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A. Project Summary 

Seasonal water supply outlooks, or volume of total seasonal runoff, are routinely used 

by decision makers in the western United States for making commitments for water 

deliveries, determining industrial and agriculture water allocation, and operating 

reservoirs.  These forecasts are based primarily on statistical regression equations 

developed from monthly precipitation, recent snow-water equivalent, and a subset of past 

streamflow observations.  In the Western US, the National Weather Service Northwest 

River Forecast Center (NWRFC) and the Natural Resources Conservation Service 

(NRCS) jointly issue seasonal water supply outlook forecasts of naturalized or 

unimpaired flow, i.e. the flow that would most likely occur in the absence of diversions. 

This is done using statistical and ensemble streamflow prediction (ESP) methods 

developed at the NWS and NRCS. In addition, water resources management entities 

including US Bureau of Reclamation (BOR) and Corps of Engineers (COE) use their 

own statistical models to issue seasonal water supply forecast. 

The operational streamflow forecasting community understandably places a priority 

on operations rather than research and often lacks the resources to investigate new 

products or methods during the demands of a busy forecasting season. There is a 

consensus that further improvement in the forecast of atmospheric forcing as well as use 

of suite of hydrologic models including statistical and dynamical (i.e., physical or 

conceptual) models is needed for improving streamflow forecast skill at both short- and 

long- lead time scales. Therefore, the proposed research has an overall goal to incorporate 

the latest scientific findings in the area of multi-modeling that optimally combine the 

multi-model ensemble hydrologic forecasts. Given that a multi-model contains 

information from all participating models, including the less skillful ones, the question 

that remains is: under what conditions, a multi-model can outperform the best 

participating single model? In this project we make an attempt in carefully testing under 

what circumstances multi-model combination reduces overconfidence, i.e. ensemble 

spread is widened while average ensemble-mean error is reduced. This implies a net gain 

in prediction skill, because probabilistic skill scores penalize overconfidence.  

The report is organized by highlighting major findings as published in refereed 

journals. 
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B. Towards Improved Reliability and Reduced Uncertainty of Hydrologic 
Ensemble Forecasts Using Multivariate Post-processing (Madadgar et al. 2014) 

 

In this study, we addressed the drawbacks of a commonly used statistical technique, 

Quantile Mapping (QM), in bias correction of hydrologic forecasts. An alternative 

postprocessor is then introduced such that marginal distributions of observations and 

model simulations are combined to create a multivariate joint distribution using 

multivariable probability functions, the so-called copula functions. In addition to 

hypothetical cases, post-processing of a real case study was also tested, using a 

distributed parameter hydrologic model, the Precipitation Runoff Modeling System 

(PRMS). Several ensembles of monthly streamflow forecasts of the Sprague River basin 

in southern Oregon were generated with a forecast horizon of 6 months. An auxiliary 

index, the so called failure index (γ), was introduced to predict the overall performance of 

the QM technique as an ensemble post-processing method before stepping into the 

forecast mode. The failure index reflects the consistency of QM adjustments and 

corresponding observations; it varies between 0 and 1, with γ = 0 being the perfect-

adjustment case. The forecast skill of QM shows that this statistical bias correction 

technique is not always successful in improving initial forecast trajectories. Testing 2500 

hypothetical case studies indicates that the performance of the QM technique constantly 

degrades as γ increases.  Generally, the forecast skill of the post-processed ensembles 

effectively improved when the multivariate postprocessor was applied, but it became 

even worse when QM technique was used (Figure 1). Overall, Figure 2 demonstrates that 

the QM method is not an effective method to adjust the original forecasts while the 

multivariate copula-based postprocessor is a more effective method that can be used 

operationally. 
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Figure 1. Probability of success against γ for point-wise (MAE and NSE) and probabilistic 

performance measures (RPSS, reliability (α and ε), Resolution (π)) in QM and copula-based post-

processing methods. Probability of success is obtained with respect to the associated metric for 

different values of the failure index. 

 

 

 

 

 

 

0.2 0.4 0.6 0.8
0

0.5

1



P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 MAE

 

 

QM

Cop

0.2 0.4 0.6 0.8
0

0.5

1



P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 NSE

 

 

0.2 0.4 0.6 0.8
0

0.5

1



P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 RPSS

 

 

0.2 0.4 0.6 0.8
0

0.5

1



P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 

 

 

0.2 0.4 0.6 0.8
0

0.5

1



P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 

 

 

0.2 0.4 0.6 0.8
0

0.5

1



P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

 

 

 



 5

 
Figure 2. Comparison of the ensemble range before and after post-processing for three 

forecast periods in 2002 starting from a) Jan, b) Feb, and c) Mar, with the solid lines representing 

the monthly observations. Corresponding ESP mean are shown in subplots d-f.  

 
 

C. Post-processing hydrologic model outputs to improve the objectivity of 
streamflow forecasts; case study of Columbia River Basin 

This is an extension of the above postprocessing method to multitude of gage stations 

in the Pacific Northwest and validating its application toward improving accuracy of 

streamflow simulations. The procedure is performed for historical period of 1970–1999. 

Three semi-distributed hydrologic models, i.e. Variable Infiltration Capacity (VIC), 

Jan Feb Mar Apr May Jun
0

50

100

150

 F
lo

w
 V

o
lu

m
e 

[K
af

]

Feb Mar Apr May Jun Jul
0

50

100

150

 F
lo

w
 V

o
lu

m
e 

[K
af

]

Mar Apr May Jun Jul Aug
0

50

100

150

 F
lo

w
 V

o
lu

m
e 

[K
af

]

 

 

Org ESP
After QM
After Cop

Jan Feb Mar Apr May Jun
0

50

100

150
 d

Feb Mar Apr May Jun Jul
0

50

100

150  e

Mar Apr May Jun Jul Aug
0

50

100

150
 f

 

 
Obs

Org f rcst, ESP mean

Af ter QM, ESP mean

Af ter Cop, ESP mean



 6

SAC-SMA, and Precipitation Runoff Modelling System (PRMS), are employed and 

calibrated at 1/16 degree latitude-longitude resolution for more than 100 NRNI (no 

regulation no irrigation) points across the Columbia River Basin (CRB) using 

deterministic measure, i.e. the Kling Gupta Efficiency (KGE). Results show that the new 

hydrologic post-processing leads to higher accuracy in streamflow simulations.  

 
Figure 3. KGE calculated for simulated streamflow at NRNI points before (left) and after 

(right) post-processing. 

 
D. A probabilistic Post-processing Approach to Improve Precipitation Forecast 

(Khajehei and Moradkhani, 2016) 

Ensemble Post processing (EPP) has become a commonly used approach to reduce 

the uncertainty in forcing data and hence hydrologic simulation. In this study, we 

introduced a Bayesian EPP approach based on copula functions (COP-EPP) to improve 
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the reliability of the precipitation ensemble forecast. Copula functions are capable of 

building joint distribution between two datasets with any level of dependency, and for 

any marginal distributions. These characteristics of copula functions help us generate 

more accurate ensemble forecast. Evaluation of COP-EPP method is carried out by 

comparing the performance of the generated ensemble precipitation with the outputs from 

an existing procedure, i.e. Mixed Type meta-Gaussian distribution, which is being used at 

the National Weather Service River Forecasting System (NWSRFS). Comparison is 

undertaken by employing three different basins with semi-arid to coastal climate (Figure 

4) to study the performance of the techniques in different climate regimes. Verification 

indicated promising improvement in the mean ensemble using the COP-EPP for 

generating ensemble precipitation forecast. In order to assess the forecast skill, 

probabilistic measures including CRPSS, reliability, and the ROC score are employed. 

The results of CRPSS (Figure 5) indicate that the generated ensemble forecast from COP-

EPP is more reliable and accurate in comparison to the meta-Gaussian one. Furthermore, 

through analysis of reliability (Figure 6), it is noticed that the copula- based method is 

more successful in generating the ensemble forecasts that represent extremes. The ROC 

score (Figure 7) indicated that both techniques are capable of generating potentially 

useful ensemble forecasts with high resolution; however, in the basin with higher 

precipitation (i.e., Rogue River Basin), COP-EPP proves to be even more superior. COP-

EPP is shown to be more precise in building the ensemble precipitation forecast. In other 

words, results demonstrate that the copula procedure is approximately independent of 

spatial and temporal changes in the data. 

 

 
Figure 4.  The location of  3 study basins in the Western USA 
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Figure 5. CRPSS measure calculated for 3 basins after two post-processing methods for 

calibration (left) and verification (right) periods.  
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Figure 6. Reliability measure for winter precipitation (Dec, Jan, and Feb) calculated at 95th 

percentile of observation during the verification period (2001-2014). This measure ranges from 0 

to 1 with the optimal value of 1. 

