northeastern Asia 
and the anomalous anticyclone to the 
southeast of the TP, and move the AWJS to 
the southeast. Therefore, the anomalous 
circulation associated with the SE-NW 
fluctuation of the SAH is responsible for the 
SE-NW variation of the AWJS. When the 
SAH moves to the southeast, the 
southeastward located AWJ will intensify the 
upper-level divergence over CA and the 
upper-level convergence over NC. As a 
result, there are more rainfall in CA and less 
rainfall in NC.  

 CA_Rainfall NC_Rainfall SAHI u200_PC1 AIRI 

CA_Rainfall 1.00    
 

NC_Rainfall -0.33** 1.00    

SAHI 0.63* -0.53* 1.00   

u200_PC1 0.68* -0.47* 0.73* 1.00  

AIRI -0.37** 0.47* -0.64* -0.52* 1.00 

Fig. 2 Regressed circulation (vectors; unit: m s-1) and 
divergence (shadings; unit: 10-6 s-1) anomalies against the 
SAHI at 200 hPa. Westerly jet stream (blue contours) and 
SAH (red contours) are represented by the composited 
values of 30 m s-1 and 12520 gpm (contours), 
respectively, for SAHI larger than 1 (solid line) and 
smaller than -1 (dashed line). Contours in green indicate 
the TP region with elevations exceeding 3000 m. 
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3.2 Effect of ISM on the AWJS rainfall 

Regression of the divergent wind 
anomalies at 200 hPa against the SAHI 
shows that a southward branch of 
anomalous divergent winds stretches from 
CA to the ISM region, and another 
eastward branch of anomalous divergent 
winds originates from CA to NC in the 
mid-latitudes (Fig. 3). The latitude-altitude 
cross section of the regressed divergent 
winds against the SAHI along the 70º–
85ºE band of the ISM region shows a 
pronounced meridional circulation that 
connects the ISM region to the AWJS 
region (Fig. 4 Left). Thus, the variations in 
the intensity of ISM may exert an effect on 
the AWJS at mid-latitudes via meridional 
divergent wind circulation. From Fig. 4 
(Right), a notable zonal vertical circulation 
is observed in the mid-latitude AWJS 
region. It connects the arid region in the 
west with the monsoon region in the east, and couples the meridional divergent wind circulation with the 
common ascending branch in the CA arid region. The result indicates that a weak ISM results in a southeast 
shift of the SAH (Wei et al. 2014, 2015), which further influences the mid-latitude AWJS through meridional 
divergent wind circulation, leading to the formation of a zonal divergent wind circulation with an updraft in 
the arid CA region and a downdraft in the monsoon region to the east. These anomalous vertical motions 
favor increased rainfall over CA and decreased rainfall over NC.  

Fig. 4 (Left) Latitude-altitude cross section along 70º-85ºE and (Right) longitude-altitude cross section 
along 35º-42.5ºN for regressed velocity potential (shadings; unit: 105 m2 s-1) and vertical circulations 
(vectors; unit: m s-1 and -0.1 pa s-1 for meridional and vertical components, respectively) against the 
SAHI. The black area indicates the averaged elevation. 

Fig. 3  Regression of 200 hPa divergent winds against the SAHI 
(vectors; unit: m s-1). Black boxes indicate CA (36º-41ºN, 
70º-90ºE) and NC (36º-41ºN, 105º-120ºE), respectively. 
Contours in green indicate the TP region with elevations 
exceeding 3000 m. 
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4. Conclusions and discussions 

The out-of-phase rainfall variation between CA and NC is closely related to the SE-NW movements of 
the SAH and the AWJS, and the SE-NW variation of the AWJS is closely related to that of the SAH. 
Furthermore, the fluctuation of the ISM influences the atmospheric circulation over the AWJS region through 
an anomalous meridional vertical divergent wind circulation, which connects the anomalous circulation of 
zonal vertical divergent wind in the mid-latitudes. When the ISM is weaker than normal, the SAH and the 
AWJS shift to the southeast, the arid region in CA becomes wetter, and the monsoon region over NC becomes 
drier. When the AWJS and the SAH are located to the southeast, both the divergence over CA and the 
convergence over NC at the upper troposphere intensify. The inverse upper-level divergence anomalies 
associated with the location of the AWJS are responsible for the opposing rainfall anomalies over the AWJS 
region. 

In this study, we have proposed a possible physical process that connects the ISM with two upper-level 
systems, the SAH and the AWJS. We have also revealed the main causes of the inverse rainfall anomalies 
over CA and NC and showed that the upper-level SAH can connect the ISM with summer rainfall in the 
AWJS region. 
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1.  Introduction 

The Topical Collection on Climate Forecast System version 2 (CFSv2), a special volume of Climate 
Dynamics, was published in 2015.  It includes 24 peer-reviewed papers, consisting of findings by the broader 
climate research and applications community together with NCEP scientists at the April 2012 CFSv2 
Evaluation Workshop, organized by the NCEP Climate Prediction Center (CPC), the NOAA Climate Test 
Bed (CTB), the Center for Ocean-Land-Atmosphere Studies (COLA), and the NOAA Climate Program 
Office (CPO).  The papers identify key model strengths, biases and deficiencies in predicting climate 
variables, simulating the modes of climate variability and phenomena and representing physical processes and 
their interactions.  From the point of view of seamless weather-climate prediction, this summary synthesizes 
the challenges with regard to operational prediction requirements, predictability research prospects, and 
model fidelity and reliability; and integrates research and development needs for the guidance of next 
generation operational CFS development. 

2.  Operational prediction requirement 

The NOAA Climate Prediction Center produces climate outlooks of surface temperature and precipitation 
from weeks to seasons in advance, which primarily depend on the impacts of ENSO, trends, antecedent soil 
moisture, and indicators of intraseasonal variability (that are weighted more for the week 2-4 forecast). The 
skill assessments of those critical components help to address the requirement for operational prediction 
improvement.   

