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Chapter 1: Executive Summary 
 

This CSTAR project assembled and tested a multimodel regional hydrological ensemble 

prediction system (RHEPS) to make recommendations about the implementation of such system, 

and its various system components (e.g., weather ensembles, statistical processors and 

hydrological models), in operational settings. A central goal of the project was to design and 

implement the RHEPS to emulate realistic and relevant operational forecasting conditions. This 

allowed us to evaluate potential improvements to the RHEPS that are applicable to operational 

forecasting. The project was implemented in the Middle Atlantic River Forecast Center 

(MARFC) geographical domain in collaboration with the MARFC. However, one critical task of 

the project, namely the verification of different ensemble precipitation forecast products, was 

implemented over the geographical domain of the eastern US, in collaboration with the eastern 

RFCs and the Weather Prediction Center. 

The project entailed the execution of the following three main tasks:  

i) Comprehensive verification of ensemble precipitation forecasts for the eastern US  

ii) Development, implementation and evaluation of both statistical weather and 

hydrological processors for application in operational forecasting 

iii) Development, implementation and evaluation of a multimodel regional hydrological 

ensemble prediction system (RHEPS) consisting of: weather ensembles, relevant 

hydrometeorological data, statistical processors, and multiple hydrological models. 

The hydrological models employed were WRF-Hydro, HL-RDHM and Continous-

API. 

The specific results and outcomes from these tasks are detailed in the main body of this 

report. Chapters 2 and 3 include the verification of GEFS, SREF, and WPC-PQPF precipitation 

ensembles over the eastern US. Chapters 4-6 use the RHEPS to propose and evaluate different 

statistical processors for both weather and hydrological ensembles. Chapter 7 concludes with the 

implementation and evaluation of the multimodel RHEPS. Each chapter includes 

recommendations relevant to operational hydrometeorological forecasting. 

The main outcome of the project was to demonstrate that a multimodel RHEPS is able to 

improve the skill of ensemble streamflow forecasts more than increases in the ensemble size of a 

single model. This is relevant to operational forecasting because generating many ensembles in 

real time is often not feasible or realistic, and may not be as effective if skill enhancements are 

dominated by model diversity (multimodel information). The project also found that streamflow 

forecasts tend to be skillful up to lead times of 7 days, with streamflow postprocessing enhancing 

forecast skill up to 2 days. Overall, the project results and outcomes provide numerous 

recommendations, as presented in each chapter, for enhancing ensemble streamflow forecasting 

in operational settings.  
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Chapter 2: Verification of the GEFS and SREF precipitation 

ensembles over the middle-Atlantic region 
 

ABSTRACT 

Accurate precipitation forecasts are required for accurate flood forecasting. The structures of 

different precipitation forecasting systems are constantly evolving, with improvements in 

forecasting techniques, increases in spatial and temporal resolution, improvements in model 

physics and numerical techniques, and better understanding of, and accounting for, predictive 

uncertainty. Hence, routine verification is necessary to understand the quality of forecasts as 

inputs to hydrologic modeling. In this study, we verify precipitation forecasts from the National 

Centers for Environmental Prediction (NCEP) 11-member Global Ensemble Forecast System 

Reforecast version 2 (GEFSRv2), as well as the 21-member Short Range Ensemble Forecast 

(SREF) system. Specifically, basin averaged precipitation forecasts are verified for different 

basin sizes (spatial scales) in the operating domain of the Middle Atlantic River Forecast Center 

(MARFC), using multi-sensor precipitation estimates (MPEs) as the observed data. The quality 

of the ensemble forecasts is evaluated conditionally upon precipitation amounts, forecast lead 

times, accumulation periods, and seasonality using different verification metrics. Overall, both 

GEFSRv2 and SREF tend to overforecast light to moderate precipitation and underforecast 

heavy precipitation. In addition, precipitation forecasts from both systems become increasingly 

reliable with increasing basin size and decreasing precipitation threshold, and the 24-hourly 

forecasts show slightly better skill than the 6-hourly forecasts. Both systems show a strong 

seasonal trend, characterized by better skill during the cool season than the warm season. 

Ultimately, the verification results lead to guidance on the expected quality of the precipitation 

forecasts, together with an assessment of their relative quality and unique information content, 

which is useful and necessary for their application in hydrologic forecasting. 

 

1. Introduction 

Floods are one of the major natural threats to human life and property (Hegger et al., 

2014; Milly et al., 2002; Pall et al., 2011; Pielke and Downton, 2000). In the United States (US) 

alone, floods have caused annually since 1990 more than US$5 billion worth in damages and a 

significant death toll (Downton et al., 2005; Morss et al., 2005; Schildgen, 1999). Globally, flood 

losses (adjusted for inflation) have increased from an average of US$7 billion/year in the 1980s 

to some US$24 billion/year in the period 2001-2011 (Kundzewicz et al., 2014). With burgeoning 

human population and urbanization, flood risks and vulnerabilities are increasing with time such 

that floods, if not properly mitigated, could become more destructive and costlier disasters in the 

future (Bouwer, 2010; Changnon, 1998; McCarthy, 2001; Morss et al., 2005). Since floods 

mostly occur for natural reasons and flood control and management with limited resources is a 

complex challenge, reliable and skillful flood forecasts are needed. Indeed, flood forecasts can 

contribute to reducing flood damages and protecting life and property (Kelsch et al., 2001; 

Montz and Gruntfest, 2002; Pagano et al., 2014). They can also provide necessary information 

for developing decision making tools and implementing improved flood control measures 

(Demargne et al., 2010). 

y of streamflow forecasts relies heavily on a proper understanding of hydrological and 

meteorological uncertainties (Brown et al., 2012; Demeritt et al., 2007; Pappenberger et al., 

2008). Uncertainties in the precipitation forcing can contribute significantly to uncertainties in 



 
 

the streamflow forecasts (Cloke and Pappenberger, 2009; He et al., 2009; Kobold and Suselj, 

2005; Schaake et al., 2007). Indeed, accurate precipitation forecasts, as well as temperature, are 

essential for producing skillful streamflow forecasts (Brown et al., 2012; Buizza, 2008; Cloke 

and Pappenberger, 2009; Demargne et al., 2010; Voisin et al., 2010). Thus, ensemble forecasts 

are increasingly being employed to understand and quantify forecast uncertainties (Buizza et al., 

2005; Davolio et al., 2008; Demeritt et al., 2007; Epstein, 1969). Specifically, precipitation and 

temperature ensemble forecasts from different numerical weather prediction (NWP) models are 

being tested and evaluated as potential inputs to hydrologic models for improved streamflow 

forecasting (Adams and Ostrowski, 2010; Brown et al., 2012; Cloke and Pappenberger, 2009; He 

et al., 2009; Schumacher and Davis, 2010; Thielen et al., 2009). However, the structures of 

different meteorological forecasting systems are constantly evolving, with improvements in 

forecasting techniques, increases in spatial and temporal resolution, improvements in model 

physics and numerical techniques, and better understanding and modeling of uncertainty (Novak 

et al., 2013). Thus, in order to monitor and improve forecast quality, routine verification is 

required (Demargne et al., 2010; Jolliffe and Stephenson, 2012; Wilks, 2011). 

Our primary goal with this study is to verify the forecast quality of precipitation 

ensembles from two NWP models in the Middle Atlantic Region (MAR) of the US, as a 

precursor to hydrologic forecasting. Our motivation is to help inform the development and 

implementation of hydrologic models and precipitation pre-processing tools in the MAR. In this 

context, we pose the following questions: To what extent, and how, does the quality of the 

precipitation ensemble forecasts vary for different forecasting systems and quality attributes? Is 

the pre-processing of precipitation ensembles likely to result in improved forecasts in the MAR? 

How does the basin size influence the quality of the precipitation forecasts? For the NWP 

models, we use the precipitation forecasts from the National Centers for Environmental 

Prediction (NCEP) 11-member Global Ensemble Forecast System Reforecast version 2 

(GEFSRv2) and the NCEP 21-member Short Range Ensemble Forecast (SREF) system, as these 

two ensemble systems are currently being proposed and tested for operational hydrologic 

ensemble forecasting in the US (Brown et al., 2012). For the verification, we employ the 

Ensemble Verification System (EVS) developed by Brown et al. (2010). We investigate the 

forecast quality of the GEFSRv2 and SREF conditionally upon precipitation amount, forecast 

lead times, different accumulation periods, and seasonality, as well for different verification 

metrics. We verify forecasts in the MAR because of the high frequency of floods and the ability 

and potential for floods to cause devastating damages within this region of the US (Choi and 

Fisher, 2003; Najjar et al., 2000; Neff et al., 2000). 

Various verification studies have been performed for the GEFSRv2, SREF, and other 

similar forecasting systems (Baxter et al., 2014; Brown et al., 2012; Brown et al., 2014; Buizza et 

al., 2005; Charles and Colle, 2009; Demargne et al., 2010; Hamill et al., 2013; Hamill and 

Colucci, 1998; Hamill and Whitaker, 2006; Hamill et al., 2006; Jones et al., 2007; Pappenberger 

and Buizza, 2009; Schumacher and Davis, 2010; Whitaker et al., 2008; Yuan et al., 2005; Zhu, 

2005). For instance, Brown et al. (2012) verified precipitation forecasts from the SREF system 

for basins across the US, encompassing 4 different National Weather Service (NWS) River 

Forecast Centers (RFCs), while Baxter et al. (2014) verified precipitation forecasts from the 

GEFSRv2 over the southeastern US. Here we verify the GEFSRv2 and SREF using a common 

verification strategy and set of metrics.  We compare the GEFSRv2 and the SREF for the MAR, 

using multi-sensor precipitation estimates (MPEs) to verify the forecasts at multiple spatial 

scales, which are relevant for hydrologic forecasting.   



 
 

 

The paper is organized as follows. In section 2, we describe the study area and datasets 

used. Section 3 explains the methodology employed for the verification strategy. In section 4, we 

present and discuss the verification results. Lastly, in section 5, we outline the main conclusions. 

 

2. Study area and datasets 

 

2.1 Study area 

Forecast skill varies with geographic location (Baxter et al., 2014; Brown et al., 2012; 

Fan et al., 2014; Olsson and Lindström, 2008; Verkade et al., 2013), which implies that forecast 

verification should be conducted at various spatial scales and for different climate regions. 

Previously, precipitation forecasts from the GEFSRv2 and SREF were verified between regions 

in the US (Brown, 2014; Brown et al., 2012; Brown et al., 2014). To complement and expand 

these studies, we perform the verification within the MAR. Figure 1 shows the boundaries of the 

MAR which encompass the operating domain of the National Oceanic and Atmospheric 

Administration’s Middle Atlantic River Forecast Center (MARFC). 

The spatial extent of the MAR includes all of the states of Delaware and the District of 

Columbia along with parts of Maryland, New York, New Jersey, Pennsylvania, Virginia, and 

West Virginia (Polsky et al., 2000; Sinnott and Cushing, 1978). Figure 1 illustrates the 

geographic extent of the MAR. Although the MAR accounts only for approximately 5 percent of 

the total land mass of the US, 41 million people or 10% of the nation’s population reside here 

(United States Census Bureau, 2013). In fact, some of the largest metropolitan areas in the US 

are located in the MAR (see Figure 1). Further, the MAR encompasses the drainage basin of the 

following four major rivers in the US: the Delaware, Susquehanna, Potomac, and James River 

(Sinnott and Cushing, 1978). It is composed of several physiographic provinces, including the 

Coastal Plain, Appalachian Plateaus, Ridge and Valley, and Piedmont province (Fenneman and 

Johnson, 1946). Each of these provinces represents a unique combination of regional terrain 

texture, rock type, and geologic structure. These unique physical features result in characteristic 

hydrologic responses for each province, making the hydrology of the MAR diverse (Ator et al., 

2005; Rutledge and Mesko, 1996; Wardrop et al., 2005). In terms of climatic conditions, the 

MAR is relatively humid, having an average annual temperature of 11
o
C and mean annual 

precipitation of approximately 900-1000 mm (Polsky et al., 2000). Over the last century, the 

MAR has seen a notable increase in the frequency of extreme precipitation events and variability 

of climatic patterns (Karl et al., 1996). This, coupled with high levels of urbanization (Figure 1 

illustrates the extent of urbanization in the MAR), makes the MAR extremely flood prone 

(Najjar et al., 2000). 

 

2.2 GEFSRv2 

GEFSRv2 are the retrospective forecasts produced using the same atmospheric model 

and initial conditions used by NCEP’s operational Global Ensemble Forecast System (GEFS) 

(Hamill et al., 2013). For both GEFS and GEFSRv2, the perturbations of the initial conditions 

are made by the Ensemble Forecast System, but the GEFS model runs are initiated four times 

daily whereas the GEFSRv2 is initiated only once per day, at 00 UTC (Hamill et al., 2013; Wei 

et al., 2008). The forecast lead times of GEFSRv2 extend from 1 to 16 days and each forecast 

cycle consists of forecasts valid for 3 hourly accumulations from days 1 to 3 and 6 hourly 

accumulations from days 4 to16. Two different model runs with separate horizontal resolution 



 
 

are available. The first model runs (T254L42) comprise reforecasts for the first 8 days of the 

forecast cycle while the second model runs (T190L42) comprise reforecasts for the last 8 days of 

the cycle. The native grid resolution for the first and second model runs are 0.5⁰  (~55 km) and 

0.67⁰  (~73 km) Gaussian grid spacing, respectively. Figure 1a illustrates the 0.67⁰  GEFSRv2 

grid. Approximately 25 years of GEFSRv2 data have been archived. Here we used a total of 12 

years, from January 2002 to December 2013. This period was selected because the MPE data 

from 2002 to 2013 is considered to be of a relatively consistent quality as compared to the earlier 

years. Table 1 summarizes the main characteristics of the GEFSRv2. Additional information 

about the GEFSRv2 is provided by Hamill et al. (2013).  

 

2.3 SREF 

For the verification analysis, 4 years of operational SREF forecasts were available, 

ranging from January 2008 to February 2010 and from January 2012 to November 2013. A 

continuous dataset or reforecast was not available. The SREF forecasts are initiated 4 times a day 

at 0300, 0900, 1500 and 2100 UTC for the period of record used here. However, the archived 

data for the period between 2008 and 2009 only included model runs for 0300 and 2100. We are 

aware that using two model runs instead of four might add systematic variability but we chose to 

include the period 2008-2009 to reduce sampling uncertainty, as much as possible. Thus, we 

only used these two runs when performing the verification for the period 2008-2009, while the 

four daily runs were used for the period 2012-2013. Each forecast cycle comprises lead times 

from 3 to 87 hours and the forecast for each lead time is valid for 3 hourly accumulations of 

precipitation. For example, a model run at 0300 UTC will produce 3 hourly forecasts that are 

valid for the next 3, 6, 9, 12,…, and 87 hours and each of them is the accumulation of the 

preceding 3 hours of precipitation. The horizontal resolution of the SREF has been increased 

several times since it first became operational in 2001 (Du et al., 2009). The operational SREF 

started with a horizontal resolution of 40 km and it changed to 32 km in 2009. The last major 

change was made in 2012, which increased the horizontal resolution of all members to 16 km. 

Figure 1b illustrates the 32 km SREF grid. Table 1 summarizes some of the main characteristics 

of the SREF. Note that Table 1 does not include information about the evolution of model cores 

and physics in the SREF system but this and other relevant information about the SREF system 

can be found elsewhere (see, e.g., Du et al. (2009), Du et al. (2003), Du et al. (2006)).  

 

2.4 MPEs 

For this study, the GEFS and SREF forecasts were verified against MPEs. MPEs are 

currently the highest quality and most accurate estimates of spatiotemporal precipitation that are 

available, having the least amount of bias and showing maximum correlation with reference to 

independent gauge observations in the MAR (Breidenbach and Bradberry, 2001). The MPEs are 

high resolution, hourly gridded precipitation data products, which are produced by combining 

multiple radar estimates and rain gauge measurements (Seo and Breidenbach, 2002; Seo et al., 

2010; Young et al., 2000). The MPEs are available as Hydrologic Rainfall Analysis Project grids 

(Greene et al., 1979) in the polar stereographic map projection at a resolution of approximately 4 

x 4 km
2
 (Breidenbach and Bradberry, 2001). The development of the MPE products requires the 

implementation of several steps. Initially, gauge-only hourly schemes are produced using the 

Thiessen polygon method (Thiessen, 1911), together with an optimal estimation (OE) technique 

(Seo, 1998a; Seo, 1998b). Then, a radar-only scheme is produced by mosaicking two-

dimensional Digital Precipitation Array data from multiple radars (Seo et al., 2010; Young et al., 



 
 

2000). Finally, hourly radar and gauge schemes are merged into the final MPE products by 

optimally combining them using an OE technique. For each hour, forecasters at MARFC 

examine the results of automated MPE procedures, quality control gauge data, correct erroneous 

radar data, and return the multi-sensor grid generation procedures as needed. Recently, MARFC 

has started using the next generation multisensor quantitative precipitation estimates, also known 

as Q2, radar-only fields (http://www.nssl.noaa.gov/projects/q2/) as an optional input to MPE 

processes. This final MPE product is used operationally by RFCs and local NWS offices for 

different hydrologic, meteorological, and water resources applications. For the verification 

analysis, we accumulated the MPEs into 6 and 24 hourly accumulations to match the temporal 

scales commonly used in operational hydrologic forecasting. Ultimately, we utilized the MPEs to 

compute the observed mean areal precipitation and verification metrics for selected basin sizes. 

 

3. Methodology 

Meteorological ensemble forecasts are important to scientists, administrators, and 

decision makers (Brier and Allen, 1951; Cloke and Pappenberger, 2009; Jolliffe and Stephenson, 

2012; Ramos et al., 2010), among other groups of users. Depending on the application, different 

measures of forecast quality may be preferred or emphasized. Murphy (1993) identifies three 

attributes for assessing the ‘goodness’ of forecasts: consistency, quality, and socio-economic 

value. Our focus here is on the quality attribute, i.e. the degree of correspondence between the 

forecasts and observations. Wilks (2011) recommends and outlines a series of ‘scalar’ attributes, 

e.g., accuracy, reliability, resolution, discrimination, and sharpness, to determine the forecast 

quality and compare different forecast systems. Ultimately, to identify the key sources of errors 

in the forecasts and to provide supporting information to different users (Demargne et al., 2010; 

Pappenberger et al., 2008; Wilks, 2011), a pool of verification metrics needs to be employed. For 

this study, we selected verification metrics on the basis of previous results (Brown, 2014; Brown 

et al., 2012; Jolliffe and Stephenson, 2012; Wilks, 2011) as well as the needs of hydrological 

forecasters. We selected a mixed pool of deterministic and probabilistic metrics to facilitate the 

verification of the ensemble forecasts. Deterministic verification metrics evaluate the ensemble 

mean forecast, while probabilistic metrics help to evaluate the forecast probabilities, including 

the ensemble spread (Brown et al., 2010). We describe next the metrics used in this study. 

We use the relative mean error (RME) and correlation coefficient as the deterministic 

metrics. The correlation coefficient measures the degree of linear association between the 

observed and forecast variable (Murphy and Epstein, 1989). It is also a good summary measure 

of their joint probability distribution (Murphy, 1993; Murphy and Winkler, 1987). However, the 

correlation coefficient is unable to provide any direct information about the bias in the forecasts 

(Brier and Allen, 1951). Hence, we use the RME to quantify the average error between the 

ensemble mean forecast and their corresponding observations as a fraction of the average 

observed value. This error metric serves to explore the bias of a forecast system (Wilks, 2011). 

The RME is given by 

 1

1

( )
n

i i

i

n

i

i

X Y

RME

Y











  (1) 

http://www.nssl.noaa.gov/projects/q2/


 
 

where ,1
1/

m

i kki mX X


  , m  is the number of ensemble members, 
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member k  and time i , iY  denotes the corresponding observation at time i , and n  denotes the 

total number of pairs of forecasts and observed values. 

Besides deterministic metrics, we also employ probabilistic metrics, which are described 

next, to investigate the probabilistic attributes of the selected forecasting systems. To measure 

the skill of the forecasts, we use the Brier Skill Score (BSS) which is derived from the Brier 

Score (BS). The BS is a common verification metric and analogous to the mean square error 

(MSE) (Wilks, 2011). However, unlike the MSE, the BS is defined for a discrete probability 

forecast. The BS can be useful for verifying heavy precipitation because it employs the 

probability of occurrence of an event rather than focusing on the magnitude of the error between 

the forecasts and observations (Brown et al., 2010; Wilks, 2011). The BS can be expressed as 

follows: 
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Together with equations (2)-(3), the Brier Skill Score (BSS) can be computed as: 
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where mainBS  and referenceBS  are the BS values for the main and reference forecasting system, 

respectively. Thus, any positive BSS value between [0, 1] indicates that the main forecasting 

system (i.e., the system to be evaluated) performs better than the reference forecasting system. In 

this study, climatology is used as the reference forecasting system for BSS. When factoring by 

the forecast probability of occurrence, the BS can be further decomposed into contributions from 

(lack of) reliability, resolution, and uncertainty.  However, instead of using the decomposed BS 

to quantify the reliability and resolution of the forecasts, we use the so-called reliability diagram. 