 
Figure 7.  Assessment of forecast resolution through ROC score for winter precipitation 

(Dec, Jan, and Feb) during verification period (2001-2014). 
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E. Streamflow Forecasting Uncertainty Reduction: Multi-modeling by Integration 

of Bayesian Model Averaging and Data Assimilation (Parrish et al. 2012) 

 
Multi-modeling in hydrologic forecasting has proved to improve upon the systematic 

bias and general limitations of a single model. This is typically done by establishing a 

new model as a linear combination or a weighted average of several models with weights 

based on individual model performance in previous time steps. The most commonly used 

multi modeling method; Bayesian Model Averaging (BMA) assumes a fixed probability 

distribution around individual models’ forecast in establishing the prior and uses a 

calibration period to determine static weights for each individual model. More recent 

work has focused on sequential Bayesian model selection technique with weights that are 

adjusted at each time step in an attempt to accentuate the dynamics of an individual 

model's performance with respect to the system's response. However, these approaches 

still assume a fixed distribution around the individual models forecast. A new sequential 

Bayesian model averaging technique was developed incorporating a sliding window of 

individual model performance around the forecast. Additionally this technique relaxed 

the fixed distribution assumption in establishing the prior utilizing a data assimilation 

method that reflects both the performance dynamics of the models’ forecasts along with 

their uncertainty.  

 

a. General BMA Methodology 

Consider a quantity, y, to be forecasted, such as the magnitude of a river flow at a 

particular location and time.  Assume we have k models, ],...,,[ 21 kMMMM   giving us 

independent model forecast, ];...;[ 21 kffff yyyY   for this quantity for time steps 1 

through T, where ],...,,[ 21
iiii f

T
fff yyyy  . In general, the BMA procedure seeks to 

compute a new forecast density as a weighted average of the competing models forecasts 

with weights that correspond to the comparative performance of the models over some 

training period of observations ],...,,[ 21 TyyyY  . 
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First, the BMA methodology assumes that the model forecasts are unbiased that is the

0][  ifyYE  for each model i. Although there are numerous bias-correction methods, 

in this paper we incorporate a linear regression of Y on ][ ifyE . That is,                     

    i
f

i byEaY i  ][*                                                      (1) 

Unique coefficients ai and bi for each model are determined using a least squares 

approximation, with the observations in the training period as the dependent variable and 

the forecast as the explanatory variable. These coefficients are then applied to all future 

model forecast. All future references to model forecast are assumed to be unbiased. 

Different application strategies for this technique, however, are considered on the 

Bayesian Modeling Averaging with a sliding window. 

The forecast density for y conditioned on the models forecast, Mi, and training period of 

observations, Y, can be expressed according to the law of total probability as: 





k

i
iitkt YMPYMyPYMMMyP

1
21 )|(),|(),...,,|(

                               
( 2)   

where ),|( YMyP it  is defined as the posterior distribution of y based only on model 

Mi and the training data Y. )|( YMP i  is defined as the posterior probability or the 

relative likelihood of model Mi being correct given the training data Y.  

As an illustrative example of how this process produces a multi-model forecast PDF, 

Figure 8 has been prepared. In this illustration, three models are considered. Panel A of 

the illustration shows the posterior distribution of y for each model.  Panel B shows the 

weight defining the models relative likelihood of being the best model. The product of 

these weights with the distribution from panel A displays the relative contribution of the 

models forecast to the eventual PDF. Finally panel D shows the summation and the 

eventual forecast PDF (i.e., multi-model posterior distribution) for the quantity D.  

The various strategies explored in this paper are based on different methods for 

computing these posterior distributions. For example, a characteristic of the BMA 

methodology is that a model forecast does not necessarily need to be probabilistic. For 

deterministic models, this opens up the interpretation of how the posterior distribution, 

),|( YMyP it  might be defined. Previous applications have assumed that the 

),|(~),|( 2
i

f
ttit

iyygYMyP  , where σi
2 is somehow associated with uncertainty within 

an individual model and g represents a Normal distribution [Duan et al., 2007]. However, 
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it is possible to relax this assumption using data assimilation techniques such as a PF, 

whose forecast is a distribution and can act directly as the posterior distribution of y given 

the past model predictions and observations.  

 
 
Figure 8. Implementation of Bayesian model averaging on three models: (A) posterior 

distribution of q for each model, (B) normalized likelihood of model giving the correct response, 
(C) model forecasts weighted by normalized likelihood, and (D) weighted forecast summed to 
form multimodel density. 

 
b. Bayesian Model Averaging and Sequential Data Assimilation  

Sequential data assimilation estimates the observational and state uncertainty as a 

PDF around the optimal estimation of the system state. To introduce this approach we 

first consider a general state-space formulation for any stochastic hydrological model. 

Let,  

 tt
u
t

f
t uxfx    ),,( 1                                                      (12) 

 t
f

tt xhy  )(               (13) 
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Where, f
tx  is a n-dimensional vector describing the system states forecast.  ),( f is 

the forward model that propagates the forcing data  tu  into the system with updated 

states  u
tx 1 from previous time step ,   is the model parameter and t represents the 

process noise. ty is a scalar forecast for an observation that is related to the system state 

through the operator )(h and some observational noise t .  

 
In Bayesian model averaging the strategies determined the posterior density,

)|( Ti YMP , by assuming  a normal distribution for the posterior probability of yt given a 

model Mi , ),|( Tit YMyP . Here, we relax that assumption by allowing the observation 

simulation, developed in the state-space formulation, to approximate this value. The 

advantage of using data assimilation by means of particle filtering (PF) is that it can 

identify the multi-modality or skew in state estimation, therefore allowing the simulated 

observation to be multi-modal or skewed.   

 

c. Model Structure  

To explore the merits of this approach, we utilized two conceptual rainfall runoff 

models, the Sacramento Soil Moisture Accounting (SAC-SMA) and the HYMOD 

models. SAC-SMA is a lumped rainfall runoff model with sixteen model parameters 

developed by Burnash et al., [1973].  It remains widely used by the National Weather 

Service (NWS) in predicting streamflow at different time scales. HYMOD is a 

parsimonious model which is an extension of simple lumped storage models developed in 

the 1960s with only five parameters and five state variables. To calibrate the models, the 

Shuffle Complex Evolution algorithm – University of Arizona (SCE-UA), [Duan et al., 

1993] was employed. To address the uncertainty in parameter estimation, we used three 

distinct objective functions including the Root Mean Square Error (RMSE), 

Heteroscedastic Maximum Likelihood Estimator (HMLE) and the absolute BIAS. The 

RMSE is an appropriate measure when the measurement errors are known to be 

uncorrelated and homoscedastic, or when the properties of the measurement errors are 

unknown. On the other hand, the HMLE is a goodness of fit estimate when the 

measurement errors are believed to be heteroscedastic. 
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We compare the skill of the different Bayesian Model Averaging schemes using both 

point-wise and probabilistic performance measures. Table 1 outlines the basic differences 

of each BMA strategy. The goal of forecast verification is to summarize the relationship 

between a predicted value and its corresponding observation, in order to determine the 

effectiveness of a forecasting technique across a variety of hydrological conditions and 

with respect to other forecasting techniques. It is evident that a single performance 

measure on a single hydrologic condition is not sufficient in answering all of those 

questions.  In this study, we calculate three performance measures associated with 

accuracy and skill.         
 

Table 1 Comparison of BMA strategies evaluated  

 
 

 

Table 2. Pointwise Performance Measures for Individual Models 

 
 
The performance assessment is conducted by first evaluating the point-wise 

performance measures across the entire eight year validation time period as shown in 
Figure 9. 
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Figure 9. Pointwise and probabilistic performance measures for the complete hydrograph. 
 
 

The assessment is followed by analyzing different regions of the observed 

hydrolograph by separating the hydrograph into different flow values for example; high, 

medium, and low flows. The sliding window schemes we are analyzing, however, not 

only address the volume of flow, but also the potential of the scheme to quickly adapt to 
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rapid changes in the hydrograph. For each range of volatility, different Bayesian model 

averaging schemes performed the best. 

 
 

 
 

Figure 10. Volatility stages during the validation period of 1 October 1980–30 
September 1988. 

 
 

Figure 11. RPSS values for various rates of change on the hydrograph 
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The analysis shows that the strength of each of the different averaging techniques 

varies across performance metrics and volatility ranges of the hydrograph.  The 

advantage of the multi-model averaging is most apparent in measuring probabilistic skill, 

but some advantage is apparent for pointwise metrics.  The comparison of the multi-

modeled averaged forecast with the individual models forecast illustrates that averaged 

forecast do not always outperform the best individual model for any particular metric. A 

comparison of the BMA strategies to the individual models probabilistic forecasts 

confirmed the strength of using model averaging on over-confident individual models. 