 ENSO  – Compared with the previous version of CFS, the NINO3.4 forecast has significantly improved 
in terms of reduced RMSE, amplitude bias and target month slippage, but the difference in correlation skill is 
not statistically field significant.    (Barnston and Tippett)  

Soil moisture  – The bias changes with lead time, and there is a tendency to underrepresent the link 
between precipitation and antecedent soil moisture as strongly as in the real atmosphere. A long-term 
tendency to wet coupling east of the Rocky Mountains precludes the model from consistently predicting and 
maintaining drought over the continental U.S.    (Dirmeyer; Roundy et al.) 

MJO  – Prediction skill varies seasonally with the lowest anomaly correlation during boreal summer and 
the highest during boreal winter, being useful out to 20 days (improved from CFSv1 of about 10-15 days). 
Forecast problems include too slow eastward propagation, the Maritime Continent barrier and weak intensity 
(Fig. 1). Air-sea coupling plays an important role for initiation and propagation.    (Wang et al.; Fu et al.)  

3.  Predictability research prospects 

The representation of predictability, an intrisic property of the climate system, is model dependent.  It has 
been continuously improving in the past via advancing representation of physical, chemical and biological 
processes and coupling among land, ocean, atmosphere, cryosphere and biosphere in the model system. 
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Prospects for an improved 
representation of predictability, which 
has the potential to improve skill, have 
been demonstrated by research using 
CFSv2. 

Arctic Oscillation (AO)  – CFSv2 
forecasts can capture both the timing 
and amplitude of wave activity in the 
extratropical stratosphere at a lead 
time >30 days, and a statistically 
significant portion (20%) of the 
wintertime AO can be predicted up to 2 
months in advance. Benefits from 
further improvement are expected as the 
model captures better the stratosphere-
troposphere pathway.  (Riddle et al.; 
Zhang et al.) 

Quasi-Biweekly Oscillation 
(QBWO)  – Skillful QBWO prediction 
can reach ~10-15 days in winter hemisphere and does better in El Niño years.  Overall, QBWO in CFSv2 
exhibits a significant weakening tendency with lead time for all seasons.  (Jia et al.) 

Monsoons  – CFSv2 is capable of simulating both the frequency and spatial structure of the northward 
propagating (from near equatorial Indian Ocean to the Indian subcontinent) intraseasonal oscillation of the 
Indian summer monsoon at pentad 3 and even pentad 4 lead (Fig. 2).  In general, it can predict the Asian 
Indo-Pacific monsoon and North American monsoon precipitation patterns associated with ENSO reasonably 
well, while African monsoon precipitation forecasts have little skill, which could be related to low prediction 
skill of the tropical Atlantic SST.  High-frequency, interactive ocean–atmosphere coupling plays a vital role in 
simulating the observed amplitude of variability and the relationship between precipitation and SST at the 
intraseasonal scale.  (Abhulash et al; Zuo et al; Sharmila et al.) 

South Pacific Ocean Dipole (SPOD)  –  CFSv2 reproduces the SPOD, the dominant mode of the 
interannual variability in the South Pacific.  It is significantly correlated with the southern annular mode 
(SAM) while the latter is also significantly correlated with the ENSO index.  (Guan et al.) 

4. Model fidelity and reliability 

To provide users with reliable forecasts, particularly for precipitation and away from the El Niño region, 
model fidelity (the ability to represent physical processes accurately), proper calibration and quantification of 
uncertainties, are the keys to improve reliability. 

Fig. 2   North-South wavenumber-frequency power spectrum over Indian region for rainfall from (a) TRMM 
observations and from (b)-(d) pentad 1-3 lead CFSv2 forecast.  (From Abhilash et al.) 

Fig. 1  Phase diagrams of the composite forecast for initial 
conditions with strong MJO (amplitude>1). (a) Initial phases 1, 
3, 5, and 7. (b) Initial phases 2, 4, 6, and 8. The composites are 
started from observed values and the dots indicate the locations 
every 5 days.  Blue curves are observations and red curves are 
the composite of the forecast.  (From Wang et al.) 
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Cloud deficiencies  –  Large discrepancies were found in 
modeled low-level clouds: too much over the interior and too 
little over oceans, especially marine stratocumulus clouds in 
the eastern Pacific and Atlantic Oceans. Problems were also 
identified in modeling cloud properties, e.g. the distribution of 
cloud optical depth (Fig. 3), cloud fraction, liquid water path 
and ice water path etc., which have significant impact on both 
Earth’s radiation budget and atmospheric heating. (Yoo and Li; 
Yoo et al.; Zhang et al.) 

Atmospheric mode bias  –  Examination of the climate 
mean, variability, and dominant patterns of the Northern 
Hemisphere winter revealed that bias in stationary waves 
emanating from the tropics into both hemispheres can be 
attributed to a lack of latent heating associated with a 
precipitation deficit over the Maritime continent.  (Peng et al.) 

Oceanic condition deviation  –   

1. Weakened Atlantic Meridional Overturning Circulation 
(AMOC):   A major reduction of the upper ocean salinity 
in the northern North Atlantic weakens the AMOC 
significantly.  A potential source of the excessive 
freshwater is the quick melting of sea ice.  (Huang et al.; 
Bombardi et al.) 

2. Cold summer tropical Indian Ocean (IO) SST bias: This 
may  be attributed to deeper-than-observed mixed layer 
and smaller-than-observed total downward heat flux in the 
tropical IO. The CFSv2 simulation is vitiated by the 
presence of a basin-wide systematic positive bias in 
evaporation (mainly due to humidity bias), which is found 
to control a significant portion of the cold SST bias.  
(Pokhrel et al.; Jiang et al.) 