The reliability diagram plots the average observed probability of occurrence of an event 

given the forecast probability, against its forecast probability of occurrence . The reliability 

diagram serves to explore the full joint distribution of forecasts and observations for a discrete 

event, and conveys information about the quality of forecasts in different ranges of the forecast 

probability distribution (Wilks, 2011). A forecasting system is perfectly reliable when the 

forecast indicates that the probability of occurrence of an event is p   and it is actually observed 

with a relative frequency of p of those occasions on which such forecasts are issued. If the 

forecast probabilities are divided into k   bins and a forecast event is defined by the exceedance 

of a threshold, q , then the average probability of the forecasts that fall in the thk  bin, kB , is given 

by 
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The corresponding average probability of the observations is given by 
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The reliability diagram plots ( )
kXF q  against ( )

kYF q  for a total number of forecasts kI  in each 

bin kB . 

The Continuous Ranked Probability Score (CRPS) measures the integral square error of 

an ensemble forecasting system (Wilks, 2011). Specifically, the CRPS is computed by 

integrating the squared difference between the cumulative distribution function (cdf) of the 

forecasts and observed values, 

 
2[ ( ) ( )] ,X YCRPS F q F q dq





    (7) 

where ( )XF q  and ( )YF q  are the cdfs of the forecast and observed variables, respectively. To 

verify a set of forecasts, the CRPS is averaged over the total number of pairs of forecast and 

observed values for the main forecasting system ( mainCRPS ).  The mean Continuous Ranked 

Probability Skill Score (CRPSS) measures the fractional improvement in CRPS of the main 

forecast system against a reference forecasting system ( referenceCRPS ), 

 
main

reference

1 ,
CRPS

CRPSS
CRPS

    (8) 

where positive scores indicate that the skill of the main forecasting system is higher than the 

reference forecasting system. In this study, we use sample climatology as the reference 

forecasting system in equation (8). 

Event discrimination is another important attribute of forecast quality. Discrimination is 

concerned with the ability of the forecasts to distinguish between occurrences and non-

occurrences of an event by forecasting a different set of probabilities for different observed 

outcomes (Jolliffe and Stephenson, 2012). Here, we use the relative operating characteristic 

(ROC) (Green and Swets, 1966) to measure event discrimination. The ROC measures the trade-

off between the fraction of forecasts that correctly predict the occurrence of an event (probability 

of detection) and the fraction that incorrectly predict its occurrence (probability of false 

detection, i.e., the risk of “crying wolf”). For a given threshold (event), the PoD is given by 
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
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where d  denotes the probability threshold at which the event triggers some action (i.e., the 

forecast is deemed an occurrence) and I denotes the indicator function. Using the same notation 

as in equation (9), the PoFD can be expressed as 
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The relationship between the PoD and PoFD is assumed to be bivariate normal such that 
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  is the cdf of the standard normal distribution, 
PoD  and PoFD  are the means while 

PoD  and 

PoFD  denote the standard deviations of the PoD and PoFD, respectively. The ROC curve plots 

the PoD (fraction of true alarms) against the PoFD (fraction of false alarms) for all possible 

values of the decision threshold, d   [0, 1], noting that an ensemble forecast is essentially a step 

function, with as many possible values of d  as the number of ensemble members. This metric is 

useful for evaluating the information content in the forecasts for large observed events or flood 

warnings, where important decisions need to be made. 

Throughout the verification analysis, we used three different precipitation thresholds to 

represent light, moderate, and heavy precipitation. The thresholds were fixed throughout the 

analysis and were determined using the entire sample of observed precipitation (i.e., from 2002 

to 2013). The thresholds are 1 mm (light), 5 mm (moderate), and 15 mm (heavy) for the 6 hourly 

accumulations, and 1, 10, and 30 mm for the 24 hourly accumulations. These thresholds 

correspond to sample climatological non-exceedance probabilities approximately equal to 0.5, 

0.9, and 0.99 for light, moderate, and heavy precipitation, respectively. 

We also used for the verification analysis three different areal extents, together with their 

corresponding observed mean areal precipitation. These areal extents are used to represent small 

(100 x 100 km
2
), intermediate (300 x 300 km

2
), and large (500 x 500 km

2
) basin sizes. To 

determine the precipitation forecasts for these areal extents, we used the areal average of the 

forecast cells within the square basin size. Further, to reduce the sampling uncertainty when 

computing the verification metrics, we selected three or more basins of the same size from 

different locations within or in close proximity to the MAR boundaries via spatial pooling. Thus, 

for a given basin size, each basin was treated as a separate verification unit that provides a new 

set of forecast and observation pairs. Then, we aggregated the verification results obtained from 

the different verification units for the same basin size and an average performance was obtained 

for the selected metric. To determine the 90% confidence intervals, we applied the block 

bootstrapping technique using a minimum of 2000 samples (Politis and Romano, 1994). 

 

4. Results and discussion 

In this section, we use the metrics described previously to assess the quality of the 

precipitation ensemble forecasts from the GEFSRv2 and SREF. This section is divided into three 

subsections. The first and second subsections describe and discuss the verification results for the 

GEFSRv2 and SREF, respectively. The verification analysis for the GEFSRv2 is conducted for 

the period between 2002 and 2013. The verification analysis for the SREF is for the period 

between January 2008 and January 2010 and between January 2012 and November 2013. The 

third subsection presents and discusses verification results for both the GEFSRv2 and SREF 

using a common period of analysis (i.e., that of the SREF).  

 

4.1 Verification of the GEFSRv2 precipitation forecasts 

Figures 2a-d show box plots of the precipitation forecast errors (forecast minus observed) 

for the GEFSRv2, arranged by increasing amount of observed precipitation, for lead times of 1, 

3, 5, and 7 days, respectively. The box plots (Figures 2a-d) are plotted for 24 hourly 

accumulations and a 100 x 100 km
2
 basin size. Figures 2a-d indicate that the GEFSRv2 

overestimates light to moderate precipitation events while it consistently underestimates heavy 



 
 

precipitation events. This trend is similar across lead times. The underestimation of heavy 

precipitation is quite noticeable in Figure 2c where the forecasts fail to capture the largest events 

by a considerable margin. The results for other basin sizes (not shown) are qualitatively similar 

to the results shown in Figure 2. Overall, Figure 2 indicates the presence of conditional biases 

(i.e., the forecast error depends on the value of the observed precipitation) in the GEFSRv2 

precipitation forecasts. Further investigation with the NWP models is required to better 

understand and assess the reasons behind this conditional bias or the tendency to underestimate 

large precipitation events.   

In Figures 3a-c and 3d-f, we illustrate the RME for the 6 and 24 hourly GEFSRv2 

ensemble mean forecasts, respectively, against the forecast lead time. The RMEs are shown for 

different combinations of basin sizes and precipitation thresholds. The most salient feature in 

Figure 3 is the general tendency of the GEFSRv2 to underforecast across lead times (note that a 

negative RME indicates underforecasting whereas a positive RME indicates overforecasting in 

the ensemble mean). The underforecasting tends to increase with both the lead time and the 

precipitation threshold but decreases with the basin size. Contrasting the 6 (Figures 3a-c) and 24 

(Figures 3d-f) hourly accumulations, the RMEs tend to be relatively similar for moderate and 

heavy precipitation; light precipitation shows somewhat larger negative RMEs for the 24 hourly 

accumulations. Further, the increase in the negative RMEs across lead times is rather smooth for 

the 24 hourly accumulations (Figure 3b) whereas the 6 hourly (Figure 3a) accumulations tend to 

exhibit a daily oscillation. One reason for this oscillation may be due to the lesser ability of the 

GEFSRv2 model to predict convective phenomena (Baxter et al., 2014), since the peaks occur at 

lead times of 6, 12, 30, 36, 54, 60, …, 366, and 372 hours, which correspond to midnight and 

early morning hours in standard time. However, this oscillation could be related to other factors, 

for which a more careful investigation is warranted.  

As another measure of forecast quality, we show in Figures 4a-c and 4d-f the correlation 

coefficient between the GEFSRv2 ensemble mean forecast and the corresponding observed 

precipitation values versus the forecast lead time for the 6 and 24 hourly accumulations, 

respectively. Note that a higher correlation coefficient implies a lower mean squared error, other 

factors being equal (Wilks, 2011). Overall, in Figure 4, the correlations associated with a given 

combination of precipitation threshold and basin size tend to decrease with forecast lead time. 

Specifically, at lead times below approximately 180 hours (7.5 days), the correlations in Figure 4 

tend to increase both as the precipitation threshold decreases and as the basin size increases. At 

lead times greater than 180 hours, the individual curves converge towards each other and 

approach 0, thus indicating a lesser sensitivity of the correlations to both the precipitation 

threshold and basin size for the longer lead times, where the forecasts lack any predictive ability. 

With regard to the aggregation period, the correlation coefficients are smaller for the 6 (Figure 

4a-c) than 24 (Figure 4d-f) hourly accumulations across the different forecast lead times. The 

results in Figure 4 suggest the potential for the GEFSRv2 to provide skillful forecasts for lead 

times of up to 7 days.  

 To examine the skill of the GEFSRv2 precipitation forecasts, we plot in Figures 5a-c and 

5d-f the CRPSS (relative to sample climatology) versus the forecast lead time for the 6 and 24 

hourly accumulations, respectively. In Figure 5, at lead times less than approximately 180 hours 

(7.5 days), the forecasts tend to show, for a given precipitation threshold, higher skill as the basin 

size increases, although the differences in forecast skill are very small between the 300 x 300 

km
2
 (Figures 5b and 5e) and 500 x 500 km

2
 (Figures 5c and 5f) basin size. At lead times greater 

than 180 hours, the CRPSS behaves differently; the skill increases as the precipitation threshold 



 
 

decreases while the basin size plays a lesser role. Nonetheless, at these larger lead times (beyond 

180 hours), the nominal values and sampling uncertainty of the CRPSS tend to show zero or 

negative skill, with the exception of light precipitation. For the light precipitation amounts, the 

CRPSS remains positive in Figure 5 at all forecast lead times. Relative to the accumulation 

period, the results are relatively similar for the 6 (Figure 5a-c) and 24 (Figure 5d-f) hourly 

accumulations, although the 24 hourly accumulations tend to be somewhat more skillful.  

To assess the reliability of the GEFSRv2 precipitation forecasts, we plot in Figures 6a-i 

reliability diagrams for different lead times (i.e., 1, 3, and 6 days) and basin sizes (i.e., 100 x 100, 

300 x 300 and 500 x 500 km
2
). Overall, the precipitation forecasts in Figure 6 are somewhat 

overconfident at high forecast probabilities and underconfident at low forecast probabilities. To 

some degree, the biases depend on the precipitation threshold, lead time, and basin size. For 

example, the biases are generally smaller for light precipitation amounts in the large basin size 

(Figure 6i). Overall, Figure 6 highlights the potential for post-processing as a way to reduce 

these conditional biases (see, e.g., Gneiting et al. (2005) and Raftery et al. (2005)).   

To explore the seasonal quality of the forecasts, we plot in Figures 7a and 7b the BSS 

against the calendar months for light and heavy precipitation, respectively, using 24 hourly 

accumulations and a basin size of 500 x 500 km
2
. The BSS for each calendar month is calculated 

using the sample climatology as the reference. The sample climatology is determined using the 

entire period of analysis. Notwithstanding the large sampling uncertainty in Figure 7 as indicated 

by the wide confidence intervals, it shows that the skill of the precipitation forecasts is generally 

higher for the winter months (December-February) and that it tends to decline for the remaining 

months, reaching the lowest value in the summer months (June-August). The fall months 

(September-November) tend to have a slightly higher skill than the spring months (March-May). 

This seasonal pattern in the BSS is accentuated somewhat as the lead time increases. For 

instance, at a lead time of 7 days, the BSS shows little or no skill for both light (Figure 7a) and 

heavy (Figure 7b) precipitation in the month of August whereas at a lead time of 1 day the 

forecasts tend to be better than sample climatology across all months. Similar seasonal behavior 

to that identified here has been reported by others for the GEFSRv2 precipitation forecasts 

(Baxter et al., 2014; Brown, 2014; Hamill et al., 2013).    

In summary, the results indicate that the GEFSRv2 provides skillful precipitation 

forecasts up to lead times of 6 or 7 days. Beyond these lead times, the precipitation forecasts for 

heavy precipitation show little or no skill while light to moderate precipitation tends to show 

some skill. Further, the forecasts of heavy precipitation are strongly biased and the bias can vary 

markedly depending on the basin size, accumulation period, and lead time.  

 

4.2 Verification of the SREF precipitation forecasts 

To examine the accuracy of the SREF precipitation forecasts, Figures 8a and 8b show 

box plots of the forecast error (forecast minus observed) against increasing amounts of observed 

precipitation for lead times of 1 and 3 days, respectively. The box plots are for 24 hourly 

accumulations and a 100 x 100 km
2
 basin size. Overall, the box plots indicate that light 

precipitation events may be slightly overestimated while heavy precipitation events are clearly 

underestimated.  

As another measure of bias, Figures 9a-c plots the RME of the SREF ensemble mean 

forecast against the forecast lead time for different basin sizes and 6 hourly accumulations. In 

Figures 9a-c, the RMEs tend to decrease (i.e., it becomes more negative) with both increasing 

lead time and decreasing basin size for moderate and heavy precipitation while it remains 



 
 

relatively constant across lead times for light precipitation. The RMEs for the 24 hourly 

accumulations (not shown) are qualitatively similar to the RMEs in Figure 9a-c. Both Figures 8 

and 9a-c indicate that the bias of the SREF precipitation forecasts declines for the larger 

precipitation thresholds. In terms of the correlation coefficient (Figures 9d-f), the basin size 

seems more dominant than the precipitation threshold in determining the quality of the 

precipitation forecasts, e.g., the correlation coefficient is lowest in Figure 9d for the 100 x 100 

km
2
 basin size, independently of the precipitation threshold. Further, the correlation coefficient 

increases for all precipitation thresholds as the basin size increases. However, the CRPSS 

indicates (Figure 9g-i) that both the basin size and precipitation threshold influence the forecast 

skill, as the CRPSS is sensitive to the bias as well as the correlation (and other attributes of 

forecast quality). Indeed, the SREF precipitation forecasts for moderate to heavy precipitation 

and a large basin size (500 x 500 km
2
) are the most skillful in this case (Figure 9i).  

Regarding the reliability of the SREF precipitation forecasts, they consistently show 

overforecasting across lead times, precipitation thresholds, and basin sizes (Figures 10a-i). The 

overforecasting diminishes somewhat for the smaller forecast probabilities and as the 

precipitation threshold decreases. By examining the inset plots in Figure 10a-i, the forecasts for 

heavy precipitation exhibit less confidence (i.e., are less sharp) than the forecasts for light to 

moderate precipitation. As the slope of the estimated reliability curves in Figure 10 tends to be 

less than the 1:1 reference line, the precipitation forecasts are overconfident. This means that, in 

calibrating the forecasts, the highest forecast probabilities will need to be adjusted downwards. 

In terms of the seasonal skill, the SREF precipitation forecasts reveal both differences and 

similarities in the monthly BSS between light (Figure 11a) and heavy precipitation (Figure 11b). 

For light precipitation (Figure 11a), there is little to no skill in the month of July while the 

remaining months show a relatively constant level of skill, with the fall months being slightly 

less skillful than the winter months. For heavy precipitation (Figure 11b), there is little to no skill 

during the late spring and early summer months (warm season, April-July) while the cool season 

is consistently skillful across the months of August-March. We note that qualitatively similar 

patterns have been identified before for precipitation forecasts from the SREF (Brown et al., 

2012).    

In summary, the SREF precipitation forecasts show more skill during the cool season 

than the warm season. The skill for moderate to heavy precipitation tends generally to be better 

than for light precipitation. Nonetheless, depending on the basin size and lead time, there are 

strong biases in the precipitation forecasts at any precipitation threshold. 

  

4.3 Verification of the GEFSRv2 and SREF precipitation forecasts over the same 

time period of analysis 

Here we present and discuss the verification results for the GEFSRv2 and SREF over a 

consistent period of record (i.e., the shorter period of the SREF). This is useful to understand and 

assess the relative quality of the two forecasting systems. To this end, we show in Figures 12a-c 

and 12d-f the skill of both systems using the BSS and CRPSS, respectively, plotted against 

precipitation thresholds (i.e., climatological non-exceedance probabilities) for 24 hourly 

accumulations and a basin size of 500 x 500 km
2
. Also, note in Figure 12 that the forecast skill 

can only be compared for lead times out to 87 hours since this is the forecast cycle of the SREF. 

Thus, in terms of the BSS (Figure 12a), the GEFSRv2 is somewhat more skillful than the SREF 

for light (Pr=0.5) to heavy (Pr=0.99) precipitation amounts and at lead times of 1-3 days. 

However, the skill of both systems drops relatively quickly for climatological non-exceedance 



 
 

probabilities larger than 0.9. Furthermore, the bootstrap confidence intervals for the GEFSRv2 

and SREF in Figure 12a-c tend to overlap each other, thereby suggesting that the differences in 

forecast skill may not be significant. In terms of the CRPSS (Figure 12d-f), the skill of both 

systems shows a gradual increase with increasing precipitation threshold. However, the SREF 

tends to show better CRPSS across all precipitation thresholds, notwithstanding some slightly 

lower skill at a lead time of 3 days for the lower precipitation thresholds. The results shown in 

Figure 12 are qualitatively similar (not shown) for the other basins sizes.  

To assess the ability of the forecasting systems to discriminate between precipitation 

events, we plot in Figures 13a-i the ROC curves for the GEFSRv2 and SREF for different lead 

times (i.e., 1-3 days) and precipitation thresholds (i.e., light, moderate, and heavy precipitation). 

All the ROC curves are for 24 hourly accumulations and a 100 x 100 km
2
 basin size. Note that 

ROC curves show the ability of the forecasts to discriminate between the occurrence and non-

occurrence of a precipitation event across different forecast probability thresholds. All the curves 

in Figure 13 lie between the climatological curve (45 degree diagonal line connecting the points 

[0,0] and [1,1]) and that associated with a perfect forecasting system (perpendicular line 

connecting the points [0,0], [0,1], and [1,1]), thus emphasizing that the ROC curves have some 

ability to discriminate between precipitation events. For the GEFSRv2, the forecasts for heavy 

precipitation show relatively better discrimination than the forecasts for light to moderate 

precipitation for the larger probabilities of false detection. This trend holds true for all the lead 

times. On the other hand, the SREF shows more or less similar discrimination for all the 

precipitation thresholds at a given lead time. However, the GEFSRv2 exhibits significantly better 

discrimination than the SREF for light, moderate, and heavy precipitation at all lead times. The 

ROC curves in Figure 13 are qualitatively similar (not shown) for the other basins sizes.  

Overall, both the GEFSRv2 and SREF show similar skill in forecasting moderate and 

heavy precipitation at lead times of 1-3 days, when the same period of analysis is considered. 

The GEFSRv2 is better at discriminating between the occurrence and non-occurrence of a given 

precipitation amount, including small and large amounts, than the SREF. 

 

5. Summary and conclusions 

In this study, we assessed the quality of precipitation forecasts in the MAR from two 

ensemble forecasting systems, namely the GEFSRv2 and SREF. Using various verification 

metrics (e.g., box plots of the error between forecast and observed precipitation, RME, 

correlation coefficient, CRPSS, BSS, reliability diagram, and ROC), the forecast quality of these 

two systems was evaluated conditionally upon precipitation amounts, basin size, forecast lead 

times, different accumulation periods, and seasonality. Throughout the verification analysis, we 

used 3 precipitation thresholds to represent light (Pr=0.5), moderate (Pr=0.9), and heavy 

precipitation (Pr=0.99), as well as 3 different basin sizes to represent small (100 x 100 km
2
), 

intermediate (300 x 300 km
2
), and large (500 x 500 km

2
) basins. On the basis of the verification 

results obtained, we emphasize the following: 

- The GEFSRv2 ensemble forecasts show good forecast skill for light to moderate 

precipitation while the forecasts for heavy precipitation are consistently too low. This 

trend is apparent for both the 6 and 24 hourly accumulations, although the 24 hourly 

forecasts are slightly more skillful. For heavy precipitation amounts in the MAR, the 

GEFSRv2 forecast skill becomes relatively small after lead times of 5 or 6 days and 

negligible (i.e., approximately equal to climatology) after 9 days. The GEFSRv2 

forecasts become more reliable with increasing basin size and decreasing precipitation 



 
 

threshold. However, the general tendency is for the GEFSRv2 to underestimate the 

smaller forecast probabilities and overestimate the larger forecast probabilities.   

- As with the GEFSRv2, the SREF also tends to overforecast light to moderate 

precipitation amounts while it largely underforecasts the heavy precipitation amounts. 

The magnitude of the SREF forecast errors increase with increasing lead time and 

precipitation threshold. 

- Similar to the GEFSRv2, the SREF forecasts become more reliable with increasing basin 

size and decreasing precipitation threshold. Generally, the SREF forecasts are more 

reliable than the equivalent GEFSRv2 forecasts. Nonetheless, the overall tendency is for 

the SREF to overestimate the moderate and high forecast probabilities.  