Two variations of the static BMA considered in this study are to allow for dynamic 

model weights and to dynamically change the set of models averaged. Both of these 

variations showed conflicting results when compared across all the performance 

measures.For pointwise metrics and RPSS values, the dynamic model weights and model 

uncertainty, generated by the sliding window approach, outperformed the static Bayesian 

Model Averaging scheme. This dynamic approach allows a necessary flexibility in 

gauging the confidence in a model output, with respect to the changes in the hydrograph. 

Across the ranges of volatility, BMA with data assimilation strategies reduce the 

prediction interval by nearly fifty percent when compared to strategies utilizing the 

Gaussian uncertainty distribution. For low and medium ranges of volatility, this 

corresponds to an over-confidence in the BMA with DA strategies, capturing fewer than 

95% of the observations.  However for high volatility ranges, the BMA with DA 

approach with a sliding window of thirty nearly captured 95% of observations within its 

prediction interval while reducing the prediction interval width by 40% in comparison to 

the best BMA strategy. 

 

F. Improving Multimodeling by integrating Multivariate functions (Copulas) to 
Bayesian model averaging (Madadgar, and Moradkhani, 2014) 

 
Bayesian model averaging (BMA) is a popular approach to combine hydrologic 

forecasts from individual models and characterize the uncertainty induced by model 

structure. In the original form of BMA, the conditional probability density function 

(PDF) of each model is assumed to be a particular probability distribution (e.g., Gaussian, 

gamma, etc.). Since copula functions have shown success in different hydrologic 

forecasting applications, this study utilized them in model averaging to find the posterior 

distribution of data given model predictions. Copula functions have a flexible structure 

and do not restrict the shape of posterior distributions. Furthermore, copulas are effective 
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tools in removing bias from hydrologic forecasts. In this study, we proposed a technique 

that merge the copula functions with BMA (COP-BMA) to reduce the uncertainties that 

arises from the limitations in BMA. To compare the performance of BMA with Cop-

BMA, they were applied to hydrologic forecasts from different rainfall-runoff and land-

surface models. The new method, Cop-BMA, is more flexible in defining the posterior 

distribution and does not impose any restriction on the type of distribution. Although 

BMA is not theoretically limited to a certain type of posterior distribution, either the 

unimodal distributions such as Gaussian or gamma distribution are commonly used as 

posterior distributions. In contrast, Cop-BMA has a flexible structure that allows the 

posterior distribution to have any unimodal or multimodal shape depending on the copula 

function. By relaxing the assumptions on the type of posterior distribution, data 

transformation would not be required. Furthermore, Cop-BMA can effectively remove 

the bias of initial forecasts by itself and do not need any external bias-correction method. 

 

 

Figure 12. Comparison of predictive QQ plot produced by BMA versus Cop-BMA. 
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(a) (b) 

 

(c) (d) 

 

Figure 13. Comparing the performance of BMA and Cop-BMA indicated by (a, b) reliability, (c) 
sharpness, and (d) confidence. 

 

 

G. Ensemble Combination of Seasonal Streamflow Forecasts (Najafi and 
Moradkhani, 2015) 

 

To the best of knowledge of the PI, the question of how to optimally combine 

statistical models with dynamical models had not been investigated before. Dickinson 

(1975) examined combination of forecasts using a minimum variance criterion and 

suggested that unreliability of the estimated weights might downgrade the forecast 
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combination.  Simple model combination has been considered in several studies through 

assigning equal weights to the individual forecast models. Using seven distributed 

hydrologic models applied to six basins, Georgakakos et al. (2004) found that the simple 

mean of five best models outperformed the best models in each basin. The simple mean 

of the individual forecasts, however, is based on the assumption that single models 

perform similarly (Najafi et al. 2015). This approach also does not quantify the related 

uncertainties in the model combination process. Other methods that weigh and combine 

single models based on their performances in a calibration time period have been 

considered using more complex approaches (Buser et al. 2010; Duan et al. 2007; Najafi et 

al. 2011; Parrish et al. 2012; Tebaldi and Knutti 2007).  

Comparison between various model combination techniques has been performed in 

several studies (Ajami et al. 2006; Georgakakos et al. 2004; Shamseldin et al. 1997). 

Xiong et al. (2001) proposed a fuzzy system to combine forecasts of rainfall-runoff 

models and compared the results with simple and weighted average methods along with 

neural networks.  Diks and Vrugt (2010) compared multi-models based on point 

predictors to the ones based on density forecasts such as Bayesian Model Averaging 

(BMA). They concluded that Granger-Ramanathan averaging (based on ordinary least 

squares regression) performed similar to more complex multi-model approaches such as 

Mallows model averaging and BMA. Viney et al. (2009) compared various combination 

techniques to merge ensemble daily model predictions of catchment streamflow. They 

concluded that multi-model ensemble predictions are generally superior to the constituent 

models. Bohn et al. (2010) considered two multi-model methods of simple mean and 

multiple linear regression (MLR) for three hydrological models over three basins. Their 

results showed that the individual best bias corrected model outperformed the 

combination of raw models. In addition, simple model average method generated smaller 

error reductions compared to MLR.  

Although several combination techniques have been investigated in hydrologic 

applications, limited information is available on ensemble merging of dynamical and 

statistical hydrologic models, with varying complexities in seasonal streamflow forecasts.   

Seasonal water supply outlooks, or volume of total seasonal runoff, are routinely used 

by decision makers in the Western US for making commitments for water deliveries, 

determining industrial and agriculture water allocation, and operating reservoirs.  These 

forecasts are based primarily on statistical regression equations developed from monthly 

precipitation, recent snow-water equivalent, and a subset of past streamflow observations.  
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In the Western US, the National Weather Service Northwest River Forecast Center 

(NWRFC) and the Natural Resources Conservation Service (NRCS) jointly issue 

seasonal water supply outlook forecasts of naturalized or unimpaired flow, i.e. the flow 

that would most likely occur in the absence of diversions. This is done using statistical 

and ensemble streamflow prediction (ESP) methods developed at the NWS and NRCS. In 

addition, water resources management entities including US Bureau of Reclamation 

(BOR) and Corps of Engineers (COE) use their own statistical models to issue seasonal 

water supply forecasts. 

Considering a wide range of available seasonal forecast approaches, a verifiable 

multi-model approach that effectively combines single forecasts and enhances the 

individual models is required. Combination of seasonal forecast models with varying 

complexities, if done through a robust framework, would reduce the sophisticated 

interpretation of the forecasts and ease the communication with stakeholders. 

Furthermore, ensemble merging of hydro-climatic extreme predictions from various 

methods (Halmstad et al. 2013; Najafi and Moradkhani 2014; Najafi and Moradkhani 

2015) can also be considered as an effective approach to increase the reliability of 

predicted flood events.  

This study addresses the multi-model ensemble merging of dynamical and statistical 

hydrologic predictions from different agencies along with simulations based on 

independent component analysis (Moradkhani and Meier 2010; Najafi et al. 2011) and 

partial least square regression. A comprehensive set of model combination techniques 

with varying complexities are applied over the individual forecast models to evaluate the 

advantages of merging seasonal forecasts. Furthermore, taking into account a wide range 

of model combination methods with varying complexities, we assess the relative 

performance of each method and the related uncertainties. In particular we intend to 

investigate whether complex models would necessarily outperform the simpler 

combination methods. 

a. Study Area 

Table 3 presents the characteristics of the river basins considered in this study. The 

first column represents the geographical locations as well as other basin specifications 

including the number of seasonal streamflow forecasts available for each basin. Libby 

has the largest drainage area of approximately 9000 mi2, whereas Granby has the smallest 

area of 323mi2. Correspondingly, the two basins experience the largest and the smallest 
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average seasonal flow. April is the starting month of the seasonal runoff forecasts and the 

ending months differ between basins.   

Dworshak Dam near Ahsahka, Idaho is used to regulate annual floodwaters of the 

North Fork Clearwater River and for power generation. Lake Granby, located in the 

headwaters of the Colorado River Basin, is the largest storage reservoir in the Colorado-

Big Thompson (C-BT) reservoir system, a large trans-basin water storage and delivery 

project. While the project was originally built for agricultural purposes, it serves multiple 

demands including municipal and industrial supply, hydro-power generation, recreation, 

and fish and wildlife. In recent years, however, water supply demands have shifted 

making municipal and industrial supply the main water beneficiary, rather than irrigation.  