Multiple-ocean Analysis Ensemble (MAE) initialization  – 
The structural uncertainty in the ocean initial conditions 
impacts the reliability of seasonal forecasts. MAE improves ENSO seasonal forecast reliability in warm, 
neutral and cold cases.  (Zhu et al.) 

Calibration and combination – Properly calibrated probabilistic forecasts possess sufficient skill and 
reliability to contribute to effective decisions in government and business activities that are sensitive to 
subseasonal-to-seasonal climate variability.  (Dutton et al.) 
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Climate Information Needs for Hazard Mitigation  
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The Federal Emergency Management Agency (FEMA) has indicated that Hazard Mitigation Plans will 
soon be required to include climate change, and several states and other jurisdictions have already instituted 
this requirement.  The implementation of this directive is difficult for many jurisdictions whose major natural 
hazards are extreme weather events.  Emergency response is generally well-coordinated with NWS hazardous 
outlooks, severe weather statements, watches, and warnings which typically cover the present out to 6 to 10 
days.  Planners working on long-term coastal infrastructure projects may have sufficient information from 
global climate models, downscaled or otherwise as their mitigations for coastal flooding involve multi-million 
dollar projects with a lifetime of 50-100 years.  Planners in areas with hurricanes or tornadoes are already 
familiar with the level of damage that the strongest storms may bring and are mitigating to the extent their 
budget and the laws of physics will allow.  Farmers and water managers may be satisfied with seasonal 
outlooks of probabilities for above or below average temperature or precipitation.  However, hazard 
mitigation planners currently have no guidance for what to expect in the 2-, 5-, or 10-year planning window 
when it comes to extreme weather events, such as severe thunderstorms and flooding, winter storms, or even 
drought.   

  The researchers conducted a workshop with the Coconino County and Flagstaff Arizona Hazard 
Mitigation Planning team to explore their needs for climate guidance regarding extreme events.  The planners 
believe the impacts of extreme weather events are a major cause of significant losses that could be reduced 
through mitigation efforts if they had appropriate information.  Many of the extreme weather events lead to a 
cascade of impacts that may result in a loss of power, shutdown of transportation corridors, economic loss 
both to individuals and the city, and potential health issues.  However, resources are limited and there is no 
actionable information to support mitigations for anything beyond the historical extreme events.  Multi-day 
snowstorms have crippled the city, exceeding the capacity to keep roads open, leading to loss of services and 
significant economic losses.  Severe thunderstorms following devastating wildfires have led to widespread 
flash flooding and loss of life and property.  While NWS forecasts minimized immediate loss of life, lack of 
mitigation resulted in substantial losses to the County, City and the community.  The hazard mitigation 
planning team is looking for guidance, be it in the form of forecasts, predictions, projections, or outlooks.  If 
the consensus is that extreme weather will get worse, either more intense or more frequent, we need to 
quantify that in a way that planners can understand and apply appropriate mitigations.  

Currently the planners have various levels of experience with extreme weather events in either their 
current jurisdiction or in other areas of the country.  The process of assessing the probability, severity or 
magnitude, duration and warning time of an extreme weather event are subjective – depending on their time 
in the jurisdiction.  Further, their understanding of the cascade of impacts is dependent on their time in their 
current position of responsibility and experience with past events.  Current practice is to prepare for the 100-
year event, though California is shifting to the 200-year event for precipitation and flooding events.  The 
economic reality is most jurisdictions don’t have the resources to move to the 200-year event as a standard on 
the “possibility” that these events could become the norm.  Public infrastructure, which is what most 
mitigation efforts cover, is expensive to upgrade or replace.  The severe weather events of concern to 
Flagstaff and Coconino County include winter storms, rain on snow events, drought, and heavy rain 
associated with thunderstorms during the monsoon.  Impacts include flooding; flash flooding; transportation 
shutdown due to roads being blocked, closed, washed-out or cut-off by erosion or debris flows; loss of supply 
lines; loss of power or water; medical emergencies; and economic losses. 
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Currently, emergency management uses 3-7 day forecasts to plan for severe weather events, but this only 
allows planning for response, not significant mitigation.  Mitigation planning is based on the historical worst 
case event to the extent that that event is known to the planners.  In Arizona, there is no statistically 
significant trend toward more intense or more frequent extreme events.  FEMA has mandated that Hazard 
Mitigation Plan updates include climate change, but actionable climate guidance is currently not available for 
extreme weather events in the 2-10 year time interval which matches the budget and planning cycle for city 
and county mitigation efforts for extreme weather.  The participants identified “insufficient information 
regarding hazards” as one of the “major barriers” to planning for extreme weather events.  They would like 
“digestible” information in plain language, as both the planner and decision-maker need to understand the 
information.  Infographics would be helpful to convey the information and there needs to be a connection 
between the weather event and the potential impacts.  Technical details available as an appendix or 
supplemental information would be useful.  Regional guidance provided by NOAA could be brought down to 
the local jurisdictions by state and local experts.  Annual updates to the guidance, as skill in this time interval 
improves, would help increase confidence in the guidance. 