- Seasonal trends are visible in both the GEFSRv2 and SREF forecasts. Generally, the 

forecasts from both systems exhibit more skill during the cool season than the warm 

season. This trend tends to be similar across forecast lead times, basin sizes, and 

precipitation thresholds. 

The verification results from this study compare well against previous findings for the 

same forecasting systems (Brown et al, 2012; Brown, 2014). Overall, we find that the 

precipitation forecasts from the GEFSRv2 and SREF show comparable quality and skill for the 

short-range forecasts (i.e., lead times ≤ 3 days). However, the CRPSS indicates that the SREF 

forecasts are slightly more skillful than the GEFSRv2 and the GEFSRv2 reveals better 

discrimination than the SREF for moderate and heavy precipitation. It thus seems plausible that 

an optimal combination of these two systems could contribute to improving the overall skill of 

the precipitation forecasts. Our verification analysis (e.g., the reliability diagrams) also indicates 

that the quality of the precipitation forecasts could be further improved by employing statistical 

post-processing techniques. This should be further investigated using different post-processing 

techniques, as this could be an important source for gaining additional forecast skill and 

reliability. Both the GEFSRv2 and SREF show higher forecast skill for the larger basins (500 x 

500 km
2
) than the small (100 x 100 km

2
) and intermediate (300 x 300 km

2
) basins, irrespective 

of the precipitation threshold.  This suggests the possibility of generating better streamflow 

forecasts for large basins than small ones, other factors being equal, but this will need to be 

established through streamflow hindcasting and verification. Further, the quality of streamflow 

forecasts across basin sizes will depend on the performance and type of hydrologic model, e.g., 

spatially lumped or distributed, used for generating the forecasts. This also will need to be 

investigated. 

To continue advancing this research, we plan to explore and evaluate various forecasting 

scenarios to assess the benefits of integrating the outputs from different precipitation forecasting 

systems (e.g., GEFSRv2 and SREF), application of post-processing techniques, and different 

hydrologic model structures to potentially improve flood forecasting across spatiotemporal 

scales. 
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Table 1. Summary and main characteristics of the datasets used in this study. 

 

 Horizontal 

Resolution 

[km
2
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Total 

ensemble 

members 

Lead 

time 

[hour] 

Models Period 

of 

analysis 

[years] 

Projection 

system 

GEFSRv2 ~55 x 55 

(0.5
o
x0.5

o
) 

11 1-192 1 2002-

2013 

Geographic 

coordinate 

system 

~73 x 73 

(0.67
o
x0.67

o
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11 193-384 1 2002-

2013 

Geographic 

coordinate 

system 

SREF ~40 x 40 21 1-87 3/4 2008-

2009 

Lambert 

conic 

projection 

~32 x 32 21 1-87 3/4 2009 and 

2011-

2012 

Lambert 

conic 

projection 

~16 x 16 21 1-87 3/4 2012-

2013 

Lambert 

conic 

projection 

MPE 4 x 4 N/A N/A N/A Same as 

forecasts 

Polar 

stereographic 

  



 
 

 

Figure 1. Illustration of the boundary of the MAR together with the grids for the (a) GEFSRv2 

and (b) SREF. The boundary of the MAR corresponds in this study to the operating domain of 

the MARFC. 

 

  



 
 

 

Figure 2. Box plots of errors in the GEFSRv2 precipitation forecasts, arranged according to the 

observed values, for lead times of (a) 1, (b) 3, (c) 5, and (d) 7 days. The box plots are for 24 

hourly accumulations and a 100 x 100 km
2
 basin size. 

 

 

  



 
 

 
 

Figure 3. RME of the GEFSRv2 ensemble mean forecast versus the forecast lead time for (a)-(c) 

6 and (d)-(f) 24 hourly accumulations. The RMEs are shown for different combinations of basins 

sizes and precipitation thresholds. 

 

 

  



 
 

 
 

Figure 4. Correlation coefficient between the GEFSRv2 mean ensemble forecast and the 

corresponding observed precipitation values as a function of the forecast lead time for (a)-(c) 6 

and (d)-(f) 24 hourly accumulations. The correlation coefficients are shown for different 

combinations of basin sizes and precipitation thresholds. 

 

 

 

 

 

  



 
 

 
 

Figure 5. GEFSRv2 mean CRPSS versus the forecast lead time for (a)-(c) 6 and (d)-(f) 24 

hourly accumulations. The values of the CRPSS are shown for different combinations of basin 

sizes and precipitation thresholds. 

 

 

 

 

  



 
 

 
Figure 6. Reliability diagrams for the 24 hourly GEFSRv2 precipitation forecasts for lead times 

of (a) 1, (b) 3, (c) 6 days and a 100 x 100 km
2
 basin size; (d) 1, (e) 3, (f) 6 days for a 300 x 300 

km
2
 basin size; and (g) 1, (h) 3, (i) 6 days for a 500 x 500 km

2
 basin size. The insets show the 

sample size in logarithmic scale of the different forecast probability bins. 

 



 
 

 
 

Figure 7. Monthly BSS values for the GEFSRv2 precipitation forecasts for (a) light and (b) 

heavy precipitation. The results are shown for various lead times (i.e., 1, 3, 5, and 7 days), 24 

hourly accumulations, and a basin size of 500 x 500 km
2
. 

 

  



 
 

 
Figure 8. Box plots of errors in the SREF precipitation forecasts arranged according to the 

observed values for lead times of (a) 1 and (b) 3 days. The box plots are for 24 hourly 

accumulations and a 100 x 100 km2 basin size. 

 

 

  



 
 

 

 
 

Figure 9. (a)-(c) RME, (d)-(f) correlation coefficient, and (g)-(i) CRPSS of the SREF ensemble 

mean forecast versus the forecast lead time for 6 hourly accumulations and different 

combinations of basin sizes (i.e., 100 x 100, 300 x 300, and 500 x 500 km
2
) and precipitation 

thresholds (i.e., 1, 5, and 15 mm). 

 

 

 

  



 
 

 
 

Figure 10. Reliability diagrams for the 24 hourly SREF precipitation forecasts for lead times of 

(a) 1, (b) 3, (c) 6 days and a 100 x 100 km
2
 basin size; (d) 1, (e) 3, (f) 6 days for a 300 x 300 km

2
 

basin size; and (g) 1, (h) 3, (i) 6 days for a 500 x 500 km
2
 basin size. The insets show the sample 

size in logarithmic scale of the different forecast probability bins. 

 



 
 

 
 

Figure 11. Monthly BSS values for the SREF precipitation forecasts for (a) light and (b) heavy 

precipitation. The results are shown for various lead times (i.e., 1, 3, 5, and 7 days), 24 hourly 

accumulations, and a basin size of 500 x 500 km
2
. 

 

 

 

 

  



 
 

 
Figure 12. (a)-(c) BSS and (d)-(f) CRPSS versus the climatological non-exceedance probability 

of precipitation thresholds for both the GEFSRv2 and SREF precipitation forecasts. The skill 

metrics (BSS and CRPSS) are computed for 24 hourly accumulations and a 500 x 500 km
2
 basin 

size. 

 

 

 

 

  



 
 

 
Figure 13. ROC curves for the GEFSRv2 and SREF precipitation forecasts at lead times of (a)-

(c) 1, (d)-(f) 2, and (g)-(i) 3 days. The symbols represent the sample values of the PoD and 

PoFD, and the lines represent the values fitted under the binormal approximation. All the ROC 

curves shown are for the 24 hourly accumulations and a 100 x 100 km
2
 basin size. 



 
 

Chapter 3: Verification of precipitation ensembles from the 

GEFS, SREF, and WPC-PQPF over the eastern U.S. 
 

ABSTRACT 

The quality of ensemble precipitation forecasts across the eastern United States (U.S.) is 

investigated; specifically, the  National Centers for Environmental Prediction (NCEP) Global 

Ensemble Forecast System Reforecast version 2 (GEFSRv2) and Short Range Ensemble 

Forecast (SREF), as well as the NCEP’s Weather Prediction Center probabilistic quantitative 

precipitation forecast (WPC-PQPF) guidance. The forecasts are verified using multi-sensor 

precipitation estimates. The verification is done using various metrics conditioned upon 

seasonality, precipitation threshold, lead time, and spatial aggregation scale. The forecasts are 

verified over the geographic domain of each of the four eastern River Forecasts Centers (RFCs) 

in the U.S. We first verify forecasts from i) all the three systems or guidance using a common 

period of analysis (2012-2013) for lead times from 1 to 3 days, and then ii) for the GEFSRv2 

alone, using a longer period (2004-2013) and lead times from 1 to 16 days. 

The verification results indicate that, across the eastern U.S., precipitation forecast bias 

decreases and the skill and reliability improve as the basin size increases; however, all the 

forecasts exhibit underforecasting bias. The skill of the forecasts is appreciably better in the cool 

season than in the warm one. The WPC-PQPFs tend to show some gains in the correlation 

coefficient, relative mean error, and forecast skill relative to both the GEFSRv2 and SREF, but 

the gains vary with the RFC and lead time. Based on the GEFSRv2, we find that medium-range 

precipitation forecasts tend to have skill up to approximately day 7 relative to sampled 

climatology.  

 

1. Introduction 

a. Motivation and objectives 

Precipitation is a key forcing of interest in many forecasting applications (Cherubini et al. 

2002; Ebert and McBride 2000; Ebert et al. 2003; Fritsch et al. 1998; Hall et al. 1999; Voisin et 

al. 2008; Zhu and Luo 2015). Precipitation forecasts are used to issue severe weather warnings 

(Messner et al. 2014); forecast floods and other hydrologic variables (Kim and Barros 2001); 

support the operation of water supply reservoirs (Demargne et al. 2014; Pagano et al. 2001); 

inform decision-making in the transportation (Antolik 2000; Cools et al. 2010; Hwang et al. 

2015; Vislocky and Fritsch 1995), industrial (Kolb and Rapp 1962), and agricultural sectors 

(Jones et al. 2000); and manage ecosystems (Sene 2016); among other applications. In all of 

these applications, it is critical to understand and characterize the quality of the precipitation 

forecasts. For example, the accuracy of both severe weather warnings and flood forecasts 

depends strongly on the accuracy of the precipitation forecasts (Brown et al. 2012; Demargne et 

al. 2010; Messner et al. 2014). In the case of flood forecasts, the accuracy of precipitation 

forecasts can significantly contribute to preventing flood-related damages to human life, 

infrastructure, property, and agriculture (Knebl et al. 2005; Montz and Gruntfest 2002).  

Despite recent advances in weather forecasting from operational numerical weather 

prediction (NWP) models, accurate prediction of precipitation remains a critical issue and 

challenge (Cuo et al. 2011; Ralph et al. 2010; Röpnack et al. 2013). Uncertainty in precipitation 

forecasts may be due to shortcomings in the initial conditions and model physics, as well as the 

chaotic nature of the atmosphere (Berner et al. 2015; Grimit and Mass 2002). Precipitation 



 
 

forecast uncertainty tends to increase with the magnitude of the expected precipitation amounts 

(Scheuerer and Hamill 2015) and is typically larger for convective than synoptic-scale events 

(Röpnack et al. 2013). In flood forecasting, precipitation uncertainty is often the largest 

contributor to the overall deficiency of the streamflow forecasts (Yu et al. 2016).  

To understand and quantify the uncertainty of precipitation forecasts, ensemble 

techniques are increasingly being employed (Charron et al. 2010; Schaake et al. 2007; Shrestha 

et al. 2015; Yu et al. 2016). As ensemble forecasting systems evolve, the need arises to monitor 

and verify the quality of the evolving forecasting systems (Brown and Seo 2010). Ensemble 

verification not only provides information needed to understand forecasting errors and biases but 

it can assist with making decisions about future enhancements to the forecasting systems (Davis 

et al. 2006; Ebert et al. 2013; Murphy and Winkler 1987). Indeed, forecast verification is a 

fundamental aspect of forecasting (Casati et al. 2008; Cherubini et al. 2002; Davis et al. 2006; 

Rossa et al. 2008; Welles et al. 2007; Wernli et al. 2008). It is required to assess and compare the 

performance of different forecasting systems (Mason and Weigel 2009; Murphy and Winkler 

1987), and to provide meaningful information to administrators, scientists, and forecast users 

(Murphy 1993).  

Recently, various weather verification strategies have been developed to better 

incorporate datasets (e.g., high-resolution NWP outputs, spatial or gridded observations, etc.) 

and to account for the spatial distribution and scale dependency of weather variables (Casati et 

al. 2004; Davis et al. 2006; Ebert 2008; Roberts 2008). Here, to verify precipitation ensembles in 

the eastern U.S., we employ the Ensemble Verification System (EVS) (Brown et al. 2010), 

following the implementation strategy of Siddique et al. (2015). Among other key conditions, 

Siddique et al. (2015) account for spatial scale by verifying areal-averaged precipitation across 

different basin sizes. This areal-averaged approach is meaningful in this case because, partly, the 

motivation for performing this verification is to inform future hydrologic forecasting, research 

strategies. The areal-averaged approach can be viewed as representative of the aggregative 

hydrologic response of a river basin to the precipitation forcing.  

We verify the ensemble precipitation forecasts within the geographic domain of each of 

the four eastern River Forecast Centers (RFCs) in the U.S. The four eastern RFCs are the Middle 

Atlantic River Forecast Center (MARFC), Northeast River Forecast Center (NERFC), Ohio 

River Forecast Center (OHRFC), and Southeast River Forecast Center (SERFC). We selected 

these RFCs because i) they collectively represent one of the most active geographic regions in 

the U.S. for extreme precipitation events (Hitchens et al. 2013; Moore et al. 2015); ii) they 

contain several major U.S. cities that can be particularly vulnerable to the impacts associated 

with damaging weather events and severe flooding; iii) they generally contain good quality of 

precipitation observations due to relatively dense networks of point observations and good radar 

coverage in most areas; and iv) there is a general  interest in understanding the quality of 

different forecasting systems to support on-going forecasting operational efforts. 

For the verification of the precipitation ensembles, we use precipitation outputs from the 

National Oceanic and Atmospheric Administration’s (NOAA’s) National Centers for 

Environmental Prediction (NCEP) 11-member Global Ensemble Forecast System Reforecast 

version 2 (GEFSRv2) (Hamill et al. 2013) and the 21-member Short Range Ensemble Forecast 

(SREF) system (Du et al. 2009), as well as the NCEP’s Weather Prediction Center probabilistic 

quantitative precipitation forecasts (WPC-PQPFs) (WPC 2016). We select these three 

forecasting systems or guidance for various reasons. They are either operational or similar to 

operational systems available and familiar to forecasters. They encompass various relevant and 



 
 

interesting forecasting conditions, including different model resolutions and number of ensemble 

members, human-generated forecasts and, in the case of the GEFSRv2, a statistically consistent 

long-term dataset. 

Our primary objective here is to verify and compare the ensemble precipitation forecasts 

from the GEFSRv2, SREF, and WPC-PQPF in the geographic domains of the RFCs in the 

eastern U.S. We verify the forecasts using multi-sensor precipitation estimates (MPEs) as the 

observed forcing (Breidenbach and Bradberry 2001; Fulton et al. 1998). We use a variety of 

deterministic and probabilistic metrics for the verification, conditioned upon the forecast lead 

time, seasonality, precipitation threshold, and spatial aggregation scale. With this study, we want 

to gain insight into the following questions: How does the performance of the different 

forecasting systems or guidance compare against each other? How does the quality of the 

forecasting systems vary within and between the RFCs? Does the spatial aggregation scale affect 

the quality of the precipitation forecasts? Are these RFCs likely to benefit from statistical 

postprocessing techniques? 

 

b. Background on relevant verification studies  

Several verification studies have been conducted to assess the quality of precipitation 

forecasts from the forecasting systems or guidance selected here (Baxter et al. 2014; Brown et al. 

2012; Hamill et al. 2013; Novak et al. 2014; Siddique et al. 2015; Stensrud and Yussouf 2007; 

Sukovich et al. 2014). Hamill et al. (2013) verified the calibrated ensemble precipitation 

forecasts from the GEFSRv2 over the Continental U.S. (CONUS). They found that the 

GEFSRv2 is more skillful than its predecessor. Also, using the GEFSRv2, Baxter et al. (2014) 

performed a detailed verification of precipitation forecasts over the southeastern U.S. They found 

that the precipitation forecasts have some skill up to a lead time of 5.5 days. Both Brown et al. 

(2012) and Stensrud and Yussof (2007) analyzed precipitation forecasts from the SREF. Brown 

et al. (2012) found that the skill and reliability of precipitation forecasts from the SREF vary 

with the U.S. geographic region, lead time, precipitation threshold, and season.  

Siddique et al. (2015) compared precipitation forecasts from the GEFSRv2 and SREF 

against MPEs in the geographic domain of the MARFC. They found that generally the two 

systems show similar skill and reliability over the MARFC but some differences in performance 

were also noted. The analysis of WPC-PQPF guidance has been limited. Indeed, recent analysis 

has been focused on the deterministic WPC quantitative precipitation forecasts (WPC-QPFs) 

(Novak et al. 2014; Sukovich et al. 2014). These studies of WPC-QPFs highlight the ability of 

human-generated forecasts to improve upon the accuracy of NWPs and of forecasters to learn 

from improved and evolving forecasting systems. Additionally, Sukovich et al. (2014) 

demonstrated how the accuracy of extreme WPC-QPFs vary with the U.S. geographic region and 

seasonality. 

 

2. Study area 

We perform the verification analysis separately in each of the four RFCs considered. 

Figure 1 illustrates the RFCs. We provide next a brief description of the geographic domain 

encompassed by each RFC. 

 

a. MARFC 

The spatial extent of the MARFC, hereafter referred to as the middle Atlantic region 

(MAR), includes New Jersey, Maryland, Delaware, District of Columbia, as well as parts of New 



 
 

York, Pennsylvania, Virginia, and West Virginia (Fig. 1). The MAR contains a massive and 

complex network of build infrastructure, which makes severe weather and flooding hazards 

particularly relevant. It is home to several major U.S. cities, including Philadelphia and 

Washington D.C., and of many defining cultural and historical landmarks. The population in the 

MAR is approximately 41 million or 10% of the total U.S. population (United States Census 

Bureau 2015) but it only accounts for ~4% of total land mass. 

The physical geography of the MAR is characterized by a relatively flat coastal plain on 

the eastern edge, followed towards the west by the Piedmont and Ridge and Valley zones, and 

ending with the Appalachian Plateau on the western edge (Polsky et al. 2000). This makes the 

MAR physically and ecologically diverse (Jones et al. 1997). Land cover and land use vary 

within the MAR among forested, agricultural, and urbanized landscapes (Herlihy et al. 1998), 

with forested areas being the most predominant (Jones et al. 1997). Additionally, the MAR 

comprises several major U.S. river basins including the Delaware, Susquehanna, Potomac, and 

James River (Siddique et al. 2015). The climate in the MAR is relatively humid, with a mean 

annual temperature of ~11
o
C over the period of 1895-1997 (Polsky et al. 2000). Precipitation is 

relatively uniform throughout the year, with the total mean annual precipitation being ~1009 mm 

(Neff et al. 2000). Located among the NERFC, OHRFC, and SERFC, the MAR shares many of 

the hydrometeorological complexities of these other RFCs. 

 

b. NERFC 

The NERFC geographic domain, hereafter referred to as the northeast region (NER), is 

comprised by the states of Maine, New Hampshire, Vermont, Massachusetts, Connecticut, 

Rhode Island, and the majority of New York (Fig. 1). It occupies only ~3% of the U.S. landmass, 

however, the region is densely populated and accounts for approximately 32 million people, or 

9% of the total U.S. population (United States Census Bureau 2015). Precipitation forecasting is 

challenging over the NER in part because of the combination of physical features that contribute 

to landscape and boundary complexity such as the Great Lakes, the Appalachian Mountains, and 

the irregular coastlines (Colle et al. 2003). 

Extreme precipitation events, heat waves, and coastal flooding often affect the region 

(Melillo et al. 2014). During the winter, a positive North Atlantic Oscillation phase can generally 

result in increased precipitation amounts and occurrence of snow (Durkee et al. 2007). Over the 

period of 1948-2007, the mean annual precipitation was recorded to be ~1040 mm (Spierre and 

Wake 2010). Additionally, there is a significant increasing trend in the frequency and intensity of 

extreme precipitation events over the NER (Kunkel et al. 2013). Since 1970, temperature has 

increased by almost 0.25
o
C per decade (Hayhoe et al. 2006), consequently decreasing the snow 

to precipitation ratio at selected stations (Huntington et al. 2004). Generally, the climate in the 

NER can be classified as warm, humid summers and snowy, cold winters with frozen 

precipitation.  

 

c. OHRFC 

The OHRFC domain, hereafter referred to as the Ohio region (OHR), consists of the Ohio 

River basin above Smithland Lock and Dam, the Cumberland River Basin, and tributaries to 

Lake Erie that terminate in Ohio and Pennsylvania. This region  includes the entire state of Ohio, 

and the majority of the states of Indiana, Kentucky, and West Virginia, along with parts of 

several surrounding states (Illinois, Maryland, New York, North Carolina, Pennsylvania, and 

Tennessee) (Fig. 1). The OHR encompasses an area of ~5% of the U.S. land mass and includes 



 
 

~9% (30 million people) of the total U.S. population (United States Census Bureau 2015). The 

Ohio River basin is the third largest by discharge (with a mean discharge of ~8,733 m
3
/sec) in 

the U.S. (White et al. 2005) as well as the largest tributary by volume to the Mississippi River. 