Libby Dam is located on the Kootenai River in northwestern Montana, approximately 40 

miles south of the US-Canadian border. It is operated by the US Army Corps of 

Engineers as a multi-purpose project for hydropower, flood control, and recreation. 

Project operations also incorporate water quality and quantity targets in support of 

fisheries and environmental objectives.  The Rogue River is located in southwestern 

Oregon which drains the area between the Cascade Mountains and the Pacific Ocean. 

Flow has been regulated since February 1977 by Lost Creek Lake including a slight 

regulation by Fish Lake and Emigrant Lake. There are many diversions for irrigation 

upstream from the station. 

 

Table	3.	River	basin	characteristics	

Name  Dworshak, ID Lake 

Granby, CO 

Libby, 

MT 

Rogue, OR 

USGS ID 13340000 09019500 12301933 14359000 

Latitude 46.478 40.121 48.401 42.437 

Longitude 116.257 105.9 115.319 122.986 

Drainage Area (mi2) 5,507 323  8,985 2,053 

Datum of Gage (ft. above NGVD29*) 990.80 7,960 2,100 1,121.78 

Average seasonal Runoff (kaf) 2462.11 218.62 6168.93 816.34 

Time Period 1981_2000 1981_2005 1988_2002 1981_1997 

Number of  Forecast Models 4 5 3 4 
1,2 Seasonal Streamflow from April_July 
3 Seasonal Streamflow from April_August 
4 Seasonal Streamflow from April_September 

*National Geodetic Vertical Datum of 1929 
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b. Ensemble Streamflow Prediction and Statistical Forecast 

In the United States, the National Weather service (NWS), through its network of 

River Forecast Centers, and the Natural Resources Conservation Service (NRCS) provide 

operational water supply forecasts (Twedt et al. 1977). The traditional approach for 

forecasting water supply volumes has been based primarily on statistical regression 

equations developed from monthly precipitation, recent snow water equivalent (snow 

water equivalent measurements at 1st of the month), and a subset of past streamflow 

observations, to predict streamflow volumes. This method provides reliable long lead 

forecasts (monthly to seasonal) with the exception of occasional failures in the extreme 

event years (Day 1985). The regression-based seasonal streamflow forecasts are 

incapable of providing information about different sources of uncertainties in their 

forecasts due to their mathematical structure (Twedt et al. 1977).  In addition, 

incorporation of new sources of data (satellite observation) and new methods (e.g., data 

assimilation) within the regression framework is difficult, in part, because the forecast 

models require training over a long time series of historical observations (Wood and 

Lettenmaier 2006). Moreover, the regression method may be inappropriate in a non-

stationary climate (due to the effects of climate change) (Cayan et al. 2001; Hamlet et al. 

2005; Wood and Lettenmaier 2006). Ensemble streamflow prediction (ESP) has been 

proposed to address these restrictions (Day 1985). In ESP, the calibrated hydrologic 

model is run for a sufficiently long period until the forecast time in order to obtain the 

watershed initial condition. The model is then driven by resampled historical datasets to 

generate an ensemble of possible future streamflow in the basin. Each historical data is 

treated as a realization of the atmospheric forcing, which is used to simulate the 

streamflow trajectories. This grants ESP a firm ground for considering the uncertainty 

pertained to the future climate, which might be the major component of forecast 

uncertainty in some seasons (Najafi et al. 2012; Wood and Schaake 2008). 

c. Forecast Models 

Table 4 provides a summary of the seasonal streamflow forecast models that were 

available for model combination. Not all models existed for each basin. Results of the 

ensemble streamflow prediction (ESP), for example, were only accessible for the Lake 

Granby basin. A short description of each forecast model along with the corresponding 

river forecast center is also provided. Commonly, the statistical forecasts are based on the 

principal component analysis, which provides uncorrelated signals used as predictors in a 
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multivariable linear regression model. The statistical forecasts based on partial least 

squares regression (PLSR), independent component analysis (ICA) and Z-score 

regression were also added to the current forecasts. The analyses based on these methods 

are discussed in more details by (Moradkhani and Meier 2010; Najafi et al. 2010).  

Table 4. Seasonal streamflow forecast models used for multi-modeling.  

Name Description Forecast Center 

ESP Ensemble Streamflow Prediction: NWS* National Weather Service River Forecast 

Center 

CSWS Principal Component Regression (PCR): 

NWRFC*  

Natural Resources Conservation Service 

zcbrt Z-score with cubic transformations on 

predictors: NRCS* 

Natural Resources Conservation Service 

PLSR Partial Least Square Regression Portland State University 

ICA Independent Component Analysis Portland State University 

Zsimflow Z-score Regression Portland State University 

SWS Statistical Water Supply US Army Corps of Engineers 

PCR2011 2011 Libby Apr-Aug water supply forecast 

using PCR: USACE* 

US Army Corps of Engineers 

PCR2004 2004 Libby Apr-Aug water supply forecast 

using PCR: USACE 

US Army Corps of Engineers 

MW1986 Morrow-Wortman Libby water supply 

forecast (Split-Basin Regression) 

US Army Corps of Engineers 

 
* NWS: National Weather Service; NWRFC: Northwest River Forecast Center; NRCS: 

Natural Resources Conservation Service; USACE: United States Army Corps of Engineers;  
 

Using the available models from different agencies along with the simulation results 

from PLSR, ICA, and Z-score, the performance of each seasonal streamflow forecast was 

analyzed in each study area (Table 5). Four performance measures were considered for 

this purpose: BIAS, RMSE, Nash Sutcliffe Efficiency (NSE) and Kling-Gupta efficiency 

(KGE) (Gupta et al. 2009).  

 

The models given in Table 5 is sorted based on NSE values. The NSE, RMSE and 

KGE values mostly agree for all basins, except KGE for ESP at Lake Granby. BIAS 

generally agrees with other measures except for the Rogue River basin. Overall, the 

seasonal forecast models perform satisfactorily with NSE values over ~0.8 except for 

Granby with NSEs over 0.5. One-to-one comparison between the individual forecasts is 
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not possible, since data obtained from different agencies might belong to different 

operational stages (e.g. operational mode, leave-one-out cross validation, and after-the-

fact reforecast). 

 

Table 5. Performance measures of the seasonal streamflow forecast models for a) Dworshak b) 

Granby c) Libby and d) Rogue river basins. 

a) 

Model NSE KGE RMSE BIAS (%)

Zsimflow 0.87 0.92 293.91 0.54 

SWS-NRCS 0.86 0.90 303.31 0.88 

SWS-NWS 0.83 0.91 326.34 0.48 

SWS-USACE 0.82 0.90 343.98 2.33 

b) 

Model NSE KGE RMSE BIAS (%)

ICA 0.66 0.71 39.66 2.2 

PLSR 0.64 0.69 40.73 2.32 

zcbrt 0.61 0.69 42.65 2.07 

CSWS 0.51 0.51 47.54 0.63 

ESP 0.5 0.68 48 10.01 

c) 

Model NSE KGE RMSE BIAS (%)

PC2010 0.88 0.92 537.3 0.97 

PC2004 0.88 0.94 542.19 0.48 

MW1986 0.82 0.88 654.38 2.06 

d) 

Model NSE KGE RMSE BIAS (%)

ICA 0.96 0.95 59.02 1.59 

Zsimflow 0.89 0.92 95.39 1.24 

SWS-NWRFC 0.86 0.82 105.78 -0.46 

SWS-NRCS 0.79 0.77 132.71 -1.12 

 

d. Model Combination Strategies 

A summary of the model combination techniques used in this study is shown in Table 

6. We categorize the models into three segments according to their degrees of 

complexities. Simple models consist of mean, median and linear regression, and complex 
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models include Bayesian model averaging methods which are probabilistic approaches 

that require more complicated parameter estimation approaches. Intermediate segments 

include methods based on information criteria and principal component analysis. The 

segmentation allows for comparison of multi-model performances regarding their 

complexities. 

e. Simple Methods 

Simple average and median are the two basic averaging methods that are applied on all of 

the seasonal forecast model results. The mean of the forecast models is calculated as 
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 where N is the total number of models and iX  is the seasonal runoff 

predicted by the ith model. Assigning equal weights to all forecast models, however, 

ignores the fact that some models would perform better than the others.  

In the Bates-Granger (Bates and Granger 1969) approach, the individual models are 

empirically weighted based on their errors in the calibration period:  
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where 

2^

f is the variance of the forecast error of model “f” over the calibration period. It 

assumes that the performances of the individual forecast models would not change, 

having a constant variance of residuals over time, and also the forecast models are 

unbiased. 