The planning community understands that there will be significant uncertainty, but right now they are 
guessing what might happen and the uncertainty is 100%.  We know NOAA can make a much more educated 
guess than the planners, so we are looking for the climate prediction community to address this huge gap in 
extreme weather guidance for the 2-, 5-, or 10-year time window that is critical to mitigation planners.  The 
field here seems to be wide open, whether it’s re-scaling models for shorter timeframes and more regional 
coverage or identifying trends in large scale circulation patterns that are necessary (though maybe not 
sufficient) for these extreme events.  While this may be a heavy lift, the need for this short-term guidance is 
not going away, and who better to create the knowledge than climate prediction community?  
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1. Introduction 

Due to location of the country (middle to polar latitude), Canadian agriculture is at the mercy of extreme 
climatic events.  Heat units are usually insufficient to support the growing of long season crops. Precipitation 
is equally insufficient because the most productive agricultural soils (chernozems) are found on the Canadian 
Prairies where annual total precipitation is less than 400mm (Phillips 1990). It is also noteworthy that over 80% 
of the farmed land and range land are  found on the Canadian Prairies (Statistics Canada 2012a, Fig. 1).  In 
spite of the unfavourable weather conditions, Canada’s agriculture has adapted over the years to the point 
where it is one of the major food exporting countries of the world. In order to inform policy and markets on 
the crop yield prospects, early warning tools such as crop yield models are needed. Traditionally, crop yield 
outlooks are made using field surveys or questionnaires from sampled farmers (e.g.USDA 1999; Statistics 
Canada 2012b). These methods are resource intensive and reliable estimates are not normally available until 
long after the growing season.  Recent studies (e.g. Qian et al. 2009; Mkhabela et al. 2011; Bornn and Zidek 
2012) have shown that crop yield is predictable from agro-climatic indices and remote sensing derived 
Normalized Difference Vegetation Indices (NDVI) at certain periods of the growing season.  Because of the 
wide availability of both agroclimatic and NDVI data, a crop yield forecasting method was developed within 
Agriculture and Agri-Food Canada to provide yield outlooks at lead times of 2 to 3 months for major oil and 
grain crops across Canada.  In this study, our goal was to compare crop yield outlooks under extreme weather. 
We recognized that Canada spends significant amounts of money in compensation to producers because of 
yield losses due to  extreme weather events. For example, it is documented that between 2008 and 2012, 
federal-provincial disaster relief payouts for climate-related extreme events totaled more than $785 million. 
Additionally, more than $16.7 billion in crop insurance was paid out during the same period (Public Safety 
Canada 2015). An accurate 
outlook is therefore beneficial for 
planning and designing 
assistance programs as well as 
informing commodity brokers 
and international markets. We 
therefore tested the performance 
of the Integrated Canadian Crop 
Yield Forecaster (ICCYF) 
(Newlands et al. 2014) for a 
range of weather condition (dry 
to wet) in order to establish its 
usefulness as a planning tool.  

2. Methods 

The ICCYF yield forecast 
model was built using historical 
yield data published by Statistics 
Canada at the Census 

Fig. 1  Study area showing extent of agricultural land, distribution of 
climate stations and crop modelling units (CARs-Census Agricultural 
Regions). 
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Agricultural Region (CAR)1 and the entire climate and NDVI aggregated at the CAR level. The general data 
and model flow processes are illustrated in Figure 2.The features of the ICCYF are threefold: (1) the 
integration of agroclimatic predictors such as water stress, cumulative growing degree days and satellite 
derived NDVI in a GIS environment (2)  automated ranking and selection of best predictors using robust least 
angle regression and (3) sequential  forecasting  (Bayesian statistics) via the estimation of prior and posterior 
distribution of predictors from a Markov Chain Monte Carlo scheme and a random forests- statistical 
technique to estimate  the unobserved variables. A detailed description of the method can be found in 
Newlands et al., (2014) and Kouadio et al., (2014). The validation of the ICCYF for spring wheat, barley and 
canola in the Canadian Prairies was reported in Chipanshi  et al. (2015).  

The generalized form of the crop yield forecast models is:  

𝑌𝑡 = 𝛼0+𝛼1𝑡 +∑ 𝛼𝑖𝑛
𝑖=2 𝑋𝑡,𝑖 + 𝜀𝑡                                                   (1)  

where Yt is the crop yield of year t, α0 is the regression intercept, 𝛼1𝑡 represent the technical trend of yield 
over years, Xt,i is the predictor i in year t, i could be any of the potential predictors such as NDVI or 
agroclimatic indices in any of the considered 3-weeks or months, εt is the error term. 

Extreme weather was defined in terms of unusual impacts on crop yields. This is approximately 
equivalent to unusual weather that falls out of the range of the historical distribution. The minimum climate 
period is normally 30 years but we had CARs which had climate records of less than 30 years. Two 
precipitation based indices were used to define extreme weather as follows: 

1. Extreme dryness:  AvgSI_68 >1.5SD                                     (2) 
2. Extreme wetness:  SumPcpn_58>1.5SD                                             (3) 

where AvgSI_68 is the average stress index from June to August and stress is defined as the difference 
between 1 and the ratio of actual evapotranspiration to potential evapotranspiration (1-AET/PET). 
                                                 
1http://www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=0010071&tabMode=dataTable&srchLa
n=-1&p1=-1&p2=9 

Fig. 2  Model and data flow of the Canadian Crop Yield Forecaster 
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SumPcpn_58 is the cumulative precipitation from May to August and SD refers to the Standard Deviation of 
the derived climate variable. In order to determine whether crop yield simulations were sensitive to extreme 
weather or not, a comparative analysis was made between observed yields and simulated yield over a 25-year 
period. Results were summarized as overestimates, underestimated or neutral: 

1. Over-estimate: Yp-Ys >= 1.5Y_SD                      (4) 
2. Under-estimate: Yp-Ys<=1.5Y_SD      (5) 
3. Neutral: 1.5Y_SD<Yp-Ys<1.5Y_SD      (6) 

where Yp is the predicted yield, Ys is the final survey or observed yield and Y_SD is the standard deviation 
of the historical yield. The following statistics were used to assess model performance under extreme weather 
prior and after predictor variables were modified as means of testing the skill in model prediction of crop 
yield: Bravais and Pearson Coefficient of determination (R2), Root Mean Square Error (RMSE), Mean 
Absolute Percentage Error (MAPE) and Model Effectiveness Index (MEI) (after Krause et al. 2005; Rahbeh 
et al. 2011 and Szulczewski et al. 2012). It was hypothesized that, the CCYF performs poorly under extreme 
weather. 