The major tributaries of the Ohio River include the Kentucky, Cumberland, Wabash, and 

Kanawha Rivers. The eastern portion of the OHR is located in the Blue Ridge, Valley and Ridge, 

and Appalachian plateaus provinces of the Appalachian highlands, and is dominated by forest 

cover. Agricultural lands and some urban centers dominate the land cover in the western half of 

the OHR, except for some prairies in the north and west. 

Riverine floods are common occurrences on the OHR (White et al. 2005). Flooding 

during the spring season is often associated with atmospheric circulation anomalies from the 

tropical Atlantic Ocean and the Gulf of Mexico that can result in heavy precipitation (Nakamura 

et al. 2013). Additionally, during La Niña winters, heavy precipitation events are accompanied 

by extreme high temperature events (Gershunov and Barnett 1998). The climate in the OHR can 

be classified as humid and temperate, with cool moist winters and warm summers (Voisin et al. 

2011). Precipitation in the OHR is well distributed throughout the year, with the mean annual 

amount varying from ~1000 to 1200 mm per year (O'Donnell et al. 2000). The geographic 

patterns of glaciations, mountains, and the interaction of atmospheric systems with a complex 

geography, make the hydrometeorological behavior of the OHR diverse. 

 

d. SERFC 

The geographic domain of the SERFC, hereafter referred to as the southeast region 

(SER), includes all of the state of Florida, the majority of the states of Alabama, Georgia, South 

Carolina, North Carolina, and small portions of southern Virginia and western Mississippi (Fig. 

1). The SER accounts for ~8% of the U.S. land mass and is home to 15% of the total U.S. 

population (47 million people) (United States Census Bureau 2015). Agriculture is a major sector 

of this region’s economy and improved precipitation forecasts are believed to contribute to the 

region’s economic well-being (Adams et al. 1995). Precipitation forecasts are particularly 

challenging in the SER because of the interaction among an extensive coastal line, tropical 

storms, sea breezes, and topography (Baxter et al. 2014). The location and unique physical 

geography of the SER means that precipitation events are related to a variety of sources, such as 

tropical cyclones, extra tropical baroclinic waves, mesoscale convective systems, or localized 

diurnal convection (Moore et al. 2015).  

The climate in the SER is relatively humid (Yilmaz et al. 2005). The average monthly 

maximum temperatures over the region is about ~25.2°C, with a mean annual precipitation of 

~1350 mm (Nam and Baigorria 2015). The SER shows a diurnal cycle of precipitation, with 

strong ocean and land linkage, characterized by greater afternoon precipitation on land and 

morning precipitation over the ocean (Prat and Nelson 2014). The region is often affected by El 

Niño Southern Oscillation activity (Ropelewski and Halpert 1987). During winter, El Niño years 

tend to be wet, whereas La Niña years are dry (Hansen et al. 1998).  In spring, El Niño events 

tend to show higher precipitation amounts throughout the region while La Niña tends to show 

above average temperature in Georgia, northern Florida, and South Carolina (Jones et al. 2000). 

 

3. Datasets 

a. GEFSRv2 

The GEFSRv2 datasets are based on the same atmospheric model and initial conditions 

as the 2012 NOAA GEFS, version 9.0.1 (Hamill et al. 2013). The reforecast model was run at 

https://en.wikipedia.org/wiki/Tributary
https://en.wikipedia.org/wiki/Mississippi_River


 
 

T254L42 (~0.50
o 

Gaussian grid spacing) and T190L42 (~0.67
o
 Gaussian grid spacing) 

resolutions for the first and second 8 days, respectively. The 11-member reforecasts are initiated 

only once daily at 00 UTC. The GEFSRv2 forecast cycle consists of 3 hourly accumulations for 

the first 72 hours (days 1-3) and 6 hourly accumulations for days 4-16. Table 1 summarizes the 

main characteristics of the GEFSRv2. In this study, we use 10 years of GEFSRv2 data, from 

2004 to 2013. This period was mainly selected to match the available period for higher quality 

MPEs. 

 

b. SREF 

The NCEP’s SREF system is a multi-analysis, multi-model, and multi-physics regional 

ensemble prediction system, currently initiated 4 times a day at 0300, 0900, 1500, and 2100 

Coordinated Universal Time (UTC). Each forecast cycle comprises lead times of up to 87 hours 

and the forecast for each lead time is valid for 3 hourly precipitation accumulations. The SREF 

system was operationally implemented in ~2001 and initially consisted of a 10-member 

ensemble, 5 members from each the Eta and Regional Spectral Model, with a 48-km horizontal 

resolution (Du and Tracton 2001). Subsequent updates increased the 10-member system to 26 

members, and the horizontal resolution changed from 48 to 16 km (Du et al. 2015). Here, we use 

2 years of operational 21-member SREF forecasts, from January 2012 to November 2013. The 

SREF runs that we use include two different core models with horizontal grid spacing of 16 and 

32 km, respectively. Table 1 summarizes the SREF datasets used in this study.  

 

c. WPC-PQPFs 

The WPC-PQPFs are derived, for lead times of 1 to 3 days and at 4 x 4 km
2
 horizontal 

resolution, by incorporating forecast uncertainty information into 6-hour deterministic WPC-

QPFs (WPC 2016). Specifically, a 62-member ensemble is obtained by grouping members from 

various forecasting systems, including the operational GEFS and SREF, NCEP’s Global 

Forecasting System, and the European Center for Medium-Range Weather Forecasts. These 

ensembles are then used to estimate the variance of a binormal probability distribution function 

(pdf), whose mode is given by the value of the WPC-QPF. The binormal pdf is then sampled to 

produce the WPC-PQPFs.  

The WPC probabilistic forecasts are provided in two different formats (WPC 2016): i) 

probabilities of exceeding a threshold, and ii) percentile accumulations, where lower percentile 

values are associated with smaller accumulations than are higher percentile values. Here, we use 

the percentile accumulation format for the 6-hour WPC-PQPFs, for lead times of 1 to 3 days 

released twice per day at 00 and 12 UTC. The percentile accumulations represent the 5
th

, 10
th

, 

25
th

, 50
th

, 75
th

, 90
th

, and 95
th

 percentile of the fitted pdf. We treat these 7 percentile 

accumulations as different precipitation ensemble members. Tables 1 summarizes key 

information about the WPC-PQPFs. We use WPC-PQPFs for the years 2012 and 2013.  

 

d. MPEs 

We use MPEs as the observed forcing when verifying the ensemble precipitation 

forecasts. For the MPEs, we use datasets provided by each of the RFCs considered in this study. 

These datasets are similar to the NCEP stage-IV MPEs (Moore et al. 2015; Prat and Nelson 

2015). As with the NCEP stage-IV dataset, the MPEs provided by the RFCs represent a 

continuous time series of hourly, high-resolution gridded precipitation observations at 4 x 4 km
2
 

cells, over each of the four eastern RFCs. We aggregate the MPEs to the temporal (6 hourly) and 



 
 

spatial scale necessary for the verification analysis. We use here MPEs over the period of 2004-

2013 (Table 1). 

 

4. Verification strategy 

We use for the verification analysis different metrics, including both deterministic and 

probabilistic measures. Specifically, we consider the following 6 verification metrics: correlation 

coefficient, relative mean error (RME), Brier skill score (BSS), continuous ranked probability 

skill score (CRPSS), reliability diagram, and relative operating characteristic (ROC) curve. The 

mathematical definition of each of these metrics is provided in the Appendix. Additional details 

about the verification metrics can be found elsewhere (e.g., Wilks 2011; Jolliffe and Stephenson 

2012). We use the EVS for the verification analysis (Brown et al. 2010). 

When verifying the forecasts, we condition the forecasts and observed datasets upon 

different variables (e.g., forecast lead time, seasonality, precipitation threshold, and spatial 

aggregation scale) to account for various relevant scenarios. We use 6 hourly precipitation 

accumulations and focus our verification on moderate to heavy precipitation amounts. For this, 

we select precipitation amounts greater than that implied by a non-exceedance probability, in the 

sampled climatological probability distribution, of 0.9.  To account for the effect of the spatial 

aggregation scale, we verify areal-averaged precipitation, as opposed to individual grid cells, 

across different basin sizes. We select three different basin sizes: small (100 x 100 km
2
), 

intermediate (300 x 300 km
2
), and large (500 x 500 km

2
). For a particular basin size, we compute 

the different verification metrics by aggregating the verification results from three or more basins 

of the same size. The latter is done to account for sampling variability. 

To perform the verification analysis, we work with two main case studies. In the first 

case study, we verify 6 hourly precipitation accumulations from the GEFSRv2, SREF, and WPC-

PQPFs, over their common period of two years (2012-2013), for forecast lead times of 1 to 3 

days. In the second case study, we verify 6 hourly precipitation accumulations from the 

GEFSRv2 alone, over the period of 2004-2013, for forecast lead times of 1 to 16 days, with the 

exception of the SER that is verified from 2006 to 2013. The verification, in both case studies, is 

done separately for each of the four eastern regions using the three different basin sizes 

considered (100 x 100, 300 x 300, and 500 x 500 km
2
). 

 

5. Verification of short-range GEFSRv2, SREF, and WPC-PQPF forecasts (days 1-3) 

a. Correlation coefficient and RME 

We use the correlation coefficient and RME as the deterministic metrics of forecast 

quality. We show in Fig. 2, for the three different basin sizes considered, the correlation 

coefficient as a function of the forecast lead time (days 1-3) for the GEFSRv2 (Figs. 2a-c), SREF 

(Figs. 2d-f), and WPC-PQPF (Figs. 2g-i). The overall trend in Fig. 2 is for the correlation 

coefficient to decline as the forecast lead time increases, meaning that the forecasts become more 

dissimilar to the observed values with larger forecast lead times, and to rise as the basin size 

increases. For instance, regarding the latter, the values of the correlation coefficient for the 

GEFSRv2 tend to be larger in Fig. 2c (large basin size), across regions and forecast lead times, 

than in Fig. 2a (small basin size). This behavior is similar for the SREF and WPC-PQPF in Fig. 

2. 

Relative to the other forecasting systems, the GEFSRv2 shows the most variability in the 

values of the correlation coefficient and the values do not indicate that one particular region 

performs worse or better than the other (Figs. 2a-c). The variability in the GEFSRv2 curves tend 



 
 

to follow a diurnal cycle of higher predictability in the late morning and early afternoon hours 

than in the late night and early morning hours. A similar diurnal cycle to that identified here has 

been reported by others for the GEFSRv2 precipitation forecasts (Siddique et al. 2015), as well 

as cloud and visibility forecasts (Verlinden and Bright 2016). We investigate the diurnal cycle 

further in the next subsections using the other verification metrics. For the SREF (Figs. 2d-f), the 

curves associated with each region are, for the most part, close to each other, thus indicating that 

the performance of the SREF may be somewhat similar across the different eastern regions. The 

WPC-PQPFs (Figs. 2g-i) are also characterized by curves that are similar to each other but the 

curve for the MAR seems to be consistently higher than the other ones, potentially suggesting 

improved quality in the MAR for the WPC-PQPF. Since the WPC-PQPFs are issued from the 

MAR, it is possible that the forecasters’ familiarity with the MAR may play a role in the 

performance of the WPC-PQPF in this region. 

To examine the bias associated with the mean ensemble forecast, we plot in Fig. 3 the 

RME versus the forecast lead time for the precipitation forecasts from the GEFSRv2 (Figs. 3a-c), 

SREF (Figs. 3d-f), and WPC-PQPF (Figs. 3g-i). Generally, the trend in Fig. 3 is for the three 

forecasting systems or guidance to underforecast moderate to heavy precipitation, i.e., the 

tendency is for a negative bias across the forecast lead times and basin sizes. The bias increases, 

in most cases, with the forecast lead time and decreases some as the basin size increases. 

Comparing the three forecasting systems or guidance against each other, the WPC-PQPF seems 

to have the least bias of the three. For example, the bias for the NER at a lead time of 12 hours 

and the largest basin size considered (500 x 500 km
2
) is ~0 for the WPC-PQPF (Fig. 3i) and ~-

0.1 for the SREF (Fig. 3f). 

As was the case in Fig. 2, the curves for the GEFSRv2 show again the most variability 

across forecast lead times and are marked by a diurnal cycle of oscillating RME values. 

Generally, there also seems to be a tendency in Fig. 3 for the RME to show consistently less bias 

(closer to zero) in the NER and more bias (farther from zero) in the SER than in the other 

regions. The latter is particularly noticeable for the SREF (Figs. 3d-f) and WPC-PQPF (Figs. 3g-

i). For instance, in Figs. 3g-i, the curves for the SER are always below all the other curves, 

indicating that the SER has a stronger underforecasting bias than the other regions. One reason 

for this underforecasting bias may be due to the greater uncertainty in convective precipitation, 

which is more common in the SER, compared with the other eastern regions. 

 

b. Skill  

To investigate the probabilistic attributes of the selected forecasting systems and 

guidance, we examine the BSS and CRPSS associated with the precipitation forecasts and 

observations pairs. When computing the BSS and CRPSS, we use sampled climatology as the 

reference system. In Fig. 4, we show the BSS as a function of the forecast lead time for the cool 

(October-March) and warm (April-September) season. The BSS in Fig. 4 is computed using 6 

hourly accumulations, a 500 x 500 km
2
 basin size, and both light to moderate precipitation 

events (Pr=0.5) as well as moderate to heavy precipitation events (Pr=0.9). Overall, the results in 

Fig. 4 indicate that the forecast skill of the GEFSRv2 (Figs. 4a-d), SREF (Figs. 4e-h) and WPC-

PQPF (Figs. 4i-j) declines with increasing forecast lead time, and it is generally higher in the 

cool season than in the warm one across all the regions. Additionally, the WPC-PQPF is 

generally more skillful than the GEFSRv2 and SREF, independently of the forecast lead time, 

region, and precipitation threshold. For example, the WPC-PQPF tends to remain skillful across 

lead times and regions while the GEFSRv2 (e.g., Fig. 4a) does not. Also, in some cases, the skill 



 
 

of the SREF declines quickly for moderate to heavy precipitation events (e.g., the MAR and 

NER in Fig. 4f) and it can have a relatively wider spread in skill among the regions than the 

GEFSRv2 and WPC-PQPF, especially for the cool season (e.g., Fig. 4f). 

Variations in the BSS among the regions are also evident in Fig. 4. During the cool 

season, the skill from all three forecasting systems or guidance, for light to moderate 

precipitation, is relatively better within the OHR than in the other regions (Figs. 4a, 4e, and 4i). 

This is particularly noticeable for the GEFSRv2 (Fig. 4a). The MAR shows the least skill among 

all the regions for the SREF (Figs. 4e-h) but, in contrast, a comparable skill for the WPC-PQPF 

guidance (Figs. 4i-l). The GEFSRv2 forecasts are characterized by a strong diurnal cycle, with 

the cycle being somewhat stronger in the SER (e.g., Fig. 4c) than in the other regions. During the 

warm season and for moderate to heavy precipitation events, the NER seems to have slightly 

greater skill than the other regions (e.g., Figs. 4d, 4h, and 4l), which may be due to the influence 

of the jet stream and extratropical cyclones on precipitation in this most poleward of the study 

domains . We note that the lack of a diurnal cycle in the precipitation forecasts from the SREF 

and WPC-PQPF may be due to the fact that these systems issue or release forecasts at least twice 

a day. 

In Fig. 5, we plot the CRPSS (relative to sampled climatology) against the forecast lead 

time for precipitation forecasts from the GEFSRv2 (Figs. 5a-c), SREF (Figs. 5d-f), and WPC-

PQPF (Figs. 5g-i). The CRPSS is computed using 6 hourly accumulations, moderate to heavy 

precipitation events, and different basin sizes. In general, the CRPSS decreases with increasing 

forecast lead time but increases with increasing basin size, independently of the region. There is 

also a slight tendency for the CRPSS to increase from the GEFSRv2 to the SREF and from the 

SREF to the WPC-PQPF. The regional variations in the CRPSS are largest in the GEFSRv2 and 

least in the WPC-PQPF, where the forecasts seem to exhibit similar skill independently of the 

region, particularly for the large basin size (e.g., Fig. 5i). As was the case in Fig. 4, the GEFSRv2 

shows in Fig. 5 a strong diurnal cycle, potentially signaling the lesser ability of the GEFSRv2 to 

capture and resolve convective events. 

Contrasting the regions against each other in Fig. 5, we find that the MAR shows again 

the least skill at the initial lead times with the SREF, but a comparable skill with the GEFSRv2 

and WPC-PQPF. The NER seems to consistently have a slightly larger skill than the other 

regions with the SREF and WPC-PQF. While the SER and OHR behave similarly in regards to 

their skill (e.g., Figs. 5b and 5d). 

 

c. Reliability 

We examine the reliability of the GEFSRv2, SREF, and WPC-PQPF across the four 

eastern regions in Fig. 6. To compute the reliability curves, we focus on moderate to heavy 

precipitation events and a large basin size (500 x 500 km
2
). For the GEFSRv2, the forecasts tend 

to be underconfident at low forecast probabilities and overconfident at high forecast probabilities 

at the day 1 forecast lead time (Fig. 6a). At the day 2 (Fig. 6b) and day 3 (Fig. 6c) forecast lead 

time, the GEFSRv2 forecasts for the low forecast probabilities become less underconfident. 

These trends, regarding the reliability of the GEFSRv2, are similar across all the regions. The 

SREF is consistently overconfident across forecast lead times and regions (Figs. 6d-f), with the 

MAR and NER being slightly more unreliable than the OHR and SER (e.g., Fig. 6d). The WPC-

PQPFs are underconfident at high forecast probabilities. Nevertheless, the WPC-PQPFs seem 

relatively more reliable than the GEFSRv2 and SREF. Additionally, the SER seems to be 

somewhat more reliable than the other regions. Overall, the three forecasting systems or 



 
 

guidance exhibit conditional biases across regions, thus indicating that postprocessing may be 

beneficial to all the regions. 

 

d. ROC curves 

To examine the ability of the different forecasting systems and guidance to discriminate 

between occurrences versus non-occurrences of a precipitation event, we plot in Fig. 7 the ROC 

curve for each region. We note that the ROC curve actually plots the probability of detection 

(PoD) of an event (or true alarm) versus the probability of false detection (PoFD) (or false alarm) 

using a set of different probability thresholds. Additionally, a larger area under the ROC curve 

and above the 45° line from the origin (i.e., the ROC area) represents a more skillful forecast, 

with more ability to discriminate between precipitation events. We use 6 hourly accumulations, a 

500 x 500 km
2
 basin size, and moderate to heavy precipitation events to determine the ROC 

curves. 

We show the ROC curves for the MAR, NER, OHR, and SER in Figs. 7a-d, respectively. 

Overall, the GEFSRv2 and WPC-PQPF show better discrimination ability than the SREF across 

regions, although these differences can be very small in some regions, e.g., SER (Fig. 7d). The 

MAR shows a poor ability to discriminate different events with the SREF but a comparable 

ability with the GEFSRv2 and WPC-PQPF (Fig. 7a). Overall, in Fig. 7, the WPC-PQPF 

consistently shows better discrimination across regions; however, the GEFSRv2 exhibits 

somewhat better discrimination than the WPC-PQPF for moderate to heavy precipitation events 

across the MAR 

 

6. Verification of short- to medium-range GEFSRv2 forecasts (days 1-16) 

a. Correlation and RME 

We now focus our attention on short- to medium-range precipitation forecasts from the 

GEFSRv2, where we consider forecasts for the period of 2004-2013. In Figs. 8a-c, we show the 

correlation coefficient between the GEFSRv2 mean ensemble forecast and the corresponding 

observed precipitation values as a function of the forecast lead time for small, intermediate, and 

large basin sizes, respectively. The correlation coefficient declines with increasing forecast lead 

time and increases slightly with the basin size. This behavior is similar across regions. Fig. 8 also 

suggests that, at forecast lead times beyond 8 days, there is little to no predictability in the 

GEFSRv2 across regions. 

Figs. 8d-f plot the RME of the GEFSRv2 mean ensemble forecast against the forecast 

lead time for small, intermediate, and large basin sizes, respectively. For all the regions, the 

RME shows a strong negative bias that increases with the forecast lead time, although it seems to 

stabilize at ~12 days, and decreases slightly with increasing basin size. Additionally, the RME 

does not vary greatly among regions. The two most salient differences are the larger 

unconditional bias for SER at forecast lead times of less than 3-4 days and the stronger daily 

oscillations for SER. Regarding the latter, with convective events likely being more dominant in 

SER than in the other regions, it is perhaps not surprising that GEFSRv2 forecasts show a 

stronger daily variation in this region. 

Contrasting the results in Figs. 8a-c against those in Figs. 2a-c, we find that the 

correlation coefficients based on the 2012-2013 GEFSRv2 dataset (Figs. 2a-c) are similar to 

those from the longer dataset for the period 2004-2013 (Figs. 8a-c). We reach a similar 

conclusion by contrasting the RME values in Figs. 8d-f against those in Figs. 3a-c. 