In the Granger Ramanathan Average approach (constrained and unconstrained), the linear 

regression model of the forecasts was created in the form of: 
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where t  is a white noise with a Gaussian distribution. X represents individual seasonal 

forecasts and the model combination result is given by y. The scale parameter β is 

calculated during the process of calibration period using the available time series of the 

observational data (y) and the forecasts (X). In this study two GRA approaches were 

considered which included the application of the estimated scaling factors (β), based on 

the ordinary least square method, directly to the forecast models for the test period. In 
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this scenario, negative values of the scaling factors could be generated. In the second 

approach, the estimated βs were converted to
   

i
iii absabsw  /

. The resulting 

weights (wi) were then applied to the corresponding test datasets. 

Generalized Linear Model (MacCullagh and Nelder 1989), is a natural extension of the 

simple linear regression model. In GLM instead of modeling the expected response 

directly as a function of the linear predictors, i.e. 
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is considered.  .g  is a smooth and invertible linearizing function called 

a link function and is considered to be logarithmic in this study. Hence, the GLM is 

regarded as a linear model for a transformation of the expected response or a nonlinear 

model for the response. In this study, we assume that the components of the response 

vector follow a gamma distribution. 

 

f. Intermediate Methods 

Principal component regression (PCR) combines principal component analysis (PCA) 

with multiple linear regressions. PCA is a technique that creates new uncorrelated 

variables (principal components or PCs) by projecting the original predictors onto an 

orthogonal space. Principal components are generated from linear combinations of the 

predictor variables, which are obtained by multiplying each predictor variable with the 

corresponding loading and summing the results. The loadings used in the linear equations 

are the elements of the eigenvectors, which are calculated from the sample variance-

covariance matrix of the standardized predictor variables (Moradkhani and Meier 2010). 

Similar to PCR, the partial least square regression (PLSR) also provides uncorrelated 

new predictors that are linear combinations of the original predictor variables. In the 

PLSR method, in addition to the predictors (which are accounted for in the PCR 

technique) the predictand is also considered to generate the principal components. 

Methods based on information Criteria (Burnham and Anderson 2002) were used as 

model selection approaches that deal with the trade-off between the goodness of fit and 

the complexity of the model. The likelihood of model “gi” given the observed dataset “y” 

can be calculated by: 
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where minAICAICii  and AICmin is the minimum of the N different AICi values 

(eq. 17), therefore, the best model results in 0 . The Akaike Information Criterion 

(AIC) is obtained from: 
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where 
 yL 

 is the likelihood of model parameters given observed data “y” which 

measures the model fit . According to information criteria model weights are given by: 
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“R” is the total number of models, and “K” is a penalty term which increases by the 

size of the model (number of parameters).  

corrected AIC (AICc) (Hurvich and Tsai 1989) is defined as:  
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with “n” representing the calibration sample size. For large n, AICc converges to 

AIC. Bayesian information criterion (BIC) and Consistent Akaike information criterion 

with Fisher information (CAICF) are given by Eqs. 20-21: 

   ,log.log2 nKLBIC         (20) 

      ,ˆlog2loglog2 InKLCAICF 
     (21) 

where 
 ̂log I

 is the natural logarithm of the determinant of the estimated Fisher 

information matrix. Bozdogan (1988) proposed a criterion which is close to CAICF and is 

based on a concept of complexity.  

Mallows’s Cp, considers the minimum mean squared error model selection for 

regression, and is completely discussed by Mallows (1995). Considering the kn matrix 

of X; P as any subset of K = {1, 2… k}; XP the sub-matrix of X and  2ˆ
PPP XXPE    



 29

,2
ˆ 2

pn
RSS

C P
P 


        (22) 

where  2ˆ
PPP XyRSS   and  kn

RSSK


2̂ .  

Considering the methods based on information criteria, predictions of the test cases 

were performed by two approaches which included the averaging of a small number of 

selected models (represented by ‘m’) or using the model averaged coefficients 

(represented by ‘avgcf’) (Burnham and Anderson 2002).  

g. Complex Methods 

In Bayesian Model Averaging (BMA) each ensemble member ‘ iX ’ is used in an 

individual probability distribution function  iXyp , which is the PDF of the hydro-

climate variable ‘y’ conditional on model iX  being the best ensemble member. The 

posterior probability of each model iX   given the observed data O (i.e.  OXp i ) is 

considered as the weight associated with that model reflecting its relative performance in 

the training period. Hence the BMA weights are probabilities and are summed up to 

unity. The resulting PDF associated with ‘y’ is a weighted average of each constituent 

PDF.  

Table	6.	Summary	of	the	multi‐modeling	averaging	methods.		
	 Multi-Modeling Approach Acronym 

Simple 
Models 

Equal Weight Average EWA 
Median Med 
Bates-Granger BGA 
Constrained Granger Ramanathan Average  CGRA 
Unconstrained Granger Ramanathan Average UCGRA 
Generalized Linear Model GLM 

Intermediate 
Models 

Principal Component Regression (1:4 components) PCR 
Partial Least Square Regression (1:4 components) PLSR 
Akaike Information Criteria  AIC 
corrected Akaike Information Criteria  AICc 
Bayesian Information Criteria  BIC 
Consistent Akaike information criterion with Fisher 
information 

CAICF 

Mallows’s Cp Information Criteria  Cp 
Bozdogan’s Index of Informational Complexity  ICOMP 

Complex 
Models 

Bayesian Model Average in Linear Regression Model BMA-LR 
Bayesian Model Average in Generalized Linear Model BMA-GLM 
Bayesian Model Average with EM algorithm BMA-EM 
Bayesian Model Average with MCMC algorithm BMA-MCMC 
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h. Bootstrapping 

A bootstrap approach is used to verify the performance of multi-model ensemble 

merging techniques. Considering M individual forecast models, and P years of available 

observed datasets, each ensemble merging technique is trained based on 70% of sampled 

datasets to perform the multi-model averaging and predict the remaining time series of 

observed seasonal streamflow data. This process is repeated for 200 times (with sample 

replacement) resulting in different predictions of each observed flow (yi) based on 

varying sets of training datasets. The means of predictions for each seasonal streamflow 

are then taken as the final multi-model prediction (Jiang and Simon 2007).  

i. Results 

Figure 14 shows the root mean square error (RMSE) and BIAS of all multi-models 

and individual forecast models for each river basin (each panel). Regarding Dworshak, 

four of the simple multi-model ensemble averaging techniques and one of the complex 

techniques outperformed the best individual model forecast according to RMSE which 

include simple average, median, Bates-Granger and constrained linear regression along 

with BMA optimized by expectation maximization (BMA-EM). Increasing the number of 

principal components in PCR and PLSR has resulted in increased RMSEs. GLM and 

BMA-LR1 performed weakly while intermediate methods generally showed average 

performance. The individual model forecasts are all positively biased. The multi-model 

ensemble averaging methods which showed improvements based on RMSE, generally 

improved the BIAS as well. It should be noted that BIAS is a measure of correspondence 

between the average forecast and the average observed streamflow. Therefore, improving 

BIAS alone does not indicate the good performance of the multi-modeling approach. For 

example, although PCR4 and PLSR4 have considerably improved based on the BIAS, the 

corresponding RMSEs have increased indicating that their accuracies are reduced.  

Regarding Lake Granby, similar to Dworshak, the simple average, median, Bates-

Granger and constrained linear regression methods showed the best results. Although 

they did not outperform the best individual forecast model, their performances were 

close. PCR1, PCR2 and BMA-EM also performed better than most of the individual 

models according to RMSE measure. Increasing the number of principal components in 

PCR and PLSR resulted in increased RMSE values. Also GLM showed a weak 

performance compared to the other models. All the individual model forecasts are 



 31

positively biased as well. The multi-model ensemble averaging methods generally 

improved the overall individual model forecast biases.  

Regarding the Libby basin with only three forecast models, the simple average, 

median and BMA-EM methods outperformed the best individual forecasts, while Bates-

Granger and constrained linear regression showed close performances to the best 

forecast. Generally the intermediate and complex multi-models showed weak 

performances according to the RMSE accuracy measure. Similar to Dworshak and 

Granby, the individual model forecasts are, in average, positively biased.  

 

Figure 14. Comparison between model combination techniques (plus sign) and individual forecast 
models (horizontal lines) for each river basin based on (a) RMSE expressed in kaf; (b) percent 
Bias (1 kaf is approximately 1.23 million m3) 
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Multi-model ensemble averaging methods showed significant improvements over the 

individual model forecasts for the Rogue River basin. In addition to the simple average, 

median, Bates-Granger, constrained linear regression and BMA-EM methods, which 

showed considerable improvements in the other basins, other multi-modeling approaches 

based on information criteria and Bayesian Model Averaging, including BMA-GLM, 

BMA-MCMC, and BMA-LR, outperformed most of the individual model forecasts. 