3. Results 

Aggregated crop yield (for spring wheat, barley and canola) from the CARs to the provincial and national 
scales showed good agreement between model simulations and survey yield values that are compiled at the 
end of the growing season by statistics Canada (Fig. 3). From Canada’s provinces with relatively small land 
area for agriculture (e.g. Prince 
Edward Island-PE, Nova Scotia-
NS, and New Brunswick-NB), 
survey results showed significant 
annual variations more than those 
from provinces with a much bigger 
agricultural land area such as 
Alberta-AB and Saskatchewan-SK. 
It has been shown that survey 
results from smaller provinces are 
often projections from long term 
trends and do not always portray 
actual surveys (Statistics Canada 
2012b).  The agreement between 
model simulation and survey 
results was strongest at the national 
level (Fig. 3, last horizontal panel) 
and this suggested that the CCYF 
tool in its current form is best 
suited to providing crop yield 
outlooks at the regional and 
national scales.   

 In spite of the good agreement 
between survey and model 
simulations, it is evident from Fig. 
3 that there were some years e.g. 
2001 when model simulation were 
higher than survey results and  
there were years when model 
simulations were lower than survey 
results (e.g. 2005). Therefore, all 
CARS were binned by extreme 
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weather type as defined in equations 2 and 3. 
In years with average weather, all the CARs 
retained simulation results that were not 
significantly different from survey results for 
each of spring wheat, barley and canola (Fig. 
4). However, when events were dry or wet, 
simulations came out higher than survey 
results (over-prediction). For both dry and 
wet events, under-prediction was the least 
common in all the three crops studied. Apart 
from spring wheat, barley and canola, 
simulations were repeated for soybean and 
corn for grain. Again, simulated results were 
higher than survey results under dry weather 
with under-prediction being less common 
under both of dry and wet weather conditions.  

Recognizing that the ICCYF in its 
current form overestimates simulated yields 
in years characterized by extreme dryness, 
variable selection by Robust Least Angle 
Regression (RLAR) (Fig. 2) was modified. 
Instead of the automatic selection of variables, 
the selection of predictor variables was now 
based on biophysical considerations. In very 
dry years for instance, heat stress has 
implications on final yield of the heat 
sensitive crops such as canola and if this 
variable is not selected as a predictor, the 
final yield could be inflated. When the 
selection of predictor variables was forced 
using biophysical considerations, the 
variance explained in the final yield (R2) 
increased, the number of CARs with negative 
Model Effective Index (negative values of 
MEI is an indication of no skill in the 
simulation) dropped and the mean percentage 
error in modeled values dropped in 
comparison to the baseline (the baseline result 
used automatic selection of variables) (Fig. 5). 
The result in Figure 5 was equally replicated 
in canola and barley. 

4. Summary 

Using the Integrated Canadian Crop 
Yield Forecaster (ICCYF) the simulation of 
spring wheat, barley and canola compared 
favourably with observed values at the 
regional and national scales. In years with 
extreme dryness, the majority of the CARs 
over-predicted crop yields. By forcing the 
model to select predictor variables that have 
biophysical meaning in relation to the 

(A) 

(B) 

(C) 

Fig. 4  Simulation of crop yield A: Spring wheat, B: Barley 
and C: Canola under extreme weather. 

Fig. 5  Improvement in spring wheat simulation when 
predictor variables were selected on biophysical 
considerations. 
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development of the crop, the variance between model simulations and observations was reduced. As well, 
there was a remarkable reduction in the number of CARs that returned no skill when extreme weather 
conditions characterized the crop calendar. Further improvement in model performance is expected when 
predictor variable selection is based on crop phenology. This aspect is being investigated. 

References 

Bornn, L. and J. V. Zidek, 2012: Efficient stabilization of crop yield prediction in the Canadian Prairies. Agr. 
Forest Meteorol., 152, 223-232. 

Chipanshi, A., Y. Zhang, L. Kouadio, N. Newlands, A. Davidson, H. Hill, R. Warren,  B. Qian, B. Daneshfar, 
F. Bedard, and G. Reichert, 2015: Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) 
model for in-season prediction of crop yield across the Canadian agricultural landscape. Agr. Forest 
Meteorol., 206, 137-150.  
doi:10.1016/j.agrformet.2015.03.007. 

Krause, P, D.P. Boyle, F. Bäse, 2005: Comparison of different efficiency criteria for hydrological model 
assessment.  Adv. Geosci., 5, 89–97.  

Kouadio, L., N. Newlands, A. Davidson, Y. Zhang, and A. Chipanshi, 2014: Assessing the performance of 
MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale. Remote Sensing, 6(10), 
10193-10214. doi:10.3390/rs61010193. http://www.mdpi.com/2072-4292/6/10/10193 

Mkhabela, M. S., P. Bullock, S. Raj, S. Wang, and Y. Yang, 2011: Crop yield forecasting on the Canadian 
Prairies using MODIS NDVI data, Agr. Forest Meteorol., 151, 385–393. 

Newlands, N.K., D.S. Zamar, L.A. Kouadio, Y. Zhang, A. Chipanshi, A. Potgieter, S. Toure, and H.S.J. Hill, 
2014: An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield 
under environmental uncertainty. Front. Environ. Sci., 2:17. doi: 10.3389/fenvs.2014.00017 
http://journal.frontiersin.org/article/10.3389/fenvs.2014.00017/full 

Phillips, D., 1990: The climates of Canada. Downsview, ON: Environment Canada. 