 



 
 

b. Skill  

We show in Figs. 9a-c the BSS as a function of the calendar month for forecast lead times 

of 1, 3, and 5 days, respectively. The BSS in Fig. 9 are computed using 6 hourly accumulations, 

500 x 500 km
2
 basin sizes, and moderate to heavy precipitation events. In Fig. 9, the GEFSRv2 

shows overall less skill in the summer months than in the winter months across regions and 

forecast lead times. The month of July seems to generally have the lowest skill. However, the 

NER can have its lowest skill in May (Fig. 9a) and OHR in August (Fig. 9b). Additionally, the 

skill tends to decrease with the forecast lead time, as expected, so that BSS values in Fig. 9c (day 

5) tend to be lower than in Fig. 9a (day 1) across months and regions. 

In terms of the CRPSS, the skill decreases with increasing forecast lead time, as 

expected, and increases somewhat with increasing basin size across regions (Fig. 10). In Fig. 10, 

we compute the CRPSS using 6 hourly accumulations and moderate to heavy precipitation 

events. Indeed, the skill as a function of the forecast lead time tends to be similar across the 

different eastern regions (Fig. 10). The MAR seems, however, to consistently have slightly better 

skill up to day 7 than the SER across basin sizes (Figs. 10a-c). These results, which span the 

period of 2004-2013, are consistent with our previous findings for years 2012-2013 (Figs. 5a-c). 

Overall, Fig. 10 shows that GEFSRv2 tends to remain skillful across the eastern regions up to a 

lead time of 7 days, after which the skill becomes similar to sampled climatology. 

 

c. Reliability 

The reliability diagrams in Fig. 11 show that the GEFSRv2 is slightly underconfident at 

low forecast probabilities and strongly overconfident at large probabilities for day 1 forecast lead 

time across basin sizes (Figs. 11a, 11d, and 11g). At longer forecast lead times (day 3 in Figs. 

11b, 11e, and 11h, and day 6 in Figs. 11c, 11f, and 11i), the GEFSRv2 mainly overpredicts the 

forecast probabilities across basins sizes. This makes the GEFSRv2 overconfident across the 

eastern regions at longer forecast lead times. Indeed, the trends in the reliability diagrams in Fig. 

11 are, for the most part, similar across regions. Nevertheless, in some cases, the MAR and NER 

show somewhat less reliability (Fig. 11h) and the SER more reliability (Fig. 11g) than the other 

regions. In terms of the forecast sharpness, assessed by inspecting the insets in Fig. 11, the SER 

is relatively less sharp in some of the cases in Fig. 11 (e.g., Figs. 11f and 11i). Fig. 11 further 

confirms and supports our previous results based on Figs. 6a-c, which underscore the potential 

for statistical postprocessing to improve the raw ensemble forecasts from the GEFSRv2. 

 

7. Summary and conclusions 

In this study, we verified the quality of ensemble precipitation forecasts from the 

GEFSRv2, SREF, and WPC-PQPF. We selected these three forecasting systems or guidance 

because they are operational, have multiyear data available, and/or represent conditions of 

interest to forecasters. The verification was conducted for 6 hourly accumulations and mostly for 

moderate to heavy precipitation events across four eastern regions. The regions represent the 

geographic domains of the eastern U.S. RFCs. 

Based on the three forecasting systems or guidance analyzed, the verification results 

indicate that, across the eastern U.S., precipitation forecast bias decreases and the skill and 

reliability improve as the basin size increases. However, all the forecasts exhibit a strong 

underforecasting bias. Additionally, the skill of the forecasts is appreciably better in the cool 

season than in the warm one. Overall, the WPC-PQPFs tend to show some gains in the 

correlation coefficient, relative mean error, and forecast skill relative to both the GEFSRv2 and 



 
 

SREF, but the gains vary with the region and forecast lead time. For the regions considered, 

according to the short- to medium-range GEFSRv2 outputs, we find that: the precipitation 

forecasts tend to have some skill up to approximately day 7, beyond that the skill is similar to 

that from sampled climatology; 0- to 7-day forecast bias grows with the forecast lead time; and 

the analysis based on reliability diagrams indicates that forecasts tend, for the most part, to be 

overconfident.  

Relative to the other regions considered, the MAR shows unusually low skill in the warm 

season with the SREF and a noticeable skill gain with the WPC-PQPF, relative to both the 

GEFSRv2 and SREF. The SER shows a pronounced daily cycle, more pronounced than in the 

other eastern regions, characterized by greater skill in the late morning than in the late evening. 

The SREF seems to perform better in the NER than in the other eastern regions, i.e. forecasts are 

the least biased and have the most skill for days 1-3. 

 

For this study, we verified ensemble precipitation forecasts from the GEFSRv2, SREF, 

and WPC-PQPF since precipitation is a key forcing of interest in many weather-related 

applications. Our verification was based on selected metrics (see the appendix) conditioned upon 

the precipitation threshold, forecast lead time, seasonality, and basin size. Although our 

verification strategy provided useful diagnosis information regarding the quality of ensemble 

precipitation forecasts, it did not provide direct information on how to improve the underlying 

NWP models. To better understand the physical and environmental conditions associated with 

forecast errors and skill, we will need to consider more weather variables than just precipitation, 

as in the approach by Moore et al. (2015). Additionally, we could focus the verification on few 

high-impact events or unusual weather scenarios, as suggested by Novak et al. (2014). 
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APPENDIX 

 

Verification metrics 

 

a. Correlation coefficient and relative mean error (RME) 

The correlation coefficient measures the degree of linear association between the pairs of 

mean ensemble forecasts and corresponding observations. However, the correlation coefficient 

does not provide any direct information about the bias in the forecast data (Brier and Allen 

1951). Hence, the RME is used to explore the relative bias of a forecast system. The RME 

measures the mean difference between a set of forecasts and corresponding observations as a 

fraction of the average observed value, and can be expressed as 
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  , m  is the number of ensemble members, 

,i kX  is the forecast for 

member k at time i , iY  denotes the corresponding observation at time i , and n denotes the total 

number of pairs of forecasts and observed values. 

 

b. Brier Skill Score (BSS)  

Brier score (BS) is analogous to the mean squared error, but where forecast is a 

probability and the observation is either a 0 or 1 (Brown et al. 2010). The BS is given by 
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r( ) P [ ],

iX iF q X q   (3) 

n is again the total number of forecast-observation pairs, and 
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In order to compare the skill score of the main forecast system with respect to the reference 

forecast, it is convenient to define the Brier Skill Score (BSS): 

 main

reference

BS
BSS 1 ,

BS
   (5) 

where BSmain and BSreference are the BS values for the main forecasting system (i.e., the system to 

be evaluated) and reference forecasting system, respectively. Any positive values of the BSS, 

from 0 to 1, indicate that the main forecasting system performed better than the reference 

forecasting system. Thus, a BSS of 0 indicates no skill and a BSS of 1 indicates perfect skill.  

 

c. Reliability diagram 
As suggested by Murphy (1973), the BS can be further decomposed into a reliability, 

resolution, and uncertainty component. In this study, instead of using the decomposed BS to 

quantify the reliability and resolution of the forecasts, we use the so-called reliability diagram. 

The reliability diagram shows the full joint distribution of forecasts and observations to reveal 

the reliability of the probability forecasts. For the forecast values portioned into bin kB  and 

defined by the exceedance of threshold q, the average forecast probability can be expressed as 
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where kI  is  the collection of all indices i  for which iX  falls into bin kB , and kI denotes the 

number of elements in kI . The corresponding fraction of observations that fall in the 
thK  bin is 

given by 
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The reliability diagram plots ( )
kXF q  against ( )

kYF q .  

 

d. Mean Continuous Ranked Probability Skill Score (CRPSS) 



 
 

  The Continuous Ranked Probability Score (CRPS), which is less sensitive to sampling 

uncertainty, is used to measure the integrated square difference between the cumulative 

distribution function (cdf) of a forecast, ( )xF q ,  and the corresponding cdf of the observation, 

( )yF q . The CRPS is given by 
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To evaluate the skill of the main forecasting system relative to the reference forecast system, the 

associated skill score, the Mean Continuous Ranked Probability Skill Score (CRPSS), is defined 

as: 
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reference

CRPS
CRPSS 1 ,
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   (9) 

where CRPS is averaged across n  pairs of forecasts and observations to calculate mean CRPS  

of the main forecast system ( mainCRPS ) and reference forecast system ( referenceCRPS ). The 

CRPSS ranges from -∞ to 1, with negative scores indicating that the system to be evaluated has 

worse CRPS than the reference forecasting system, while positive scores indicate a higher skill 

for the main forecasting system compares to the reference forecasting system, with 1 indicating 

perfect skill. 

 

e. Relative operating characteristic (ROC) curve 

The ROC curve is a measure of the quality of probability forecasts that relates the 

probability of detection (PoD) or true alarm to the corresponding probability of false detection 

(PoFD) or false-alarm rate, as a decision threshold is varied across the full range of a continuous 

forecast quantity. For a particular threshold, the PoD is given by 
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where I  denotes the indicator function and d  denotes the probability threshold at which the 

event triggers some action. Similarly, the PoFD can be expressed as  
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The relationship between PoD and PoFD is assumed bivariate normal such that 

 1PoD [ (PoFD)],a b    (12) 

where PoD PoFD

PoD

a
 




 , PoFD

PoD

,b



  and   is the cdf of the standard normal distribution. PoD  

and PoFD  are the means while PoD  and PoFD  denote the standard deviations of the PoD and 

PoFD, respectively. The ROC curve plots the PoD (fraction of true alarms) against the PoFD 

(fraction of false alarms) for all possible values of the decision threshold, d [0,1], noting that an 

ensemble forecast is essentially a step function, with as many possible values of d as the number 

of ensemble members. 
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Table 1. Summary and main characteristics of the datasets used in the study. 

Dataset Horizontal 

Resolution 

(km
2
) 

Number of 

models 

Number of 

ensemble 

members 

Lead time 

(hours) 

Period of 

analysis 

(years) 

GEFSRv2 ~55 x 55 1 11 1-192 2004-2013 

(0.5
0 
x 0.5

0
)  

 ~73 x 73 1 11 193-384 2004-2013 

(0.67
0 
x 0.67

0
)  

SREF ~32 x 32 3/4 21 1-87 2012 

 ~16 x 16 3/4 21 1-87 2012-2013 

WPC-PQPF ~4 x 4 - 7 1-72 2012-2013 

MPEs ~4 x 4 - - - 2004-2013 

  



 
 

 
 

Fig. 1. Map illustrating the spatial extent of the different River Forecasts Centers in the eastern 

U.S., including the MARFC, NERFC, OHRFC, and SERFC. The map also shows the GEFSRv2 

grid over each RFC and urban areas across the eastern U.S. 

 



 
 

 
Fig. 2. Correlation coefficient between the mean ensemble forecast and the corresponding 

observed precipitation values as a function of the forecast lead time for the eastern regions. The 

correlation coefficient plots are for the (a-c) GEFSRv2, (d-f) SREF, and (g-i) WPC-PQPF, based 

on 6 hourly precipitation accumulations, moderate to heavy precipitation events (Pr=0.9), and 

different basin sizes. 



 
 

 
Fig. 3. RME of the mean ensemble forecast versus the forecast lead time for the eastern regions. 

The RME plots are for the (a-c) GEFSRv2, (d-f) SREF, and (g-i) WPC-PQPF, based on 6 hourly 

precipitation accumulations, moderate to heavy precipitation events (Pr=0.9), and different basin 

sizes.  



 
 

 
Fig. 4. BSS versus the forecast lead time for the eastern regions. The BSS plots are for the (a-d) 

GEFSRv2, (e-h) SREF, and (i-l) WPC-PQPF for both the cool and warm season. The BSS plots 

are based on 6 hourly precipitation accumulations, a basin size of 500 x 500 km
2
, and both light 

to moderate precipitation events (Pr=0.5) as well as moderate to heavy precipitation events 

(Pr=0.9). 



 
 

 
Fig. 5. Mean CRPSS versus the forecast lead time for the eastern regions. The CRPSS plots are 

for the (a-c) GEFSRv2, (d-f) SREF, and (g-i) WPC-PQPF. The CRPSS plots are based on 6 

hourly precipitation accumulations, moderate to heavy precipitation events (Pr=0.9), and 

different basin sizes. 



 
 

 
Fig. 6. Reliability diagrams for precipitation forecasts from the (a-c) GEFSRv2, (d-f) SREF, and 

(g-i) WPC-PQPF for forecast lead times of 1 (19-24 h), 2 (43-48 h) and 3 (67-72 h) days for the 

eastern regions. The reliability diagrams are based on 6 hourly precipitation accumulations, 

moderate to heavy precipitation events (Pr=0.9), and 500 x 500 km
2
 basin sizes. The insets show 

the sample size in logarithmic scale of the different forecast probability bins. 



 
 

 
Fig. 7. ROC curves for the GEFSRv2, SREF, and WPC-PQPF for the (a) MAR, (b) NER, (c) 

OHR, and (d) SER at a lead time of 1 (19-24h) day. The symbols represent the sample values of 

the probability of detection and probability of false detection, and the curves represent the values 

fitted using the binomial distribution. All the ROC curves are based on 6 hourly precipitation 

accumulations and 500 x 500 km
2
 basin sizes. The diagonal line represents the ROC curve 

associated with sampled climatology. 



 
 

 
Fig. 8. (a)-(c) Correlation coefficient and (d)-(f) RME between the GEFSRv2 mean ensemble 

forecast and the corresponding observed precipitation values as a function of the forecast lead 

time for the eastern regions. The plots are based on 6 hourly precipitation accumulations, 

moderate to heavy precipitation events (Pr=0.9), and basin sizes of (a) 100 x 100, (b) 300 x 300, 

and (c) 500 x 500 km
2
. 



 
 

 
Fig. 9. Monthly BSS for the GEFSRv2 precipitation forecasts versus the calendar month for the 

eastern regions. The plots are for lead times of (a) 1 (19-24h), (b) 3 (67-72hr), and 5 (115-120h) 

days, and are based on 6 hourly precipitation accumulations, moderate to heavy precipitation 

events (Pr=0.9), and 500 x 500 km
2
 basin sizes. 



 
 

 
 

Fig. 10. Mean CRPSS for the GEFSRv2 precipitation forecasts versus the forecast lead time for 

the eastern regions. The plots are based on 6 hourly precipitation accumulations, moderate to 

heavy precipitation events (Pr=0.9), and basin sizes of (a) 100 x 100, (b) 300 x 300, and (c) 500 

x 500 km
2
. 



 
 

 
Fig. 11. Reliability diagrams for precipitation forecasts from the GEFSRv2 for basin sizes of (a-

c) 100 x 100, (d-f) 300 x 300, and (g-i) 500 x 500 km
2
 for the eastern regions. The reliability 

diagrams are for forecast lead times of 1 (19-24h), 3 (67-72h) and 6 (139-144h) days, and are 

based on 6 hourly precipitation accumulations and moderate to heavy precipitation events 



 
 

(Pr=0.9). The insets show the sample size in logarithmic scale of the different forecast 

probability bins. 



 
 

Chapter 4: Postprocessing of precipitation ensembles using 

Bayesian model averaging and heteroscedastic censored 

logistic regression 
 

ABSTRACT 

The potential of Bayesian model averaging (BMA) and heteroscedastic censored logistic 

regression (HCLR) to postprocess precipitation ensembles is investigated. For this, we use 

outputs from the National Oceanic and Atmospheric Administration’s (NOAA’s) National 

Centers for Environmental Prediction (NCEP) 11-member Global Ensemble Forecast System 

Reforecast version 2 (GEFSRv2) dataset. The GEFSRv2 dataset is based on a single model and 

single physics ensembles. To implement BMA, we select two different modeling scenarios: 

exchangeable and non-exchangeable members. We term the BMA postprocessing with 

exchangeable members BMAx. As part of our experimental setting, to compare the 

postprocessors, we use 24-h precipitation accumulations and forecast lead times of 24- to 120-h. 

For the study area, we select the middle Atlantic region (MAR) of the U.S. In contrast with 

previous postprocessing studies, we consider here a wider range of forecasting conditions (e.g., 

the effect of spatial pooling, training length, lead time, precipitation threshold, and seasonality) 

when evaluating BMA and HCLR. Additionally, BMA and HCLR have not been compared 

against each other yet, under a common and consistent experimental setting. 

To implement BMA and BMAx, we use a sliding window of 25 days and train each 

GEFSRv2 cell separately, as opposed to using spatial pooling. These training conditions were 

selected by carefully examining the skill of forecasts associated with different window lengths 

and number of cells. To compare and verify the postprocessors, we use different metrics (e.g., 

skills scores and reliability diagrams) conditioned upon the forecast lead time, precipitation 

threshold, and season. Overall, we find that HCLR tends to outperform BMA and BMAx but the 

differences among the postprocessors are not as significant. Also, BMA and BMAx behave 

similarly across lead times and seasons, thereby indicating that the GEFSRv2 members remain 

indistinguishable across lead times. The improved performance of HCLR over that of BMA 

seems related to the ability of HCLR to include the ensemble variance as a predictor. In the 

future, an alternative approach could be to combine HCLR with BMA to take advantage of their 

relative strengths. 

 

1. Introduction 

Numerical weather prediction (NWP) models are used, as part of an ensemble prediction 

system (EPS), to generate ensemble forecasts of a future weather variable or quantity (Tracton 

and Kalnay 1993; Toth et al. 2003; Buizza et al. 2005). The ensemble forecasts, in turn, can be 

used to determine the probability and uncertainty of the weather variable. In the case of 

precipitation forecasts, however, the magnitude and dispersion of the ensemble forecasts are 

normally characterized by the presence of biases (Sloughter et al. 2007; Wilks 2009), which 

makes the determination of forecast probabilities from such ensembles unreliable. To correct the 

biases and improve the reliability of ensemble forecasts, a number of techniques have been 

developed and implemented (e.g., Raftery et al. 2005; Wilks 2006b; Bröcker and Smith 2008). 

These techniques are collectively known as statistical weather postprocessing or calibration. 

Postprocessing for ensemble prediction systems has several goals: correct systematic 

forecast errors or biases, correct (calibrate) ensemble spread so that it is a useful estimate of 



 
 

forecast uncertainty, and (optionally) weight ensemble members according to past performance. 

Some of the available techniques for postprocessing weather forecasts are: regression-based 

methods (Bjørnar Bremnes 2004; Clark and Hay 2004; Hamill et al. 2004; Friederichs and Hense 

2007; Wilks 2009; Roulin and Vannitsem 2011; Messner et al. 2014a,b), Gaussian ensemble 

dressing (Roulston and Smith 2003; Wang and Bishop 2005), non-parametric methods (Brown 

and Seo 2010), and Bayesian model averaging (BMA) (Raftery et al. 2005; Sloughter et al. 2007; 

Schmeits and Kok 2010), among others (e.g., Wu et al. 2011). Many of these techniques share in 

common the model output statistics (MOS) approach (Glahn and Lowry 1972; Wilks 2006b) 

since, as part of their methodology, they require the derivation of statistical forecast equations as 

a function of one or more outputs (i.e. predictors) from the NWP model. Additionally, some of 

the proposed techniques allow the complete characterization of the predictive probability density 

function (pdf) of precipitation forecasts (Sloughter et al. 2007; Wilks 2009; Messner et al. 

2014b).  

 Some of the postprocessing techniques mentioned have been evaluated for the case of 

ensemble precipitation forecasts (Sloughter et al. 2007; Wilks and Hamill 2007; Wilks 2009; 

Brown and Seo 2010; Schmeits and Kok 2010; Messner et al. 2014a,b; Zhu et al. 2015). For 

instance, Sloughter et al. (2007) extended the BMA approach introduced by Raftery et al. (2005) 

to the case of ensemble precipitation forecasts. As a statistical weather postprocessor, BMA 

generates bias-corrected predictive pdfs from the ensemble forecasts (Sloughter et al. 2007; 

Fraley et al. 2010). Bremnes (2004) employed quantile regression to estimate the conditional 

quantiles of future precipitation using the forecast precipitation amounts, alongside other 

weather-related variables such as mean relative humidity and wind flow, as predictors. Wilks 

(2009) proposed and implemented the extended logistic regression (ELR) approach to include 

the threshold quantiles of the precipitation forecast as predictor variables, as opposed to relying 

on the precipitation amounts alone. Messner et al. (2014a) complemented the ELR approach by 

including the precipitation ensemble spread as a predictor. They termed this approach 

heteroscedastic extended logistic regression (HELR). They also proposed two additional logistic 

regression-based approaches for postprocessing precipitation: heteroscedastic ordered logistic 

regression (HOLR) and heteroscedastic censored logistic regression (HCLR) (Messner et al. 

2014b). It is useful to note that HCLR fits the same model as HELR, with the only difference 

being that the HCLR parameters optimize the continuous predictive pdf, as opposed to the 

quantile thresholds (Messner et al. 2014b). 

A few precipitation postprocessing studies have compared the performance of different 

postprocessing techniques under a common set of experimental conditions, e.g., by using the 

same geographic region, dataset, and training period to evaluate the postprocessors (Wilks 

2006a; Sloughter et al. 2007; Schmeits and Kok 2010; Mendoza et al. 2014; Messner et al. 