Several intermediate and complex models outperformed the simple multi-models as well, 

except for UCGRA. Here, increasing the number of principal components in PCR and 

PLSR improved the performance by decreasing the RMSE values. Contrary to the other 

basins, the individual forecasts of the Rogue basin show both positive and negative 

average biases, providing sufficient spread around the observed flow.   

 The multi-model performances depend upon the weights that are assigned to each 

seasonal forecast model. Figure 15 shows that the relative distribution of weights 

assigned by two distinct multi-modeling methods (simple vs. complex) varies between 

the basins. In Dworshak and Granby the weights show different patterns; for example, 

BMA-EM assigns a large weight on ESP model forecast in Granby basin while the Bates 

Granger model (BGA) assigns the lowest weight. However, in Rogue basin, both BMA 

and BGA assign similar weights to the individual forecasts with ICA receiving the 

highest. 

 

Figure 15. Weights corresponding to individual models based on Bates-Granger and Bayesian 
model averaging methods; individual forecasts are sorted from the best to worst for each basin 
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In the Bates-Granger method the individual models are weighted based on their errors 

in the calibration period as shown in Figure 15 (individual models are sorted from left to 

right). However the weights in BMA-EM reflect the probability of each model given the 

observed data which are obtained from maximum likelihood estimation. Results of Figure 

15 shows that the weights assigned to the individual models based on BMA-EM 

approach do not necessarily correspond to their errors in the training period. Previous 

studies showed that individual models which perform well in the calibration period do 

not necessarily enhance the multi-model results (Viney et al. 2009), therefore assigning 

larger weights to best models does not guarantee the better performance of the multi-

model approach. 

Model Combination methods commonly provide uncertainty bounds except for 

simple mean and median. The 90% confidence intervals of three multi-model ensemble 

averaging methods with different complexities are shown over the entire periods (Figure 

16). Regarding the Dworshak River basin, most observed flows lie within the ranges of 

combination approaches. BMA-LR and AIC show smaller uncertainty ranges compared 

with GLM. Highest GLM uncertainty ranges occur in 1996, 1997 and 1999. In 1984, 

1985 and 1995 the observed flow is outside the confidence ranges of all multi-models. 

For the Granby basin BMA-LR and AIC models perform similarly and show smaller 

ranges of uncertainties compared to GLM. Similar to the results given for Dworshak and 

Granby, the GLM uncertainties are large in the Libby basin and AIC and BMA generally 

well capture the observed flows as in 1999. As for other basins, most of the observational 

values are within the ranges of the simulations with respect to the Rogue basin. The GLM 

again shows the largest uncertainty range; however, BMA and AIC generally outperform 

the GLM.  

The performances of the multi-models in different categories of simple, intermediate 

and complex are also compared for each basin for the last ten years of the forecasts 

(Figure 17). Each box plot shows the ranges of the multi-model results for each category 

along with the parameter uncertainties from bootstrapping. Results show satisfactory 

performance of multi-model forecasts in general and that different models with different 

complexities approximately perform similarly. Generally, in circumstances where the 

simple models were incapable of capturing the observations, the more complex models 

also showed similar behaviour; examples are Dworshak-1999, Granby-2002, Libby-2000, 

and Libby-2002. However, it should be noted that complex models such as Bayesian 
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Model Averaging method provide a probabilistic approach to quantify the between model 

and within model uncertainties corresponding to the resulting forecasts. 

 

Figure 16. Ninety percent multimodel predictive bounds for each basin; observed seasonal flow is 
shown by a black diamond  
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Figure 17. Comparison between the performance of multimodels with different complexities: (a) 

Dworshak; (b) Granby; (c) Libby; (d) Rogue 
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The distributions of all model combination approaches (i.e. the median forecasts from 

combined models along with the bootstrapping uncertainty ranges) are shown for 

Dworshak basin in Figure 18. Results show that individual model predictions with more 

spread around the observations tend to enhance the model combination estimates as in 

1994, 1996 and 2000. In situations where all individual forecasts are positively or 

negatively biased the resulting multi-model ensemble average is incapable of accurately 

simulating the observations as in 1995, and 1999.   

 

Figure 18. Comparison between model combination strategies (distributions) and individual 
model forecasts (plus sign) with observed flow (vertical lines) for Dworshak River basin 

 

Increasing the number of individual models is one way to increase this spread, as 

shown for Granby River basin in Figure 19; however care should be taken to prevent 

over-fitting of model combination parameters. Considering the Libby basin (Figure 20), 

both proper spread of individual simulations (as in 1994) and their accuracies (1995) 

have positively affected the multi-modeling performance. In 1998, although multi-

modeling spread is significantly wide it does not include the observation because of 

inaccurate forecasts and their narrow spread.  
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Figure 19. Comparison between model combination strategies (distributions) and individual 
model forecasts (plus sign) with observed flow (vertical lines) for Granby River basin 

 

 

 

Figure 20. Comparison between model combination strategies (distributions) and individual 
model forecasts (plus sign) with observed flow (vertical lines) for Libby River basin. 
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Regarding the Rogue basin, individual forecast spread shows an important role in 

multi-modeling performance (Figure 21). While fewer individual models present accurate 

results, the wide spread between models has improved the overall performances of the 

multi-modeling techniques, in particular the intermediate and complex models as 

discussed previously. We also note that parameter uncertainty ranges arising from 

bootstrapping approach are small compared to variations between model averaging 

techniques (not shown). 

 
 

Figure 21. Comparison between model combination strategies (distributions) and individual 
model forecasts (plus sign) with observed flow (vertical lines) for Rogue River basin 

 
 

Analyses showed that multi-model ensemble merging of seasonal forecasts issued by 

different agencies can be considered as an effective approach to increase the accuracy 

and reliability of seasonal forecasts. Performance of the multi-modeling techniques 

varied depending on the study region, number of individual forecast models and their 

performances. In three of the studied regions, where the overall biases of all the 

individual model forecasts were positive, the performances of more complex multi-

modeling methods were inferior compared with the ones in Rogue basin in which both 

positive and negative forecast biases existed. The bootstrapping approach used in this 

study provided reliable multi-modeling assessments and quantified the parameter 

uncertainties. 
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Results of this study suggest that simple averaging techniques such as mean, median, 

Bates-Granger and constrained multiple linear regression along with the complex BMA-

EM approach, generally outperform most of the individual model forecasts as well as 

other multi-model ensemble averaging techniques. In several circumstances, as in 

Dworshak, they also outperformed the best individual forecast model. In Rogue basin 

with the individual forecast having both positive and negative biases, most of the multi-

model averaging techniques, in particular the intermediate and complex methods, 

performed satisfactorily and improved the majority of the individual model forecasts. In 

addition, the information based methods performed similarly to one another and were less 

sensitive to the choice of the penalty functions.  Simple multi-modeling methods such as 

GLM provided larger uncertainty bounds compared with the information based methods 

and BMA.  

Although GLM performance is weaker than the other multi-model averaging 

techniques and most of the individual models, it does not show a significantly poor 

performance. However, the GLM performance is weaker compared to the others and not 

recommended for multi-modeling purposes based on the results of this study (by 

assuming a gamma distribution with a logarithmic link function). We also note that few 

other multi-modeling techniques including PCR4 and PLSR4 as well as BMA-LR and 

methods based on information criteria might provide results that are weaker than the 

worst individual forecast.  

Model combination of seasonal forecast models is influenced by the availability of 

sufficient observations. Care should be taken to avoid over-parameterization of the multi-

modeling techniques. Provision of sufficiently long data series would result in better 

optimizations of the multi-model parameters. The results of the model combination 

techniques presented here also depend on choosing the widely used RMSE as the 

performance measure. Moreover, most of the models were calibrated based on 

minimization of the squared error except for BMA in which individual model weights 

were obtained from maximum likelihood.  

 
H. Integration of Multimodeling Framework with FEWS/CHPS 

The Flood Early Warning System (FEWS) provides a framework for deploying and 

passing time series information, intended for use in models utilized for flood forecasting. 

Within this framework, FEWS passes information across a “Published Interface”, via xml 

files, to allow the end-user to adapt any model to their system. This has been performed 
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for the National Weather Service to create CHPS with the OHDFewsAdapter 

(documented at ftp://hydrology.nws.noaa.gov/pub/CHPS/For_Software_Developers/).  