Public Safety Canada, 2015: The Canadian disaster database.  
[Available online at http://www.publicsafety.gc.ca/prg/em/cdd/index-eng.aspx] 

Qian, B., R. De Jong, R. Warren, A. Chipanshi, H. Hill, 2009: Statistical spring wheat yield forecasting for 
the Canadian Prairie provinces.  Agr. Forest Meteorol., 149, 1022–1031. 

Rahbeh, M., D. Chanasyk, and J. Miller, 2011: Two-way calibration-validation of SWAT model for a small 
prairie watershed with short observed record. Canadian Water Resources Journal, 36(3), 247-270. 

Statistics Canada, 2012a:  1976-2011 crops small area data. Field Crop Reporting Series of Agriculture 
Division, Statistics Canada. 

Statistics Canada, 2012b:  Definitions, data sources and methods of Field Crop Reporting Series. Record 
number: 3401, Agriculture Division, Statistics Canada.  
[Available online at http://www.statcan.gc.ca/imdb-bmdi/3401-eng.htm] 

Szulczewski, W., A. Zyromski, and M. Biniak-Pieróg, 2012: New approach in modeling spring wheat 
yielding based on dry periods.  Agricultural Water Management, 103, 105– 113. 

USDA, 1999: Understanding USDA crop forecasts. National Agricultural Statistics Service and Office of the 
Chief Economist, World Agricultural Outlook Board, United States Department of Agriculture, 
Miscellaneous Publication No. 1554.  [Available online at 
http://www.nass.usda.gov/Education_and_Outreach/Understanding_Statistics/pub1554.pdf] 



Science and Technology Infusion Climate Bulletin 
NOAA’s National Weather Service  
40th NOAA Annual Climate Diagnostics and Prediction Workshop  
Denver, CO, 26-29 October 2015 

______________ 

Correspondence to: Nicholas Novella, 5830 University Research Ct., Climate Prediction Center, NOAA/NWS/NCEP, 
College Park, Maryland; E-mail: nicholas.novella@noaa.gov 

A Seasonal Rainfall Performance Probability Tool for 
Famine Early Warning Systems over Africa  

Nicholas Novella1,2 and Wassila Thiaw1 
 1Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland 

2Innovim, Greenbelt, Maryland 

1. Introduction 

In this extended abstract, we show the development of a new statistical tool which produces probabilistic 
outlooks of seasonal precipitation anomaly categories over Africa.  Called the Seasonal Performance 
Probability (SPP), it quantitatively evaluates the probability of precipitation to finish at predefined percent of 
normal anomaly categories corresponding to below Average (<80% of Normal), Average (80-120% of 
Normal), and Above-Average (>120% of Normal) conditions.  This is accomplished by applying Kernel 
Density Estimation (KDE) methods to compute smoothed, continuous density functions based on more than 
30 years of historical precipitation data from the Africa Rainfall Climatology Version 2 (ARC2) dataset 
(Novella and Thiaw, 2013).   Also presented here are various KDE parameterizations tests to determine 
optimality of density estimates, and thus, performance of SPP for operational monitoring. Verification results 
using Heidke Hit Proportion (HHP) scores from 2010-2014 suggest that SPP reliably provides probabilistic 
outcomes of seasonal rainfall anomaly categories by early to mid-stages of rains seasons for major monsoon 
regions in east, west and southern Africa.  SPP has been a useful tool in operational climate monitoring at 
CPC International desks, where it has helped to provide early warning guidance for developing drought 
situations, and other related hydrometeorological climate anomalies.  This is expected to promote better 
decision making in food security, planning and response objectives for the United States Agency for 
International Development / Famine Early Warning Systems Network (USAID/FEWS-NET). 

2. Data and methods 

This new SPP product solely uses Africa Rainfall Climatology version 2.0 (ARC2) precipitation estimate 
data over Africa.  The features of ARC2 are suited for the development and application of SPP, since its daily 
resolution and 30+ year historical record allow for a sufficient number of years to quantitatively determine the 
probability of seasonal rainfall performances.  For operational monitoring at CPC, meteorologists have 
designated six seasonal timeframes over three main domains in Africa. These include the East Africa domain 
encompassing the Mar-May, Jun-Sep, Feb-Sep, and Oct-Dec timeframes, as well as, the West Africa and 
Southern Africa domain, covering the May-Sep and Oct-May timeframes, respectively.  These timeframes 
have been useful in capturing the evolution of monsoon rainfall, as they also cover pertinent agricultural 
calendars and cropping activities on the ground for famine early warning systems. 

a. Kernel Density Estimation 

The main purpose in SPP lies in determining the probability density function (PDF) of historical 
precipitation rates from a current point in a season to the end of season.  SPP applies Kernel Density 
Estimation (KDE) methods on the ARC2 30+year climatology in order to acquire a more refined, smoother 
estimate of the PDF.  Using a set of observations (x1, x2, … xn) from some distribution with and unknown 
density, f(x), the KDE is defined as: 
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where n equals the number of historical 
observations, x(i) are the historical 
observations,  and h is the bandwidth 
parameter.  The selection of the 
bandwidth parameter, h, and kernel type, 
K, both have a marked effect on the 
shape of the estimated density, and more 
discussion is included later in this 
section of the paper.  The main 
advantage of KDE resides in how it 
evaluates point-wise contributions (i.e. 
distances between x and x(i)), and where 
the summation of kernels converges 
faster to the true underlying density for 
continuous random variables like 
precipitation.  If we let x be an array of 
hypothetical precipitation rates (from 0 
to Infinity) required to satisfy an array 
of percent of normal rains by the end of 
season, then this will not only render a 
smoother estimate of the density 
function, f(x), but the probabilities for 
each hypothetical precipitation rate can 
then be determined.   Taking the integral 
of f(x) results in the Cumulative 
Distribution Function (CDF), and it is here where probabilities within specified intervals along F(x) can be 
ascertained and plotted to render a probability value for each point in space.  