2014b). The general findings from these studies indicate that the performance of the 

postprocessors, both relative to sampled climatological conditions and to each other, vary 

depending on the training strategy (Greybush et al. 2008; Zhu et al. 2015), verification metric 

considered (Mendoza et al. 2014), forecast lead time (Schmeits and Kok 2010), and bias-

correction type (Schmeits and Kok 2010; Erickson et al. 2012), among other factors. 

In this study, our primary goal is to assess and verify the potential of BMA and HCLR to 

postprocess precipitation ensemble reforecasts from the National Oceanic and Atmospheric 

Administration’s (NOAA’s) National Centers for Environmental Prediction (NCEP) 11-member 

Global Ensemble Forecast System Reforecast version 2 (GEFSRv2). We employ GEFSRv2 

since its reforecasts, based on a consistent model run, are available over a long time period. This 



 
 

is relevant because forecasts produced by a model whose structure changes in time will produce 

less statistically consistent forecasts. Although this situation may be unavoidable in operational 

forecasting, it should be avoided when interest lies in assessing the performance of different 

postprocessors. We use multisensor precipitation estimates (MPEs) as the observed precipitation 

when training the postprocessors and verifying the raw and postprocessed ensemble precipitation 

forecasts. Additionally, we highlight that our evaluation here of BMA is more comprehensive 

than previous ones since we account for the effect of training period length, spatial pooling 

strategy, lead time, seasonality, and BMA weight interpretation (i.e. exchangeable versus non-

exchangeable) on the BMA postprocessed precipitation forecasts. Moreover, BMA and HCLR 

have not been compared against each other yet. 

We select BMA and HCLR for this study for various reasons. BMA is desirable because 

it provides an integrated approach for combing ensemble members from a single or multiple 

NWP models. At the same time, techniques based on logistic regression have been shown to 

perform as well as or slightly better than BMA in several applications (Sloughter et al. 2007; 

Schmeits and Kok 2010), while being less computationally demanding. The latter becomes 

particularly relevant when working with long reforecast datasets. Furthermore, HCLR has 

recently been shown to outperform and overcome key shortcomings of other logistic regression-

based techniques, such as allowing the determination of the full predictive pdf of precipitation 

forecasts (Messner et al. 2014a).  

Key questions that we seek to address with this study are: How does the BMA and HCLR 

postprocessed forecasts compare against the raw precipitation ensembles? What is the 

dependence between the performance of the postprocessors and the forecast lead time, training 

period length, spatial pooling, seasonality, and precipitation threshold? Does assuming 

exchangeable versus non-exchangeable weights affect the performance of BMA across lead 

times? Which postprocessing method is more reliable for the MAR? The remainder of the paper 

is organized as follows. In sections 2 and 3, we describe the study area and datasets employed, 

respectively. In section 4, we review the postprocessing techniques. Section 5 outlines the 

verification strategy. The main results and their implications are examined in sections 6 and 7. 

Lastly, section 8 summarizes the key findings. 

 

2. Study area  

We use the Middle Atlantic Region (MAR) of the U.S. as our study area. The geographic 

location and boundary of the MAR is illustrated in Figure 1. The MAR is comprised by the state 

of Delaware and the District of Columbia, along with parts of the states of Maryland, New York, 

New Jersey, Pennsylvania, Virginia, and West Virginia (Polsky et al. 2000; Greene et al. 2005). 

It only occupies approximately 5% of the total land mass of the U.S. but it contains 

approximately 10% of its population (~41 million people) (Siddique et al. 2015). Some of the 

largest metropolitan areas in the U.S. are located in the MAR, e.g., Baltimore, Philadelphia, and 

Washington D.C. Additionally, the MAR comprises several major U.S. river basins including the 

Delaware, Susquehanna, Potomac, and James River. The climate in the MAR is relatively humid. 

The average annual temperature is approximately 11 °C and the mean annual precipitation is 

approximately 900-1200 mm (Polsky et al. 2000). Rainfall is distributed evenly throughout the 

year with the mean annual rainfall total being approximately 1009 mm; annual rainfall has 

ranged from approximately 647 to 1288 mm over the historical record (Neff et al. 2000).  

The MAR has a high frequency of heavy precipitation events relative to other regions in 

the Continental U.S. (CONUS), particularly in the summer months, as indicated by 



 
 

climatological analysis of heavy rainfall events (i.e. hourly accumulations of at least 25 mm at a 

4x4 km
2
 grid cell) at 1-3-h durations across CONUS (Hitchens et al. 2013). In relation to the 

patterns of large-scale heavy precipitation events, Grumm and Holmes (2007) classified events 

over the MAR, using both station and reanalysis data, to find that the dominat event types are 

Maddox synoptic and Maddox frontal (Maddox et al. 1979). They also identified a sub-type of 

the Maddox synoptic characterized by the interactions between synoptic events with the 

remnants of tropical and subtropical systems. Indeed, they highlight that these sub-type events 

produce the heaviest rainfall events over the MAR. Generally, the magnitudes, patterns, and 

anomalies associated with wind components, precitable water, and 850 hPa specific humidity are 

useful signatures for predicting heavy precipitation over the MAR (Grumm and Holmes 2007). 

 

3. Data and methodology 

a. GEFSRv2 

For the precipitation ensemble forecasts, we use outputs from the GEFSRv2 dataset. 

GEFSRv2 are the retrospective forecasts produced using the 2012 operational version (version 

9.0.1) of the NCEP’s Global Ensemble Forecast System (Hamill et al. 2013). The model runs for 

the GEFSRv2 were initiated once a day at 00 Coordinated Universal Time (UTC) (Hamill et al. 

2013). Initial conditions were perturbed using the ensemble transform technique with rescaling 

(Wei et al. 2008). The forecast lead times extend from 1 to 16 days and each forecast cycle 

consists of forecasts valid for 3 hourly accumulations from day 1 to day 3 and 6 hourly 

accumulations from day 4 to day 16. We use here for the evaluation of the postprocessors 24-hr 

accumulations from day 1 to 5. The native resolution of the reforecasts is ~0.5-degree on a 

Gaussian grid for forecasts in the first week and ~0.67-degree for forecasts in the second week. 

The GEFSRv2 data is also available at the ~1-degree resolution for the entire range of lead times 

(days 1 to 16). We use here the 1-degree resolution dataset. Further details about the GEFSRv2 

dataset or information on how to access it are provided elsewhere (Hamill et al. 2013; Hamill et 

al. 2015). 

 

a. MPEs 

We use MPEs to train the postprocessors and verify the raw and postprocessed ensemble 

precipitation forecasts. The MPEs were provided by the NOAA’s Middle Atlantic River Forecast 

Center (MARFC) (Lawrence et al. 2003). This dataset is similar to the NCEP stage-IV MPEs 

(Prat and Nelson 2015). As with the NCEP stage-IV dataset, the MPEs provided by the MARFC 

represent a continuous time series of hourly, high-resolution gridded precipitation observations at 

4x4 km
2
 cells, over the MAR. We aggregated the MPEs to the temporal (24-hr) and spatial scale 

(1-degree) of the GEFSRv2 data over the period 2002-2007. Note that MPEs are subject to 

errors, such as radar artifacts, but they are also one of the best high-resolution gridded 

precipitation datasets available (Prat and Nelson 2015) and therefore appropriate for this study.  

 

b. Postprocessing techniques 

1) BMA 

We provide here a brief overview of the BMA technique as used for the postprocessing 

of ensemble precipitation forecasts since a detailed description is provided elsewhere (Sloughter 

et al. 2007). As a statistical weather postprocessor, BMA generates bias-corrected predictive pdfs 

from the ensemble forecasts (Sloughter et al. 2007; Fraley et al. 2010). Specifically, the BMA 

predictive pdf is a weighted average of pdfs centered on the individual bias-corrected 



 
 

precipitation forecasts. The weights reflect the predictive skill of the individual ensemble 

members over a selected training prediod. 

The BMA predictive pdf, p(y| f1,…, fk), for the cube root of precipitation accumulation y, 

given the forecast members f1,…, fk at a particular lead time, is given by: 
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The weight wk is the posterior probability of ensemble member k being the best one, provided 

that 
1

1
K

kk
w


 . K is the total number of ensemble members; K=11 for the GEFSRv2 data. The 

weights are specified according to the relative performance of each ensemble member during the 

training period employed for parameter estimation. P(y=0|fk) is the probability of the cube root of 

precipitation being equal to zero given the forecast member fk and assuming that fk is the best 

forecast member. I[.] is the indicator function which is equal to 1 if the term inside the brackets 

holds true and 0 otherwise. P(y>0|fk) is the probability of the cube root of precipitation being 

greater than 0 given the forecast member fk and assuming that fk is the best forecast member. The 

cube root of precipitation is used since this transformation has been found to improve the 

modeling of P(y>0|fk) (Sloughter et al. 2007), which is normally represented by a gamma pdf as 

further explained in the next paragraphs.  

The term P(y=0|fk) is determined as 

 
1/3

0, 1, 2,

(
.

0 | )
logit ( 0 | ) log

( 0 | )

k
k k k k k

k

k

P y f
P y f a a f a

P y f


    


   (2) 

Equation (2) is a logistic regression with parameters ai,k (i=1,2,3) that need to be estimated for 

each ensemble member k. The predictor δk is equal to 1 if fk=0 and 0 otherwise. The parameters 

in equation (2) are determined directly from the ensemble forecast and observed data, using 

logistic regression with precipitation/no precipitation as the dependent variable, and
1/3
kf andk as 

the two predictor variables. 

The term P(y>0|fk) is equal to 1-P(y=0|fk) while g(y|fk) is defined as 
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for y>0, and g(y)=0 for y=0. Equation (3) is a gamma pdf with shape parameter 
2 2/k k k    and 

scale parameter 
2 /k k k   . The mean, µk, and variance, 

2

k , of this distribution depend on fk as 

follow 
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and 
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The parameters bi,k (i=0, 1) in equation (4) are member specific.  They are determined separately 

for each ensemble member using linear regression with the cube root of the observed 

precipitation amount as the dependent variable and
1/3

kf  as the predictor variable.  

Lastly, using the training data, the parameters co and c1 in equation (5), as well as the wk’s 

(k=1,…, K) in equation (1) are estimated by maximum likelihood, as in Sloughter et al. (2007). 

The approach of Sloughter et al. (2007) maximizes the log-likelihood function numerically using 

the expectation-maximization algorithm (Dempster et al. 1977; McLachlan and Krishnan 1997). 



 
 

To implement the BMA postprocessor, we use 24-h precipitation accumulations from the 

GEFSRv2 for lead times from 24- to 120-h. To train the BMA, we use the sliding time window 

approach of Sloughter et al. (2007). In this approach, a sliding time window comprised of the L 

training days preceding the forecast day is used. The window moves with the forecast day (i.e. 

the day the forecast is issued) and, typically, it is comprised of the preceding 20 to 40 days prior 

to the forecast day. We use this same approach here with one important modification. We select 

training days from the 4 years preceding the forecast day using the same calendar days in each 

year, as opposed to just using training days from a single year. For example, for a GEFSRv2 

reforecast issue on March 31, 2005, we select as the training data the days from March 1 to 30 

(assuming a 30-day training window) in the years 2002 to 2005, thus we use in this example a 

total of 120 training days, i.e. (30 days)x(4 years). We select the size of the training window 

empirically by testing different window sizes. 

Additionally, when training the BMA algorithm, it is common to rely on spatial pooling 

to increase the sample size of the training dataset. However, the effect of spatial pooling on the 

performance of BMA is rarely assessed. Thus, we evaluate this here by varying the number of 

GEFSRv2 cells that are used for training. In this study, we select a total of 20 GEFSRv2 cells 

since they cover the majority of the MAR. To test different training scenarios, we use 1, 5, 10, 

and 20 cells to train the BMA algorithm. The 1 cell scenario means that each cell is trained 

individually without pooling data from the other cells. In contrast, the 5 cells scenario means that 

the 20 GEFSRv2 cells that encompass the MAR are divided into 4 groups of neighboring cells 

with 5 cells in each group. Each group is then trained separately by pooling the data from its 5 

cells. For example, for the case of 5 cells and a 30-day sliding window, we use 6600 reforecasts 

to train the BMA algorithm at a given forecast day, i.e. (30 days)x(5 cells)x(4 years)x(11 

members). 

 

2) BMA with exchangeable members 

Our previous description of BMA assumes that the ensemble members are individually 

distinguishable where distinct weights may have a physical interpretation. In our BMA 

postprocessing experiment, however, all the ensemble members come from the same NWP 

model, which means that the members lack individually distinguishable physical features. In this 

situation, the ensemble members are exchangeable, which means that the BMA weights can be 

assumed to be equal (Fraley et al. 2010; Schmeits and Kok 2010). We use the term BMAx to 

indicate the implementation of BMA using equal weights, i.e. wk in equation (1) is equal to 1/K. 

Additionally, the exchangeability condition makes other parameter constraints possible. 

Specifically, the parameters ai,k (i=1,2,3) in equation (2) and bi,k (i=0,1) in equation (4) are the 

same for all the exchangeable members that come from the same NWP model so that ai,k=ai 

(i=1,2,3) and bi,k=bi (i=0,1) (Fraley et al. 2010; Schmeits and Kok 2010).  

Nonetheless, we note that there might still be significant differences, particularly at 

longer lead times, among ensemble members from the same model that could make the non-

exchangeable approach meaningful and useful. Thus, we evaluate both approaches in this study, 

BMA and BMAx. 

 

3) HCLR 

HCLR is based on the logistic regression model initially proposed by Hamill et al. (2004) 

to postprocess precipitation ensembles. In essence, HCLR fits a logistic distribution to the 

transformed, in this case the square root of the ensemble mean, and bias-corrected precipitation 



 
 

ensembles (Messner et al. 2014b). Additionally, HCLR uses the ensemble spread as a predictor, 

which allows HCLR to consider uncertainty information contained in the ensembles. We 

describe next the HCLR postprocessor as it evolved from the logistic regression model of Hamill 

et al. (2004) and the extended version of Wilks (2009).  

The logistic regression model of Hamill et al. (2004) is given by 
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where y is the transformed precipitation, q is a specified threshold, x is a vector of predictor 

variables, and f(x) is a linear function of the predictor variables x. Further, Messner et al. (2014a) 

noted that equation (6) has the same form as the cumulative distribution function (cdf) of the 

standard logistic distribution Ʌ(.). 

One limitation with equation (6) is that separate logistic regressions with different linear 

functions f(x) need to be fitted to each threshold of interest (Wilks 2009). This results in logistic 

regressions that can cross each other which in turn implies the occurrence of nonsense negative 

probabilities. To overcome this limitation, Wilks (2009) extended the logistic regression model 

by adding another predictor variable for the threshold q such that  

 ( | ) ( )( ]) ,g q fp y q  x x   (7) 

where the transformation g(.) is a monotone nondecreasing function. In addition to avoiding 

negative probabilities, equation (7) has the advantage that fewer parameters need to be estimated; 

instead of having a linear function f(x) for each threshold, f(x) is now the same for all the 

thresholds. This can be particularly relevant when dealing with small training datasets. 

Furthermore, to appropriately utilize the uncertainty information in the ensemble spread, 

Messner et al. (2014a) proposed the use of an additional predictor vector  to control the 

dispersion of the logistic predictive distribution,  
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where h(.) is another linear function that has to be estimated. The exponential function in the 

denominator of equation (8) is used as a simple method to ensure positive values (Messner et al. 

2014a). Messner et al. (2014a) termed HELR the approach based on equation (8). 

In HELR, the function f(x) is defined as   
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where 
0d  and 

1d  are parameters that need to be estimated, and the predictor variable 
ensx  is 

the mean of the transformed, via the square root, ensemble forecasts. ( )h   is defined as  
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where 
0e  and

1e  are parameters that need to be estimated, and  is the standard deviation of the 

square root transformed, precipitation ensemble forecasts. 

To determine the parameters associated with equation (8), maximum likelihood 

estimation with the log-likelihood function is used (Messner et al. 2014a, b). For this, one needs 

to determine the predicted probability πi of the ith observed outcome. When determining πi, one 

should account for the fact that y≥0. One variation of the HELR model that can easily 

accommodate nonnegative variables that are continuous for positive values and have a natural 

threshold at zero, such as precipitation amounts, is censored regression or, as termed by Messner 

et al. (2014b), HCLR. For HCLR, πi can be expressed as (Messner et al. 2014b)  
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where λ[.] denotes the likelihood function of the standard logistic function. In essence, HCLR 

fits a logistic error distribution with point mass at zero to the transformed predictand. Such an 

error distribution appears reasonable for dealing with the square root transformed precipitation 

amounts (Schefzik et al. 2013; Scheuerer 2014).  

As was the case with BMA, to implement the HCLR postprocessor, we use 24-h 

precipitation accumulations from the GEFSRv2 for lead times from 24- to 120-h. To train the 

HCLR, we use a modified version of the sliding window approach of BMA. We use a stationary 

training period for each season and year to be forecasted, comprised of the seasonal data from 

the previous four years. Thus, for example, we use the 90 days of summer data available from 

the previous four years to train the HCLR algorithm and forecast days within the summer season 

of the current year. In this case, the total number of forecasts used for training is (90 days)x(4 

years)x(11 members). Note that the training window is moved forward one entire year after all 

the forecast days in that year have been forecasted. 

 

d. Verification strategy 

To verify the raw and postprocessed ensemble precipitation forecasts, we use the 

Ensemble Verification System (EVS) (Brown et al. 2010). We use for the verification analysis 

different metrics, including the Brier skill score (BSS), continuous ranked probability skill score 

(CRPSS), and reliability diagram. We also examine the decomposed components of the CRPS. 

The definition of each of these metrics is provided in the Appendix. Additional details about the 

verification metrics can be found elsewhere (e.g., Wilks 2010; Jolliffe and Stephenson 2012).  

For the verification analysis, we use two years of data, 2006 and 2007, the remaining 

years, 2002-2005, are used to train the postprocessors. The verification is done conditionally 

upon the season, lead time, and precipitation threshold. We focus our verification on moderate 

precipitation amounts. For this, we select precipitation amounts greater than that implied by a 

non-exceedance probability, in the sampled climatological probability distribution, of 

approximately 0.9 (~10 mm). To account for the effect of spatial scale on postprocessing, we 

assess the influence of spatially pooling data to train the postprocessors. 

 

4. Results and discussion 

a. Selection of the training length for BMA/BMAx 

An initial step in implementing the BMA/BMAx postprocessor is to determine the 

appropriate training length for the sliding time window approach of BMA/BMAx (Fraley et al. 

2010; Sloughter et al. 2007). If the length of the training window is too short or too long, the 

performance of BMA/BMAx can become suboptimal or less skillful. To assess the effect of the 

training length on the performance of BMAx, we plot the BSS against the training length for 

moderate precipitation events (>10 mm) in the summer (Figs. 2a and 2b) and fall (Figs. 2c and 

2d). We find that the BSS tends to peak or reach a maximum value at a training length of ~25 

days (Fig. 2). For the most part, after 25 days the value of BSS declines (Fig. 2). This is the case 

for both, forecast lead times of 1 (Figs. 2a and 2c for the summer and fall, respectively) and 5 

days (Figs. 2b and 2d for the summer and fall, respectively). The results are similar 



 
 

independently of the number of GEFSRv2 cells used to train the BMAx algorithm (Fig. 2), i.e. 

the optimum value of the training length still tends to be ~25 days. For example, in Fig. 2a, when 

using 20 cells or training each cell separately (1 cell), both curves reach a maximum at 25 days.  

Fig. 3 shows the same information as Fig. 2 but plots instead the CRPSS against the 

training length. In Fig. 3, the general tendency is as in Fig. 2, the skill of the BMAx 

postprocessed forecasts tends to reach a maximum at ~25 days. We thus select for this study 25 

days as the training length for all of our BMA-based experiments. We note that similar results 

(not shown) were obtained for both BMA and BMAx. Additionally, our findings regarding the 

training length are in agreement with previous results obtained by Sloughter et al. (2007), 

althouh we consider longer lead times here than Slougheter et al. (2007). Specifically, for 

forecast lead times of 2 days, Sloughter et al. (2007) found the optimal training length of BMA 

to be ~30 days. 

 

b. Effect of spatial pooling on the performance of the postprocessors  

To assess the effect of spatial pooling on the performance of the postprocessors, we plot 

the BSS against the number of cells used to train the BMA, BMAx, and HCLR postprocessors 

(Figs. 4a and 4b for the summer and fall, respectively). To train the BMA and BMAx 

postprocessors, we use a training window of 25 days. The forecasts from all three postprocessors 

show notable gains in skill relative to the raw ensembles for the summer (Fig. 4a) but the gains 

seem largely insignificant for the fall (Fig. 4b). The general tendency in Fig. 4, nevertheless, is 

for the BSS to decline somewhat as the number of cells used for training are increased. 

Additionally, the HCLR seems to perform slightly better than both BMA and BMAx.  