This adapter is the insertion point in CHPS, translating the Published Interface files into a 

framework more conducive to running Office of Hydrologic Development (OHD) 

models. As shown in Figure 22, the OHDFewsAdapter takes the files passed through the 

Published Interface, instantiates the model driver, and then the driver passes any other 

necessary information through xml or text files to the models itself. This allows any 

model, whether or not it is written in Java, to be adapted to the CHPS framework. 

 Figure 22. Flow chart of FEWS and CHPS 
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a. Challenges of Bringing Multi-modeling into CHPS 

FEWS and CHPS are developed to run a single model simulation at a time. In order 

to make this system as modular, and therefore flexible, as possible, FEWS/CHPS pass 

much of their information through xml files. By passing information through xml files, 

via the FEWS published interface, a subsequent model can be adapted to an existing 

system, without any additional software development to FEWS or CHPS. The flow of 

data in the FEWS/CHPS system is shown in Figure 22. In this figure, xml files are used 

to pass information across the published interface, and between the OHDFewsAdapter 

and the actual model drivers.  

Data flow for Multi-modeling which was developed as part of Data Assimilation 

system differs from that of FEWS. The model simulations are performed in an ensemble 

loop, during each time-step. This requires the model simulations to be stopped at each 

time-step, and subsequent models run before moving on to a further time-step. Since 

FEWS ships whole time-series’ to a model, one at a time, updates in a sequential manner 

become quite challenging. If a model is to be run one step at a time, in an ensemble 

fashion, the computational demand will become excessive. Due to the number of xml 

files that need to be passed at each model run, for each ensemble member, it is infeasible 

to run ensemble simulations without significant software development on the CHPS side.  

b. Development of Multi-modeling within CHPS 

A class for running an ensemble model was developed, which is called the 

StocasticModel. This class houses all of the instantiated models, and will run or 

manipulate the Data Assimilation Driver when told to do so. Within this class, a sampling 

utility, named samplingUtils, will perform all of the error sampling necessary to run an 

ensemble simulation. It also applies the DA algorithm when an observation is provided. 

As of the focus in this study, this class is capable of either performing the multi-model 

averaging with statistic weights (Simple Model Averaging) or dynamic weights (BMA), 

whenever it is necessary (Figure 23). 
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Figure 23. Implementing BMA into StochasticModel 

 

Figure 24. Parameters introduced for Multi-modeling 

 

c. Example Study 

One case study is performed here to verify the utility of the CHPS Multi-modeling 

framework developed. This is conducted in the Johnson Creek in Northern Oregon using 

the observed precipitation and temperature data, estimated potential evapotranspiration 

data and model parameters provided by the Northwest River Forecast Center (NWRFC). 

Here, the simulations are performed from October 1st 1980 to September 30th 1989 

providing 10 years of analysis for calculating performance metrics.  

In this basin, the NWRFC routinely provides forecasts of flow at the Sycamore 

gaging station (SYCO3). Experiment was performed using SACSMA and HYMOD 
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models in SYCO3. Evaluation of BMA was done by comparing the results with the ones 

from multi-modeling with static weights (0.5 for each model). In this scenario, 6- hourly 

forecasting experiment is performed. The comparison of Simple Model Averaging 

(SMA) and the true streamflow is presented in Figure 25. The comparison of Bayesian 

Model Averaging (BMA) and the true streamflow is presented in Figure 26.  Note that 

this figure only takes a short time window from the 10 year simulation period to make 

differences between the forecast and truth more visible. From Figure 25, it can be seen 

that the SMA is biased low, in comparison to the true streamflow. After applying the 

BMA (Figure 26), the forecasts are shifted towards the truth, indicating that the BMA 

reduces error. Further evidence of this reduction in error is provided in Table 6. This 

suggests that the BMA improves short-term streamflow forecasting in comparison to the 

SMA. 

 

Figure 25. Streamflow forecasting experiment with Simple Model Averaging (SMA) for Johnson 
Creek at Sycamore (SYCO3) 

 

 

Figure 26. Streamflow forecasting experiment with Bayesian Model Averaging (BMA) for 
Johnson Creek at Sycamore (SYCO3) 
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Table 6. Comparison of performance measures from both SMA and BMA 

Measures Simple Averaging BMA 

KGE 0.71 0.79 

NSE 0.65 0.77 

 

I. Publications, Presentations, and Technology Transfer Activities 

Several in person communications were conducted to increase the relevance of this 
work to operational forecasters. In addition, dissemination of research findings was 
carried out through refereed publications, invited presentations and other presentations 
(in particular at FEWS day User workshop organized in Portland, OR), and meetings.    

 

a. Refereed Publications 

 

 Khajehei, S. and H. Moradkhani (revision submitted), Towards an Improved 
Ensemble Precipitation Forecast: A Probabilistic Post-processing Approach, J. of 
Hydrology. 

 Najafi, M.R. and H. Moradkhani (2015), Towards Ensemble Combination of 
Seasonal Streamflow Forecasts, Journal of Hydrologic Engineering, 
10.1061/(ASCE)HE.1943-5584.0001250. 

 Madadgar, S. and H. Moradkhani (2014), Improved Bayesian Multi-modeling: 
Integration of Copulas and Bayesian Model Averaging, Water Resources 
Research, 50, 9586–9603, DOI: 10.1002/2014WR015965. 

 DeChant C.M., and H. Moradkhani (2014), Toward a Reliable Prediction of 
Seasonal Forecast Uncertainty: Addressing Model and Initial Condition 
Uncertainty with Ensemble Data Assimilation and Sequential Bayesian 
Combination, Journal of Hydrology, special issue on Ensemble Forecasting and 
data assimilation, DOI: 10.1016/j.jhydrol.2014.05.045. 

 DeChant, C.M. and H.  Moradkhani (2014), Hydrologic Prediction and 
Uncertainty Quantification, Handbook of Engineering Hydrology, CRC press, 
Taylor & Francis Group, pp. 387–414. 
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 Moradkhani, H., C.M. DeChant and S. Sorooshian (2012), Evolution of Ensemble 
Data Assimilation for Uncertainty Quantification using the Particle Filter-Markov 
Chain Monte Carlo Method, Water Resources Research,48,W12520. 

 Madadgar, S., Moradkhani, H., and Garen, D. (2014), Towards Improved Post-

processing of Hydrologic Forecast Ensembles, Hydrological Processes, 28 (1), 

104-122, doi: 10.1002/hyp.9562. 

 Parrish, M., Moradkhani, H., and DeChant C.M. (2012), Towards Reduction of 

Model Uncertainty: Integration of Bayesian Model Averaging and Data 

Assimilation, Water Resources Research, 48, W03519, 

doi:10.1029/2011WR011116. 

 Najafi, M.R., Moradkhani, H., and Piechota, T., (2012), Ensemble Streamflow 
Prediction: Climate Signal Weighting vs. Climate Forecast System Reanalysis” 
Journal of Hydrology, 442 –443, 105–116.   

b. Invited Presentations 

 
 How to Enhance Hydroclimate Forecasting for Water Resources and Emergency 

Management, USACE, Engineering Research and Development Center, March 

2016. 

 Hydrologic Forecasting, Data Assimilation and Post-processing, FEWS user’s day 

workshop, Portland, March 2016. 

 Enhancing Seasonal Forecasting by Multi Modeling, University of Oulu, Finland, 

February 2016.  

 Remotely Sensed Satellite Data Assimilation: State-of-the art of Ensemble 

Inference in Hydrogeophysical Applications, University of New South Wales, 

June 2015. 

 Enhancing Drought Forecasting Reliability in Presence of Uncertainties, AGU 

Fall Meeting, December 2014.  

 Toward a More Effective Postprocessing of Hydrologic Forecasts by Copula-

Embedded Bayesian, American Geophysical Union, San Francisco, December 

2014. 
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 State-of-the-Art of Ensemble Land Data Assimilation in Hydrometeorological 

Forecasting:  the Value of Remotely-Sensed Satellite Observation, 10th 

International Civil Engineering Conference, Tabriz, May 2015. 

 Combined Data Assimilation and Multimodeling for Seasonal Hydrologic 

Forecasting- A more Complete Characterization of Uncertainty, 

CAHMDA/DAFOH workshop, Austin, TX, September 2014.  

 Merging Hydrologic Data Assimilation with multi-modeling for operational 

forecasting, Beijing Normal University, Beijing, China, May 2014. 

 Quantifying the Uncertainty in the Assessment of Climate Change Impact on 

Hydrologic Extremes using Hierarchical Bayesian Modeling, Society for 

Industrial and Applied Mathematics   (SIAM),   symposium   on   Uncertainty   

Quantification   and Reduction   in Environmental Fluids, Savannah, Georgia, 

March 2014. 