To illustrate, let’s suppose the following for a given location where: 1) the current seasonal accumulated 
total is 100mm at Tcurrent, 2) the current seasonal climatological normal total is 150mm at Tcurrent, 3) the end-of-
season climatological normal total is 500mm at Tfinal, and, 4) the number of days remaining in the season 
equals 60.  While the current seasonal percent of normal anomaly is well below-average at 66%, we would 
therefore find that threshold precipitation rates of 5.00 mm/day, 6.66 mm/day, and 8.33 mm/day are required 
for the remainder of season to finish at least 80%, 100%, and 120% of normal, respectively.  Using a sample 
set of historical precipitation rates (i.e. observations), x(i), over the last 30 years (1983-2012) from Tcurrent to 
Tfinal, as well as, an array of hypothetical precipitation rates required in the future, x, to define the PDF, 
plotting the Below-Average (brown) and Above-Average (green) threshold rate points along the x axis on 
both the PDF and CDF curves (Fig. 1), shows that the highest probability (~50%) exists for seasonal rainfall 
to be in the “Below-Average” category (<80% of Normal) by the end of the season.  Also evident is the 
second highest probability (~28%) for seasonal rains to finish in the “Above-Average” category (>120% of 
Normal), and the lowest probability (~22%) to finish in the “Average” category (>=80% and <=120% of 
Normal) by the end of the season.   

b. Parameterization: Kernel Type & Bandwidth Selection 

In KDE literature, studies by Rajagopalan et al. (1997) and Rajagopalan et al. (1993) have referenced the 
implementation of the Epanechnikov kernel instead of using a Gaussian kernel when using precipitation data 
since it has inherent bounded support to minimize potential boundary effects.  However, these studies also 
showed that boundary issues are ameliorated through the use of a log transformation within the kernel as it 
prevents any “leakage” of the probability mass extending beyond the boundary (Rajagopalan et al., 1997).    
Regardless of kernel type selected, this log transformation was considered necessary for SPP to properly 
handle the fixed lower bound of precipitation, so that f(x) = 0 where x < 0, and f(x) still integrates to one.  For 
bandwidth selection, the method that is most commonly referenced in literature is Silverman’s Rule-of-
Thumb (Silverman, 1986).  However, some studies have suggested that this method may not be aptly suited 

Fig. 1  Example of the probability density function (upper), 
cumulative distribution function with SPP probabilities 
(lower) estimated from KDE from a sample set of historical 
precipitation rates for the remainder of the season. 
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for mutli-modal distributions, and underperformance has been linked to its heavy reliance to assumptions of 
the underlying distribution (Rajagopalan et al., 1997).  As an alternative, the “plug-in” or recursive method of 
(Sheather and Jones, 1991) (hereafter referred to as SJ) has also been widely described in KDE associated 
literature.  In light of all findings related to the kernel type and bandwidth methods, log transformed Gaussian 
and Epanechnikov kernels, as well as, the Silverman and SJ bandwidth methods were evaluated in verification 
analysis to determine optimality for SPP in the following section. 

3. Results 

a. Historical reprocessing and verification 

In determining the optimal KDE parameters for SPP in operational monitoring, the SPP algorithm was 
reprocessed using kernels and bandwidth methods, as highlighted in the previous section, over several key 
monsoonal periods and regions in eastern, southern and western Africa from 2010 to 2014.  No reprocessing 
prior to 2010 was performed, since SPP still requires a high number of years to generate densities.  For this 
exercise, verification consisted of calculating the Heidke Hit Proportion (HHP) scores for probabilistic 
forecasts (IRI, 2013). This verification metric was regarded as the most straight-forward and relevant in 
forecasting anomaly categories corresponding to below-average, average, and above-average seasonal rainfall.  
HHP awards credit (hits) where the highest categorical SPP probability matches the observed category by the 
end of season. Hits are then summed and divided by the total number of forecasts in space.  

Averaged HHP scores (from 2010-2014) using various parameterizations in SPP for all seasons and 
regions in shown in Table 1.  The most salient observation is that there doesn’t appear to be any distinct 
advantage in using a particular kernel, or a particular bandwidth method in terms of improved HHP 
verification scores, since differences in HHP scores between kernel types and bandwidth methods appear to 
be quite negligible at seasonal stages.  By the end of the first month and through mid-point of each season, 
HHP scores range between 0.6 and 0.7 indicating that at least 60% of the SPP probability fields correctly 
verified in their respective anomaly category.  While not perfect, these scores suggest a level of confidence 
for operational monitoring, where we can 
provide reasonable guidance of a 
seasonal rainfall outcome to users before 
halfway through the season. Based on 
these results, the Gaussian kernel and 
Silverman’s bandwidth method was 
selected for operational SPP 
implementation purely due their 
efficiency in daily processing. 

b. SPP case studies 

Perhaps the most well-known 
drought case study in recent years was 
the severe drought that devastated East 
Africa from 2010-2011. In our 
monitoring of precipitation, ARC2 
accurately depicted the onset of the 
drought during the Oct-Dec rainfall 
season, and captured the extent of 
worsening dryness conditions due to poor 
rains during the following March-May 
rainfall season in the same region 
(Novella and Thiaw, 2013).  Figs. 2a-d 
show the reprocessed SPP for the Oct-
Dec, 2010 rainfall season in East Africa.  
After one month (1/3) into the season, 

Table 1 Averaged HHP scores from 2010-2014 using various KDE 
parameterizations in SPP for all seasons and regions 
(h1=Silverman, h2=SJ). 
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the percent of normal ARC2 
rainfall on November 1st, 2010 
(Fig. 2a) begins to depict 
developing dryness throughout 
much southern Somalia, 
southwestern Ethiopia, eastern 
Kenya, and across much of 
Tanzania.  For areas that 
experienced rapidly developing 
dryness, SPP probabilities are 
highest in the below-average 
category (Fig. 2c), with 80% to 
90% probabilities over areas 
where climatologically, lesser 
amounts of rainfall are expected 
for remainder of season, thus 
reflecting the increased likelihood 
of drought development and 
persistence before the end of the 
season.  Analysis of the final 
season percent of normal rainfall 
(Fig. 2b) and HHP verification 
score map (Fig. 2d) on November 
1st, 2010 indicate that nearly 70% 
of the seasonably active areas in 
east Africa had SPP probabilities 
that correctly verified in the 
respective anomaly categories.  