We also show the CRPSS as a function of the number cells used to train the BMA, 

BMAx, and HCLR postprocessors for the summer (Fig. 5a) and fall (Fig. 5b). For the summer 

(Fig. 5a), all of the postprocessors seem to significantly improve upon the raw ensembles, and 

the skill declines slightly as additional cells are used to train the postprocessors, as was the case 

with the BSS (Fig. 4a). For the fall (Fig. 5b), only HCRL seems able to improve upon the raw 

ensembles; however, overall the differences in skill among the postprocessors appear not as 

significant (Fig. 5b). 

According to the results in Figs. 4 and 5, for the remainder of our analysis, we train the 

postprocessors separately at each GEFSRv2 cell since this approach seems to perform somewhat 

better than when cells are spatially pooled. We note that this is different from the way BMA and 

BMAx are normally implemented (Sloughter et al. 2007; Fraley et al. 2010). Spatial pooling is 

normally required by BMA to increase the sample size used for training because the typical 

training window length of 25 to 30 days is small. We are less constrained here by the length of 

the training window since we sample data from the previous four years when training the 

postprocessors. This is feasible in this case because we are working with reforecasts but it may 

not be as feasible when dealing with outputs from an actual forecasting system.  

 

c. Verification of the raw and postprocessed precipitation ensembles 

1) BSS  

The BSS indicates that generally the skill of the postprocessed ensemble precipitation 

forecasts is improved relative to the raw ensembles (Fig. 6). The relative improvements in skill 

are generally greater in the summer (Figs. 6a and 6b) than fall (Figs. 6c and 6d). Additionally, 

the improvements tend to be greater when considering all the precipitation events (Fig. 6c) than 

when focusing on moderate precipitation events (Fig. 6d). Overall, the skills gains from 



 
 

postprocessing decline with increasing lead time. For example, for moderate precipitation events 

in the fall (Fig. 6d), the BSS associated with the different postprocessors is slightly better than 

the BSS of the raw ensembles at a forecast lead time of 1 day; however, the BSS of the 

postprocessed ensembles becomes slightly less at a lead time of 5 days. Contrasting the 

postprocessors against each other, it appears that the general tendency is for the postprocessors to 

perform similarly (Fig. 6). The differences between BMA and BMAx seem insignificant while 

HCLR tends to show a slight skill gain over both BMA and BMAx across lead times, 

precipitation thresholds, and seasons (Fig. 6).  

 

The plot of the BSS against the non-exceedance probability associated with different 

precipitation thresholds (Fig. 7) further confirms the findings from Fig. 6. It demonstrates that 

for the most part the postprocessors behave similarly with respect to each other. Additionally, the 

trend in the BSS for the postprocessed forecasts tends to mimic the behavior of the raw 

ensembles. For example, the BSS values, for both the raw and postprocessed forecasts, tend to 

increase with the precipitation threshold in Fig. 7c while they remain relatively stable in Fig. 7b. 

Also, as was the case in Fig. 6, the gains in skill from postprocessing are somewhat more 

noticeable in the summer (Figs. 7a and 7b) than fall (Figs. 7c and 7d) and generally the gains in 

skill are reduced for the longer forecast lead times (e.g., day 2 in Fig. 7c and day 5 in Fig. 7d). 

Indeed, at a lead time of 5 days in the fall (Fig. 7d), all of the postprocessed ensembles 

outperform the raw ensembles for probability thresholds less than 0.9; at a probability threshold 

of 0.9, the raw ensembles exhibit a slightly better skill than the postprocessed ensembles. Thus, 

the performance of the postprocessors varies with the precipitation threshold. 

 

2) CRPSS 

 The CRPSS shows that the postprocessed precipitation ensembles are overall more 

skillful than the raw ensembles across lead times and seasons (Fig. 8). As was the case with the 

BSS (Figs. 6 and 7), the relative gains in skill from postprocessing are greater in the summer 

(Fig. 8a) than in the fall (Fig. 8b), but the overall skill of the raw as well as postprocessed 

ensembles is significantly better in the fall than the summer. Furthermore, contrasting the 

postprocessors against each other, HCLR tends to slightly outperform BMA and BMAx. Indeed, 

for the fall, HCLR is the only postprocessor that shows improvements upon the raw ensembles at 

a forecast lead time of 5 days. The close similarities between the performance of BMA and 

BMAx (Figs. 6-8) indicate that the GEFSRv2 ensembles members remain indistinguishable, 

even at the longer lead times considered. 

The CRPS can be decomposed into a reliability (CRPSrel) and potential (CRPSpot) 

component (Hersbach 2000). The CRPSrel measures the ability of the precipitation ensembles to 

generate cumulative distributions that have, on average, the correct or desired statistical 

properties. While the CRPSpot measures the CRPS that one would obtain for a perfect reliable 

system. The decomposition of the CRPS shows that the gains in skill from postprocessing are 

mainly related to improvements in CRPSrel (Fig. 9a). Note that the CRPS, CRPSrel, and CRPSpot 

have a negative orientation (i.e. negative values are better). The CRPS decomposition reveals 

that the gains are considerably greater in the summer (Fig. 9a) than fall (Fig. 9b). It also shows 

that HCLR tends to have similar (Fig. 9a) or even larger (Fig. 9a) CRPSrel than BMA and BMAx 

but a smaller CRPSpot. The reduction in CRPSpot is the main source of improvement for HCLR 

over BMA and BMAx. This means, in relation to the sampled climatology, that the resolution 

associated with HCLR is likely better than that of BMA and BMAx. This may be due to the fact 



 
 

that HCLR uses the ensemble spread as a predictor of the dispersion of the predictive pdf 

(Messner et al. 2014a) and the CRPSpot is sensitive to the spread (Hersbach 2000). The CRPS 

decomposition also illustrates the fact that BMA and BMAx can improve the reliability of the 

forecasts relative to the raw ensembles while at the same time reducing the overall skill of the 

forecasts. This is observed in Fig. 9b at a forecast lead time of 5 days where BMA and BMAx 

have slightly lower CRPSrel than the raw ensembles but much higher CRPSpot.  

 

3) Reliability 

According to the CRPS decomposition (Fig. 9), the postprocessed ensemble precipitation 

forecasts tend to be more reliable than the raw ensembles. This is further confirmed using 

reliability diagrams under various forecasting conditions (Fig. 10). In Fig. 10, the reliability of 

the postprocessed forecasts from BMA, BMAx, and HCLR is improved relative to the raw 

ensembles across forecast probabilities, lead times, and seasons. There is, however, a tendency to 

underforecast the small forecast probabilities in the summer (Fig. 10b) and fall (Fig. 10d), i.e. the 

postprocessed forecasts tend to be somewhat underconfident. This tendency is significantly more 

apparent in the raw ensembles than in the postprocessed ones (Fig. 10a). For the larger forecast 

probabilities, the raw ensembles tend to overforecast the forecast probabilities, i.e. the forecasts 

are overconfident, while the postprocessed ones seem, for the most part, to fix this 

overforecasting bias (Fig. 10c).  

Contrasting the postprocessors against each other, all three postprocessors show similar 

reliability and sharpness (assessed by examining the insets in Fig. 10). The reliability of the 

postprocessors does not seem to vary greatly with the season (Figs. 10a and 10c) or forecast lead 

time (Figs. 10a and 10b). It does vary, however, with the precipitation threshold. The reliability 

curves associated with each of the postprocessors show more variability for moderate 

precipitation events (Fig. 11) than when considering all the precipitation events (Fig. 10). For 

moderate precipitation events, the raw ensembles are strongly overconfident; they overforecast 

the larger forecast probabilities (Figs. 11a and 11c). The overforecasting is stronger in the 

summer (Figs. 11a and 11b) than the fall (Figs. 11c and 11d). Nonetheless, the reliability of the 

different postprocessors is overall similar for moderate precipitation events. In general, forecast 

BMA and BMAx seem more reliable than forecasts from HCLR in some cases (Figs. 10c and 

11a) while in other cases HCLR is more reliable (Figs. 10a, 10b, and 11c). Overall, the three 

postprocessors are able to improve the biases in the raw ensembles to make them more reliable. 

 

5. Summary and conclusions 

Ensemble forecasts can be used to determine the probability and uncertainty of a weather 

variable. In the case of ensemble precipitation forecasts, the determination of forecast 

probabilities from ensembles is generally unreliable, because the magnitude and dispersion of the 

ensemble forecasts are often characterized by the presence of biases (Messner 2014a,b; 

Sloughter et al. 2007; Wilks 2009). Statistical postprocessing is, thus, needed to correct the 

biases and improve the reliability of ensemble precipitation forecasts. In this study, we assessed 

the potential of BMA (Sloughter et al. 2007), BMAx (Fraley et al. 2010), and HCLR (Messner et 

al. 2014b) to postprocess precipitation ensembles from the 11-member GEFSRv2 dataset (Hamill 

et al. 2013). As part of our experimental setting, we employed 24-h precipitation accumulations 

for lead times of 24- to 120-h over the U.S. MAR. We used MPEs as the observed precipitation. 

To implement BMA and BMAx, we first selected the length of the sliding time window 

and the number of cells needed to train the postprocessors. Using the BSS and CRPSS to assess 



 
 

the skill associated with different window lengths, we found that generally the optimum value 

tended to be ~25 days across lead times and seasons. Similar results have been reported by others 

(Fraley et al. 2010; Sloughter et al. 2007). We note that the sensitivity of the skill scores to the 

training window length was not large. Furthermore, since we used training data from different 

years to train the BMA and BMAx, the effective training length is greater than 25 days. In terms 

of the number of cells, we found that training each cell in the GEFSRv2 separately yielded 

slightly more skillful forecasts than when spatially pooling data from several cells. This may be 

partly the case here since we sampled data from the previous four years when training the 

postprocessors, which potentially makes spatial pooling less effective. But relying on past 

forecasts to train the postprocessors may not always be feasible, particularly when dealing with 

operational forecasting systems.  

We used the BSS, CRPSS, and reliability diagrams, conditioned upon the lead time, 

precipitation threshold, and season, to compare against the raw ensembles and each other the 

BMA, BMAx, and HCLR postprocessors. From this comparison, we found that overall there is a 

slight tendency for HCLR to outperform BMA and BMAx but the differences appear to be not as 

significant. They become more apparent at the longer forecast lead times (e.g., 5 days) during 

both the summer and fall. In terms of the forecast skill, the postprocessors show significant gains 

relative to the raw ensembles in the summer across lead times while gains are less significant in 

the fall. But overall the raw and postprocessed ensembles are more skillful in the fall than 

summer. The reliability diagrams showed that the postprocessors are able to correct biases in the 

raw ensembles that ultimately make the postprocessed ensembles be more reliable than the raw 

ones across lead times, precipitation thresholds, and seasons. The three postprocessors result in 

forecasts with similar reliability. Additionally, we found that differences between BMA and 

BMAx are small, thereby indicating that the GEFSRv2 ensemble members are indistinguishable. 

This is the case here since the GEFSRv2 dataset is based on a single model and single physics 

ensembles. In the case of multiple models or multi-physics ensembles, the relative performance 

of BMA might show greater improvements than the ones observed in this study. 

 By decomposing the CRPS into a reliability (CRPSrel) and potential (CRPSpot) 

component, we were able to examine more carefully the differences between BMA/BMAx and 

HCLR. From this, we observed that the improved performance of HCLR over that of 

BMA/BMAx is due to having a lower CRPSpot. Indeed, the CRPSrel component tends to be 

slightly lower (better) for BMA/BMAx than HCLR. Thus, we attributed the better performance 

of HCLR to the fact that it uses the ensemble spread as a predictor of the dispersion of the 

predictive pdf since the CRPSpot is sensitive to the spread. We also note that, based on the 

decomposition of the CRPS, HCLR is the only postprocessor to consistently improve upon the 

raw ensembles across lead times and seasons. 

In summary, based on our analysis and comparison, we found that generally the 

postprocessors perform similarly. An important advantage of BMA/BMAx, which we were not 

able to evaluate here, is to allow in a consistent manner the incorporation of ensembles members 

from different forecasting systems. A future alternative could be to combine the strengths of both 

BMA and HCLR, e.g., by using HCLR to determine the predictive pdf of each forecasting 

system and BMA to weight the pdfs. However, this may come at a considerable computational 

cost, particularly when considering a range of lead times and multiyear reforecasts datasets.  

 

APPENDIX 

 



 
 

Verification metrics 

a. Brier Skill Score (BSS)  

The Brier score (BS) is analogous to the mean squared error, but where the forecast is a 

probability and the observation is either a 0 or 1 (Brown et al. 2010). The BS is given by 
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In order to compare the skill score of the main forecast system with respect to the reference 

forecast, it is convenient to define the Brier Skill Score (BSS): 
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where BSmain and BSreference are the BS values for the main forecasting system (i.e., the system to 

be evaluated) and reference forecasting system, respectively. Any positive values of the BSS, 

from 0 to 1, indicate that the main forecasting system performed better than the reference 

forecasting system. Thus, a BSS of 0 indicates no skill and a BSS of 1 indicates perfect skill.  

 

b. Reliability diagram 
As suggested by Murphy (1973), the BS can be further decomposed into a reliability, 

resolution, and uncertainty component. In this study, instead of using the decomposed BS to 

quantify the reliability and resolution of the forecasts, we use the so-called reliability diagram. 

The reliability diagram shows the full joint distribution of forecasts and observations to reveal 

the reliability of the probability forecasts. For the forecast values portioned into bin Bk and 

defined by the exceedance of threshold q, the average forecast probability can be expressed as 
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where Ik is  the collection of all indices i  for which Xi falls into bin Bk, and kI denotes the 

number of elements in Ik. The corresponding fraction of observations that fall in the K
th

 bin is 

given by 
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The reliability diagram plots ( )
kXF q  against ( )

kYF q .  

 

c. Mean Continuous Ranked Probability Skill Score (CRPSS) 

  The Continuous Ranked Probability Score (CRPS), which is less sensitive to sampling 

uncertainty, is used to measure the integrated square difference between the cumulative 

distribution function (cdf) of a forecast, Fx(q),  and the corresponding cdf of the observation, 

Fy(q). The CRPS is given by 
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To evaluate the skill of the main forecasting system relative to the reference forecast system, the 

associated skill score, the Mean Continuous Ranked Probability Skill Score (CRPSS), is defined 

as: 
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where CRPS is averaged across n pairs of forecasts and observations to calculate the mean CRPS  

of the main forecast system (
mainCRPS ) and reference forecast system (

referenceCRPS ). The 

CRPSS ranges from -∞ to 1, with negative scores indicating that the system to be evaluated has 

worse CRPS than the reference forecasting system, while positive scores indicate a higher skill 

for the main forecasting system in comparison to the reference forecasting system, with 1 

indicating perfect skill. 

 

Additionally, to further explore the effect of postprocessing on forecast skill, we separate 

the 
mainCRPS  into different components according to the procedure developed by Hersbach 

(2000). Specifically, we consider the CRPS reliability (CRPSrel) and potential (CRPSpot) such 

that 

 main rel potCRPS CRPS +CRPS .  (9) 

The CRPSrel measures the ability of the precipitation ensembles to generate cumulative 

distributions that have, on average, the correct or desired statistical properties. The reliability is 

closely connected to the rank histogram, which shows whether the frequency that the verifying 

analysis was found in a given bin is equal for all bins (Hersbach 2000). The CRPSpot measures 

the CRPS that one would obtain for a perfect reliable system. It is sensitive to the average spread 

of the ensemble and outliers. For instance, the narrower the spread of the ensemble is, the 

smaller the CRPSpot becomes. As indicated by Hersbach (2000), provided a certain degree of 

unpredictability, a balance between the ensemble spread and the statistics of outliers will result 

in the optimal value of the CRPSpot. 
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Figure 1. Map illustrating the geographic domain of the MAR in the U.S. The map also shows 

the major rivers, urban areas, and the GEFSRv2 grid. The inset illustrates the location of the 

MAR within the eastern portion of the U.S. 
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Figure 2. BSS for all the precipitation events (>0 mm) versus the BMAx training length for 

forecast lead times of (a) 1 and (b) 5 days during the summer and lead times of (c) 1 and (d) 5 

days during the fall. The different BSS curves represent the number of cells used to train the 

BMAx.   

 

 

 

  



 
 

 

Figure 3. CRPSS versus the BMAx training length for forecast lead times of (a) 1 and (b) 5 days 

during the summer and lead times of (c) 1 and (d) 5 days during the fall. The different CRPSS 

curves represent the number of cells used to train the BMAx.   

 



 
 

 

Figure 4. BSS for moderate precipitation events (>10 mm) versus the number of cells used to 

train the postprocessors during the (a) summer and (b) fall. The different BSS curves represent 

the raw and postprocessed precipitation ensembles. The figure is for a forecast lead time of 4 

days. 

 

 

 

 

 



 
 

 

Figure 5. CRPSS versus the number of cells used to train the postprocessors during the (a) 

summer and (b) fall. The different CRPSS curves represent the raw and postprocessed 

precipitation ensembles. The figure is for a forecast lead time of 5 days. 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Figure 6. BSS for (a) all (>0 mm) and (b) moderate (>10 mm) precipitation events during the 

summer versus the forecast lead time. BSS for (c) all (>0 mm) and (d) moderate (>10 mm) 

precipitation events during the fall versus the forecast lead time. The different BSS curves 

represent the raw and postprocessed precipitation ensembles. 

  



 
 

 

Figure 7. BSS versus the precipitation threshold for forecast lead times of (a) 2 and (b) 5 days 

during the summer and forecast lead times of (c) 2 and (d) 5 days during the fall. The different 

BSS curves represent the raw and postprocessed precipitation ensembles. 

 

 

 

 

 

 

 

 

 



 
 

 

Figure 8. CRPSS for the ensemble precipitation forecasts versus the forecast lead time during 

the (a) summer and (b) fall. The different CRPSS curves represent the raw and postprocessed 

precipitation ensembles. 

  



 
 

 

Figure 9. Decomposition of the CRPS into CRPS reliability (CRPSrel) and CRPS potential 

(CRPSpot) for forecasts lead times of 1, 3, and 5 days during the (a) summer and (b) fall. The four 

columns associated with each forecast lead time represent, from left to right, the raw (R), BMA 

postprocessed (B), BMAx postprocessed (Bx), and HCLR postprocessed (H) precipitation 

ensembles. 

 

  



 
 

 

Figure 10. Reliability diagrams for all the summer precipitation events and forecast lead times of 

(a) 1 and (b) 5 days. Reliability diagrams for all the fall precipitation events and forecast lead 

times of (c) 1 and (d) 5 days. The different reliability curves represent the raw and postprocessed 

precipitation ensembles. The insets show the sample size in logarithmic scale of the different 

forecast probability bins. 

 

 

 

 

 

 

 

 

 



 
 

 

 

Figure 11. Reliability diagrams for moderate precipitation events (>10 mm) during the summer 

and forecast lead times of (a) 1 and (b) 5 days. Reliability diagrams for moderate precipitation 

events (>10 mm) during the fall and forecast lead times of (c) 1 and (d) 5 days. The different 

reliability curves represent the raw and postprocessed precipitation ensembles. The insets show 

the sample size in logarithmic scale of the different forecast probability bins. 
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Chapter 5: Ensemble streamflow forecasting across the U.S. 

middle Atlantic region with a distributed hydrological model 

forced by GEFS reforecasts 

 

ABSTRACT 

The quality of ensemble streamflow forecasts in the U.S. middle Atlantic region (MAR) 

is investigated for short- to medium-range forecast lead times (6-168 h). To this end, a regional 

hydrologic ensemble prediction system (RHEPS) is assembled and implemented. The RHEPS is 

comprised, in this case, by the ensemble meteorological forcing, a distributed hydrological 

model, and a statistical postprocessor. As the meteorological forcing, precipitation and near 

surface temperature outputs from the National Oceanic and Atmospheric Administration’s 

(NOAA’s) National Centers for Environmental Prediction (NCEP) 11-member Global Ensemble 

Forecast System Reforecast version 2 (GEFSRv2) are used. The Hydrology Laboratory-Research 

Distributed Hydrologic Model (HL-RDHM) is used as the distributed hydrological model and a 

statistical auto-regressive model as the postprocessor. To verify streamflow forecasts from the 

RHEPS, 8 river basins in the MAR are selected, ranging in drainage area from ~262 to 29,965 

km
2
 and covering some of the major rivers in the MAR. 

The verification results for the RHEPS show that, at the initial lead times (1-3 days), the 

hydrological uncertainties have more impact on forecast skill than the meteorological ones. The 

former become less pronounced, and the meteorological uncertainties dominate, across longer 

lead times (>3 days). Nonetheless, the ensemble streamflow forecasts remain skillful for lead 

times of up to 7 days. Additionally, postprocessing increases forecast skills across lead times and 

spatial scales, particularly for the high flow conditions. Overall, the proposed RHEPS is able to 

improve streamflow forecasting in the MAR relative to the deterministic (unperturbed GEFSRv2 

member) forecasting case.  