 Assessment of Climate Change Impact on the Hydrology of the Columbia 

River Basin Using Multi-modeling, International Columbia Basin Climate and 

Hydrology Assessment Workshop, Portland, Oregon, January 2014. 

 Towards Improved Ensemble Hydrologic Forecasting:Postprocessing or Data 

Assimilation? University of Arizona, Department of Hydrology and Water 

Resources, Tucson, Arizona, October 2013.  

 The value of in-situ and Remotely Sensed Data Assimilation for 

Hydrometeorologic Forecasting: From Theory to Operation, Eawag, Swiss 

Federal Institute of Aquatic Science and Technology, Zurich, Switzerland, May 

2013.  

 Recent   Advancement   in   Ensemble   Data   Assimilation   for   Reduction   

of Uncertainty in WATGLOBE, Terrestrial Hydrologic Modeling, at Terrestrial 

Water Cycle Observation and Modeling from Space, Land Data Assimilation, 

Chinese Academy of Science, Beijing, China, April 2013. 

 A  New  Postprocessing  method  for  improved  ensemble  forecasts,  AGU,  

San Francisco, December 2012. 

 The Pursuit of Hydrologic Data Assimilation: Robustness and Reliability in State 

and Parameter Estimation, AGU, San Francisco, December 2012. 
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 Combining Statistical  and  Ensemble  Streamflow  Predictions  to  Cope  with 

Consensus Forecast, AGU, San Francisco, December 2012. 

 Toward Improved Reliability of Seasonal Hydrologic Forecast: Accounting for 

Initial Condition and State-Parameter Uncertainties, AGU, San Francisco, 

December 2012. 

 Towards Improved Reliability and Reduced Uncertainty of Hydrologic Ensemble 

Forecasts Using Multivariate Post-processing, 2012 International Workshop on 

Hydrological Ensemble Prediction Experiment, Beijing Normal University, 

Beijing, China, October, 2012. 

 The Quest of Ensemble Data Assimilation: From Theory to Operation, 

Hydrologic Research Center, San Diego, October, 2012. 

 Advances in Ensemble Data Assimilation With Operational Implications, 2nd 

International Workshop on Data Assimilation for Operational Hydrologic 

Forecasting and Water Resources Management, Incheon, Korea, September 2012.  

 Ensemble Forecasting, Statistical Forecasting or Multimodeling?  From Theory to 

Operation, Hydrologic Research Center, San Diego, CA, October, 2012. 

 

c. Other Presentations 

 

 Post-processing of multi-hydrologic model simulations for improved streamflow 

projections, EGU General assembly, Vienna, 2016 

 Accounting for combined effect of initial condition and model uncertainty in 

seasonal forecasting through data assimilation, HEPEX workshop on Ensemble 

for better hydrological forecasts, Quebec, Canada, June 2016. 

 From meteorological to hydrological postprocessing: the quest for an effective 

approach, HEPEX workshop on Ensemble for better hydrological forecasts, 

Quebec, Canada, June 2016. 

 Reducing Uncertainties of Hydrologic Model Predictions Using a New Ensemble 

Pre-Processing Approach, AGU fall Meeting, December 2015. 
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 Dynamically Evolving Models for Dynamic Catchments: Application of the 

Locally Linear Dual EnKF to a Catchment with Land Use Change, AGU fall 

Meeting, December 2015. 

 Comparison of Two Global Sensitivity Analysis Methods for Hydrologic 

Modeling over the Columbia River Basin, AGU fall Meeting, December 2015. 

 Reducing Uncertainties of Hydrologic Model Predictions Using a New Ensemble 

Pre-Processing Approach 

 Dynamically Evolving Models for Dynamic Catchments: Application of the 

Locally Linear Dual EnKF to a Catchment with Land Use Change 

 Comparison of Two Global Sensitivity Analysis Methods for Hydrologic 

Modeling over the Columbia River Basin 

 Evaluating the Potential Use of Remotely Sensed Soil Moisture Data for 

Agricultural Drought Risk Monitoring 

 A Regional Bayesian Hierarchical Model for Flood Frequency Analysis In 

Oregon, AGU Chapman Conference, Portland, July 2013. 

 Evaluating Multi-Modeling Techniques with Varying Complexities for Seasonal 

Hydrologic Forecasts, AGU Chapman Conference, Portland, July 2013. 

 Understanding the effects of initial condition and model structural uncertainty in 

seasonal hydrological forecasts with data assimilation and Bayesian model 

averaging, AGU Chapman Conference, Portland, July 2013. 

 A Probabilistic Framework for predicting the Spatial Variation of Future 

Droughts, AGU Chapman Conference, Portland, July 2013. 

 Toward Improving the Multi-modeling Hydrologic Forecasting: Integration of 

Data Assimilation and Bayesian Model Averaging, at Operational River Flow 

And Water Supply Forecasting, Vancouver, British Columbia V6B 5K3, Canada , 

October 2011. 

 Implication of Data Assimilation in Ensemble Streamflow Prediction, at 

Operational River Flow And Water Supply Forecasting, Vancouver, British 

Columbia V6B 5K3, Canada , October 2011. 

 Volumetric Streamflow Prediction; Comparing Historical Resample vs. Climate 

Model Forcing Data, AGU Fall Meeting, San Francisco, CA, Dec. 2011. 
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 Utilizing Data Assimilation Techniques to Improve the Characterization of Initial 

Condition for Ensemble Streamflow Prediction, American Geophysical Union, 

San Francisco, Dec. 2011.  

 Examining the Ability of Sequential Data Assimilation Methods to Accurately 

Quantify the Uncertainty in Hydrologic Forecasting, American Geophysical 

Union, San Francisco, Dec. 2011. 

d. Organizing Conference and Workshop Sessions 

 Panel Discussion: State-of-the-Art of Uncertainty Analysis in Hydroclimate 

Modeling, World Water Congress, Florida, May 2016. 

 From hydroclimate forecasting to water resources decision-making, AGU Fall 

Meeting, December 2016.  

 Hydroclimatic Extremes: Drought, AGU Fall  Meeting, December 2016 

 Advances in Hydrometeorological Extremes Forecasting: Estimation, Integrated 

Risk Analysis, and Applications, AGU Fall  Meeting, December  2015  

 Hydroclimatic Extremes: Drought, AGU Fall Meeting, December 2015. 

 Guest Editor: Special issue  as guest editor in Journal of Hydrology on 

“Hydrologic Ensemble Prediction and Data Assimilation for Operational 

Hydrology and Water Resources Management  

 Chaired the technical program committee of AGU Chapman Conference, July 

2013, Portland State University, Portland  

 Co-organized several sessions for AGU fall meeting, San-Francisco, December 

2013. Topic: Advances in Hydrometeorological Predictions and Applications  

 Organized a half-day meeting with project partners (mainly NWRFC and NRCS 

staff) to go over the progress made on the project and discuss the data and 

modeling limitations. June 2013. 

 Co-organized and Chaired: Advances in Hydrometeorological Predictions and 

Applications, American Geophysical Union, December 2012. 

 Co-Chaired-   Land   Data   Assimilation   Session,   WATGLOBE   Workshop,   

Chinese Academy of Science, Beijing, China, April 2013. 
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 Developed several communications with OHD about having CHPS training for 

incorporation of our methods. We would have liked to have the training at OHD 

but certain complications on the security issues did not let the training be 

conducted at OHD. Therefore, we have now planned the webinar training 

tentatively planned by CHPS staff in January.  

 Co-organized the 2nd International Workshop on Data Assimilation for 

Operational Hydrologic Forecasting and Water Resources Management, Incheon, 

Korea, September 2012. 

 

e. Theses and Dissertations 

 Sepideh Khajehei (M.S. 2015), Multivariate Method for Generating Ensemble 
Climatologic Forcing Data for Hydrologic Applications, Portland State 
University. 

 Caleb DeChant (Ph.D. 2014), Assessing the Impacts of Physically-Based Land 
Surface Water Storage Estimation on Hydrological Droughts, College of 
Engineering Dean’s list/Outstanding Doctoral Student, Portland State University. 

 
 Shahrbanou Madadgar (Ph.D. 2014), Towards Improving Seasonal Drought 

Prediction under Hydroclimate Uncertainties, First Female Doctoral Graduate 
Student in Civil & Environmental  Engineering, Portland State University. 

 
 Mohammad Reza Najafi (Ph.D 2013), Climate Change Impact on the Spatio-

Temporal Variability of Hydro-Climate Extremes by Means of Bayesian 
Hierarchical Modeling, Outstanding Graduate Student of the Year, Portland State 
University. 
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