In a more recent case study, 
the core of the southern Africa 
rainy season, Dec, 2014 – Feb, 
2015 has been characterized as 
being poor and highly erratic.  This had presented a greater challenge to SPP during operational monitoring 
due to unusual reversals in the monsoon circulation that had been observed throughout the course of the 
season.  By the end of February, a dipole anomaly pattern emerged with the southeastern portion of the Africa 
continent having experienced well above-average rainfall, and below-average moisture conditions prevailing 
throughout much of southwestern Africa (Fig. 3a).  However, the evolution of this dipole was not straight-
forward nor gradual as one might expect.  In the middle of December, much of southeastern Africa (i.e. 
eastern Zambia, Malawi, and western Mozambique) had experienced a delayed onset of the monsoon, raising 
concerns of anomalous dryness persisting into the season.  SPP probabilities for below-average Dec-Feb 
rainfall began to increase and expand throughout the region, until extreme rains fell in late December, which 
led to an abrupt reversal in the SPP probabilities between the above and below average anomaly categories.  
By early January 2015, SPP probabilities over much of southern Angola, northern Namibia and the Caprivi 
Strip did not correctly verify as being below-average.  Only after an extended dry spell had transpired during 
January in the region did SPP point to a high probability for below-average rains by the end of the season.  In 
Figs. 3c-d, we see the SPP probabilities and HHP hit map illustrating nearly 70% of the seasonably active 
areas in southern Africa had SPP probabilities that correctly verified in the respective anomaly categories by 
January 15th.  

c. SPP real-time operational output 

Consistent with the real-time, daily maps and time series products updated at CPC, the SPP algorithm 
consists of generating probabilistic output for every gridded pixel, every day over Africa.   In an effort to 

a b 

c d 

Fig. 2  East Africa spatial maps of (a) percent of normal seasonal rainfall 
anomaly on Nov 1st, 2010, (b) the final percent of normal seasonal 
rainfall anomaly captured Dec 31st, 2010, (c) SPP reprocessed on 
Nov 1st, 2010, (d) Heidke Hit Proportion (HHP) of verified hits 
(green) and misses (red) on Nov 1st, 2010. 
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further relax an intense 
computational environment, the 
resulting SPP spatial fields are 
aggregated from a 0.1° to 0.25° 
resolution.  To best cover the 
seasonality of precipitation over 
Africa, users will be able to 
choose any base period spanning 1 
to 4 months of ARC2 accumulated 
rainfall, and a probabilistic 
outlook period ranging from the 
end of the current month out to 3 
months.  SPP output consists of 
single map depicting all 
probabilities corresponding to 
Below-Average (<80% of 
Normal), Average (>=80% and 
<=120% of Normal), and Above-
Average (>120% of Normal) 
rainfall for the end of every 
projection period. 

4. Conclusions 

This paper describes a new 
statistical tool, called SPP, which 
computes spatial probability maps 
for seasonal precipitation to finish 
at rainfall anomaly categories 
corresponding to Below Average (<80% of normal), Average (80-120% of normal), and Above-Average 
(>120% of normal) over Africa.  These computations are achieved through the use of Kernel Density 
Estimation (KDE) methods which yield probability density functions (PDF’s) and cumulative density 
functions (CDF’s) based on 30+ years of historical ARC2 precipitation for the remaining duration of a 
monsoon season.  The daily, real-time availability of ARC2 used in operational monitoring also permits SPP 
output to be disseminated to users on the same basis. 

Reprocessing and verification results indicate that, on average, at least 60% of the SPP probability fields 
had correctly verified in their respective anomaly category.   This suggests there is a reliable degree of 
confidence in SPP for providing the outcome of seasonal rainfall during operational monitoring.  Such 
information is expected to translate into better decision making in food security, planning and response 
objectives for USAID/FEWS-NET. 

References 

Novella, N., W. Thiaw, 2013: Africa rainfall climatology version 2 for Famine Early Warning Systems. 
Journal for Applied Meteorology and Climatology, 52, 588-606.  

Rajagopalan, B., U. Lall, D.G. Tartoton, 1993: Simulation of daily precipitation from a nonparametric 
renewal model.  Utah State University Digital Commons Reports Paper 146.   

Rajagopalan, B., U. Lall, D.G. Tartoton, 1997: Evaluation of kernel density estimation methods for daily 
precipitation resampling.  Stochastic Hydrology and Hydraulics, 11, 523-547.  

Sheather, S.J., M.C. Jones, 1991: A reliable data-based bandwidth selection method for kernel density 
estimation.  Journal of the Royal Statistical Society, Series B. 53, 683-690. 

Silverman, B.W., 1986:  Density estimation for statistics and data analysis.  Chapman and Hall, New York.  

 

Fig. 3  Southern Africa spatial maps of (a) percent of normal seasonal 
rainfall anomaly on Jan 15th, 2015, (b) the final percent of normal 
seasonal rainfall anomaly captured Feb 28th, 2015, (c) SPP 
reprocessed on Jan 15th, 2015, (d) Heidke Hit Proportion (HHP) of 
verified hits (green) and misses (red) on Jan 15th, 2015. 
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