 

1. Introduction 

Managing water is a complex challenge faced with increasing difficulties due to climate 

change, rapid urbanization, competing demands for various water services, and socioeconomic 

(i.e. financial, governmental, and cultural) barriers and constraints (Famiglietti and Rodell 2013; 

Kelly 2014; Mekonnen and Hoekstra 2016; Vörösmarty et al. 2000). To improve decision 

making in various areas of water policy and management (e.g., flood and drought preparedness, 

water supply, reservoir operations, hydropower generation, and navigation), streamflow forecasts 

are essential (Alfieri et al. 2014; Day 1985). Streamflow forecasts are often generated by a 

hydrologic forecasting system forced by outputs from a numerical weather prediction (NWP) 

model whereby the uncertainties in the meteorological outputs are propagated into the 

streamflow forecasts. To characterize and assess the uncertainty of hydrological forecasts, 

hydrological ensemble prediction systems (HEPS) are increasingly being implemented in both 

research and operational applications (Addor et al. 2011; Cloke and Pappenberger 2009; 

Demeritt et al. 2010; Fan et al. 2014a; Khan et al. 2014; Olsson and Lindström 2008; Thielen et 

al. 2009). HEPS, although relatively recent, have demonstrated improved performance over 

deterministic forecasts in various water-related applications (Alemu et al. 2010; Anghileri et al. 

2016; Bartholmes et al. 2009; Bennett et al. 2014; Boucher et al. 2011; Brown et al. 2014; Franz 

et al. 2008; Georgakakos et al. 2014; Harshburger et al. 2012; Schellekens et al. 2011; Van 

Cooten et al. 2011; Verbunt et al. 2007; Wood et al. 2015). 
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HEPS consider current, plausible states of meteorological and hydrological variables to 

predict multiple realizations of future streamflows (Franz et al. 2008; Schaake et al. 2006; 

Schaake et al. 2007). To account for input or forcing uncertainty, HEPS are forced with 

ensembles of meteorological outputs (e.g., precipitation and near surface temperature) from 

NWP models to generate short- (0-3 days) and medium-range (3-14 days) forecasts (Alfieri et al. 

2014; Ramos et al. 2013; Roulin and Vannitsem 2015; Yuan et al. 2014). For example, the 

current European Flood Awareness System uses operational weather forecasts from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) to produce medium-range 

flood forecasts (Thielen et al. 2009; Wetterhall et al. 2013). In the U.S., the National Oceanic 

Atmospheric Administration’s National Weather Service (NWS) is implementing ensemble 

weather forecasts operationally for hydrological forecasting (Demargne et al. 2014; NOAA 

2014). With these developments in hydrological forecasting science, the need arises for scientific 

studies to verify and benchmark the performance of HEPS, particularly for medium-range 

streamflow forecasts. 

A key component of a HEPS is the hydrological model(s) used to forecast streamflow or 

other hydrological outputs. Thus far, HEPS have been mostly evaluated using so-called lumped 

or semi-distributed hydrological models which do not account, or only in a limited fashion, for 

the spatial variability of inputs (e.g., meteorological, topographical, pedological, land-cover, 

etc.), parameters, and variables (Carpenter and Georgakakos 2006). Indeed, there are many 

advantages to distributed hydrological models as demonstrated and extensively discussed 

elsewhere (Boyle et al. 2001; Carpenter and Georgakakos 2006; ene Michaud and Sorooshian 

1994; Krajewski et al. 1991; Smith et al. 2012; Spies et al. 2014). In particular, they allow the 

spatially seamless prediction of different hydrological variables. The implementation of 

distributed hydrological models forced by ensemble meteorological forecasts, however, is 

computationally intensive, because of this and potentially other reasons (e.g., effort required to 

calibrate models) only few applications have been developed and comprehensively evaluated 

that apply a distributed hydrological model within a HEPS (Alfieri et al. 2014; Anghileri et al. 

2016; Fan et al. 2014b; Georgakakos et al. 2014; Xuan et al. 2009; Yuan et al. 2014). For 

example, Alfieri et al. (2014) verified ensemble streamflow forecasts for several years from 

Lisflood, forced by meteorological ensembles from the ECMWF, while Yuan et al. (2014) used 

the National Centers for Environmental Prediction (NCEP) 11-member Global Ensemble 

Forecast System Reforecast version 2 (GEFSRv2) (Hamill et al. 2013; Siddique et al. 2015) to 

force the Variable Infiltration Capacity model. 

Furthermore, streamflow forecasts generated from meteorological ensembles tend to 

exhibit systematic biases which makes the determination of forecast probabilities from such 

streamflow data unreliable (Roulin 2006; Schaake et al. 2007). To correct the biases and improve 

the reliability of streamflow forecasts, statistical postprocessing techniques are used (Wood and 

Schaake 2008; Zalachori et al. 2012). Indeed, postprocessing is an integral component of a HEPS 

that must be considered when verifying the quality of streamflow forecasts (Roulin and 

Vannitsem 2015). The general goal with postprocessing is to improve the performance (e.g., 

skill) of the HEPS by bias-correcting the forecasts based on the statistical behavior of past 

forecasts from the same HEPS. A crucial prerequisite of postprocessing is thus the availability of 

long training datasets comprised of past streamflow forecasts (Roulin and Vannitsem 2015). This 

can be challenging when dealing with operational systems that are constantly evolving, thereby 

making the use of weather reforecasts indispensable (Siddique et al. 2015). A number of 

postprocessing techniques have been proposed for streamflow forecasts (Hashino et al. 2007; 
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Madadgar et al. 2014; Pagano et al. 2013; Van Steenbergen et al. 2012), which were recently 

categorized and discussed by Van Andel et al. (2013). Additionally, weather preprocessing is 

often used to improve the performance of the meteorological forecasts prior to their 

implementation in the HEPS. The focus of this study is, however, on the benefits of jointly 

implementing distributed hydrological modeling and postprocessing to improve ensemble 

streamflow forecasts across spatial scales. 

In particular, our primary objective with this study is to investigate the ability of a 

regional HEPS (hereafter the RHEPS) to improve short- to medium-range streamflow forecasts 

in the U.S. middle Atlantic region (MAR). The objective is also to quantify the relative 

importance of different sources of uncertainty (meteorological and hydrological) in streamflow 

forecasts. To meet these objectives, we assemble and implement the RHEPS, which is comprised 

here by the NOAA’s Hydrology Laboratory-Research Distributed Hydrologic Model (HL-

RDHM), forced by ensemble precipitation and near surface temperature outputs from the NCEP 

GEFSRv2 (Hamill et al. 2013; Siddique et al. 2015). Specifically, we use the RHEPS in this 

study to produce and verify ensemble streamflow forecasts for lead times from 6 to 168 hours 

across eight river basins of varying spatial scales in the MAR. The study area, details about the 

selected case study basins, and the datasets used are discussed in Section 2. In section 3, we 

describe the methods used, including the distributed hydrological model, statistical 

postprocessor, and verification strategy. The main results are summarized and discussed in 

section 4. Lastly, in section 5, we outline the key conclusions. 

 

2. Study area and data 

a. Study area 

The MAR is selected as the study area (Fig. 1). Streamflow forecasting is crucially 

relevant in the MAR because of its high population density, large cities, and high frequency, 

relative to other parts of the U.S., of extreme precipitation events (Hitchens et al. 2013; Jones et 

al. 1997; Siddique et al. 2015). Moreover, the MAR is highly dependent on streamflow since a 

major share of its total water withdrawals (~90%) are from riverine (streamflow) sources, as 

opposed to groundwater sources (Maupin et al. 2014). In the MAR, 8 river basins are selected 

(Fig. 1), ranging in drainage area from ~262 to 29,965 km
2
 and covering the major rivers in the 

MAR, including the Delaware, James, Potomac, and Susquehanna River. Table 1 summarizes 

the key characteristics of the selected river basins. 

For each major river in the MAR, one large basin and a smaller, nested subbasin are 

selected in order to account for the effect of spatial scale when implementing the RHEPS and 

verifying the quality of its streamflow forecasts. For example, the large basin for the Delaware 

River has a drainage of 17,574 km
2
 while its nested subbasin is only 860 km

2
 (Table 1). All of 

the selected basins are gauged by the United States Geological Survey (USGS) and represent 

forecast points used by the Middle Atlantic River Forecast Center (MARFC) to produce daily 

flow forecasts and communicate them to the public. The USGS gauge id associated with each 

basin is included in Table 1. 

 

b. Data 

1) Forecasts 

As part of the RHEPS, we use ensemble meteorological reforecasts (precipitation and 

near surface temperature) from the GEFSRv2 to force HL-RDHM. GEFSRv2 uses the NCEP 

Global Ensemble Forecast System (GEFS) model (version 9.0.1) to produce retrospective 
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forecasts or reforecasts across the globe for 16 days of lead time. The system consists of 11 

ensemble members, one of which is an unperturbed (control) member and the rests are perturbed 

members generated with perturbed initial conditions. For days +1 to days +8, it uses the 

T254L42 model resolution which runs at a spatial grid of 0.5
0
 or ~55 km. From days +9 to +16, 

the resolution is changed to T190L42 which runs at a 0.67
0
 resolution or ~73 km. Each day the 

model is initiated at 00 UTC to produce reforecasts for the next 16 days of lead time. For days +1 

to days +3, 3 hourly forecast accumulations are available, after that forecasts are saved every 6 

hours, providing 6 hourly accumulations of forecasts for days +4 to +16. In total, more than 29 

years of reforecast data is archived (1984- present) for a large number of selected meteorological 

variables. Further details about the GEFSRv2 are discussed by Hamill et al. (2013).  

2) Observations  

We use multi-sensor precipitation estimates (MPEs) as the observed precipitation data to 

calibrate the hydrological model, perform the model simulation runs, and initialize the 

forecasting system. MPEs are produced hourly through the optimal combination of multiple 

radars and hourly rain gauge data at 4 x 4 km
2
 grid resolution (Rafieeinasab et al. 2015a; Zhang 

et al. 2011). The MPE product used here was obtained from the MARFC and is similar to the 

NCEP stage IV MPEs (Moore et al. 2015; Prat and Nelson 2015). At the River Forecast Centers, 

MPEs are routinely monitored and quality controlled for different hydrological modeling 

applications including streamflow forecasting (Lin and Mitchell 2005). Gridded MPE products 

are now widely used in verification studies (Habib et al. 2012; Sharma et al. 2016; Siddique et al. 

2015), hydrological modeling (Kitzmiller et al. 2011; Rafieeinasab et al. 2015b), and data 

assimilation (Lee et al. 2011; Lin and Mitchell 2005; Rafieeinasab et al. 2014). HL-RDHM 

requires gridded temperature observations to obtain monthly potential evaporation and as input 

to the SNOW-17 model to determine snow accumulation and melt. The gridded temperature data 

were obtained from the MARFC, which generated the data by combining multiple observation 

networks (METAR, USGS stations, and NWS Cooperative Observer Program). All the gridded 

data used in this study were resampled using bilinear interpolation onto the regularly spaced grid 

(4 x 4 km
2
 cell size) required by HL-RDHM. For the verification of the streamflow simulation 

and forecasts, daily discharge data from the relevant USGS gauges (Table 1) were used. In total, 

ten years (2004-2013) of streamflow observations were used. 

 

3. Methods 

In this study, the RHEPS is comprised by the following four main components: (i) 

meteorological forecasts (precipitation and near surface temperature ensembles), (ii) distributed 

hydrological model, (iii) statistical postprocessor, and (iv) verification strategy. This subsection 

describes the latter 3 components since the meteorological ensembles were described in the 

previous section. 

 

a. Distributed hydrological model  
The NOAA’s HL-RDHM is used as the distributed hydrological model (Koren et al. 

2004). Recent applications of HL-RDHM (Lee et al. 2015; Rafieeinasab et al. 2015b; Spies et al. 

2014; Thorstensen et al. 2015; Wood et al. 2015) as well as further details about the model 

(Burnash and Singh 1995; Burnash et al. 1973; Koren et al. 2004; Sorooshian and Gupta 1983) 

are discussed elsewhere. Within HL-RDHM, we implement the heat transfer version of the 

Sacramento Soil Moisture Accounting model (SAC-HT) to represent rainfall-runoff generation, 

and the SNOW-17 model to represent snow accumulation and melt (Koren et al. 2007). Here we 
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run HL-RDHM in a fully distributed manner at a spatial resolution of 2 x 2 km
2
, using kinematic 

wave routing to route, across the river network, the runoff generated at each grid cell by SAC-

HT and SNOW-17 (Koren et al. 2004; Smith et al. 2012).  

To run HL-RHDM, we work with both uncalibrated and calibrated parameter runs (Smith 

et al. 2012). The uncalibrated model runs are based on a-priori parameter estimates from 

available datasets (Anderson et al. 2006; Koren et al. 2000; Reed et al. 2004). For the calibrated 

model runs, we select for calibration 10 out of the 17 SAC-HT parameters based upon prior 

experience and preliminary parameter sensitivity tests. To calibrate the selected HL-RDHM 

parameters, we first adjust manually the a-priori parameter fields; once the manual changes do 

not yield noticeable improvements in the model performance, the parameter values are tuned-up 

using an automatic technique, namely stepwise line search (SLS) (Kuzmin et al. 2008; Kuzmin 

2009). We use SLS since this method is readily available within HL-RDHM and have been 

shown to provide reliable parameter estimates (Kuzmin et al. 2008; Kuzmin 2009). We use 3 and 

1 year of streamflow data to calibrate the small and large basins, respectively. We use a short 

calibration period to ameliorate computational demand. To assess the model performance during 

calibration, we use the correlation coefficient (R), modified correlation coefficient (Rm), percent 

bias (PB), and Nash-Sutcliffe efficiency (NSE) (see appendix for their mathematical definition). 

 

b. Statistical postprocessor 

To statistically postprocess the ensemble streamflow forecasts (i.e. to quantify the 

streamflow uncertainty and adjust forecast biases), we implement the so-called hydrological 

model output statistics (HMOS) approach (Regonda et al. 2013). Similar approaches are 

common and widely used in weather forecasting (Glahn and Lowry 1972; Hamill et al. 2004; 

Wilks 2015). The general goal with HMOS is to statistically correct or improve current forecasts 

by treating them as predictands in a regression model that depends on variables associated with 

past forecasts and simulations. As the HMOS postprocessor, we use a first order autoregressive 

model in normal space, with a single exogenous variable, similar to the approach by Regonda et 

al. (2013).  

For each ensemble member, the postprocessing model is as follows:  

 0 0

1 1 1 1 1(1 ) ,f

k k k k k kZ b Z b Z E          (1) 

where 0

kZ  and 0

1kZ 
 denote the normalized observed flow at times k  and 1k  , 

1

f

kZ 
 is the 

normalized forecast flow at time 1k  , 1kb   denotes the weight given to the forecast at time 1k 

, and 1kE   denotes the residual error at time 1k  . For the above model, assuming that there is 

significant correlation between 1kE   and 0

kZ , 1kE   can be calculated as follows: 

 1

1 1 1( , ) ,k

k

E

k k k k k

E

E E E E W







      (2) 

where 
kE  and 

1kE


 denote the standard deviation of kE  and 1kE  , respectively, 1( , )k kE E   

denotes the serial correlation between 1kE   and kE , and 1kW   is a random error generated from 

the normal distribution 
1

2(0, )
kW 

¥ . To estimate the parameter 
1

2

kW 
, we use the following: 

 
1 1

2 2 2

1[1 ( , )]
k kW k k EE E  
     (3) 

The step-by-step procedure for implementing the postprocessor (eqs. 1-3) is as follows: 



6 

 

i) Past forecasts for each lead time and corresponding observations are assembled and 

transformed into standard normal deviates using the normal quantile transformation 

(NQT) (Krzysztofowicz 1997). In this study, eight years (2004-2011) of forecast and 

observation data are used as the training period.  

ii) Ten equally spaced values of 
1kb 
 within 0.1 to 0.9 are selected. 

iii) For each 1kb  , 
1

2

kW 
 is calculated from eq. (3) using the training data to estimate the 

parameters in eq. (3). 

iv) 
1kW 
 is generated from 

1

2(0, )
kW 

¥  and 1kE   is calculated from eq. (2). 

v) A trace of 0

1kZ 
 from eq. (1) is generated and transformed back to real space using the 

inverse NQT. 

vi) Steps iii-v are repeated to generate N number of postprocessed ensemble traces, 10 traces 

per each raw streamflow ensemble. 

vii) By repeating steps iii-vi, ensemble streamflow forecasts are generated for all the selected 

1kb   values. The mean Continuous Ranked Probability Score (CRPS) (see appendix for 

mathematical definition) is calculated separately for each 1kb  , and the value of 1kb   that 

produces the smallest mean CRPS is selected.  

The above postprocessing procedure is applied at each individual lead time. For lead 

times beyond the initial one (day 1), we use 1 day-ahead predictions as the observed 

streamflows. For the cases where 0

1kZ 
 falls beyond the historical maxima or minima, we use 

extrapolation to model the tails of the forecast distribution. For the upper tail (high flows), we 

use a hyperbolic distribution (Journel and Huijbregts 1978) while linear extrapolations is used 

for the lower tail (low flows). 

 

c. Verification strategy 

The verification of the ensemble streamflow forecasts is done using the Ensemble 

Verification System (EVS) (Brown et al. 2010). The EVS is a comprehensive and modular 

verification tool developed by Brown et al. (2010) for the NWS to facilitate the verification of 

different ensemble forecast variables (Brown 2014; Brown et al. 2014; Sharma et al. 2016; 

Siddique et al. 2015). We use for the verification 6-hourly streamflow forecasts and daily 

observed streamflows at the outlet of each of the 8 selected basins. The verification is done 

conditioned upon the lead time, streamflow threshold, and season. We use the relative mean 

error (RME), Brier Skill Score (BSS), and Continuous Ranked Probability Skill Score (CRPSS) 

as the verification metrics (see appendix for their mathematical definition). 

For the verification analysis, we generate and verify two different datasets of ensemble 

streamflow forecasts, namely raw (without postprocessing) calibrated and postprocessed. To 

verify the raw calibrated ensemble forecasts across lead times of 1-7 days, we use ten years of 

data (2004-2013). To verify the postprocessed ensemble forecasts, we use two years of data 

(2012-2013) while the remaining years (2004-2011) are used to train the postprocessor. Both 

streamflow forecast datasets, raw and postprocessed, are verified against observed and simulated 

streamflows to assess and contrast different sources of uncertainty. Note that hydrological model 

runs forced with meteorological forecasts contain both meteorological and hydrological 

uncertainties while simulated streamflows, i.e. model runs forced with the observed forcings, 

contain only hydrological uncertainty. In other words, ensemble streamflow forecasts verified 

against simulated streamflows provide a measure of meteorological uncertainty, as opposed to 
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the total uncertainty, which is measured here by ensemble streamflow forecasts that are verified 

against observed streamflows. 

 

4. Results and discussion 

This section is subdivided into the following three main subsections: verification of 

simulated streamflows, verification of raw ensemble streamflow forecasts, and verification of 

postprocessed ensemble streamflow forecasts. The results associated with each subsection are 

separated into low-moderate and high flows to verify the performance of the RHEPS under these 

two different flow conditions. The low-moderate flow category represents flows with a 

nonexceedance probability, Pr, of 0.50 while the high flow category is for Pr=0.90 (i.e. flows 

with exceedance probability less than 0.1 are denoted as high). 

 

a.  Verification of the simulated streamflows 

The main results associated with the performance of the simulated streamflows for the 

entire period of analysis (2004-2013) and the 8 selected basins are summarized in Table 2. 

Further, the results in Table 2 are based on the performance metrics used in calibration (R, Rm, 

PB, and NSE, as defined in the appendix) and are separated according to uncalibrated and 

calibrated simulation runs, as well as low-moderate and high flow conditions. Note that the 

simulated, as opposed to forecasted, streamflows are obtained by forcing the HL-RDHM model 

with observed precipitation and near surface temperature data. 

 

1) Low-moderate flows 

The correlation coefficient R between the simulated and observed low-moderate flows 

tends to be greater for the larger basins. For example, R=0.81 in the large basin of the Delaware 

River (TREN4) for the uncalibrated simulation run while the small basin (WALN6) has a 

coefficient of 0.76 for the same run (Table 2). The overall improvement in R, averaged across 

the 8 basins, between the uncalibrated and calibrated simulation runs is ~7%, but it can be as 

high as 40% in the case of SHBN6. The modified correlation coefficient Rm is also computed 

since it is better than R in accounting for hydrograph shape and size (McCuen and Snyder 1975; 

Smith et al. 2004). Based on the value of Rm for the selected basins (Table 2), the improvement 

after calibration is on average ~17%. 

In terms of the NSE, there is a large gain in performance between the calibrated and 

uncalibrated simulation runs. For example, the largest improvement is seen in SHBN6 where the 

NSE increases from -0.21 to 0.69 after calibration (Table 2). This large improvement seems 

related to difficulties in obtaining reliable a-priori parameters for this basin which is likely 

affected by karst geology (Reed et al. 2006; Tang et al. 2007). During the calibration of SHBN6, 

the upper zone free water storage (UZFWM) and the percolation exponent (REXP) were found 

to be among the most influential of all the parameters, suggesting that the performance of 

SHBN6 is in this case particularly dependent on interflow conditions as might be expected for a 

karst basin. The smallest gain in the NSE is seen in RMDV2. In this case, after calibration, the 

NSE changes from 0.53 to 0.57 (Table 2), indicating that the a-priori model parameters were 

nearly optimum for this basin. In one of the 8 basins, WVYN6, the NSE decreases slightly after 

calibration for the low-moderate flows (from 0.49 to 0.41) but the same basin shows overall (i.e. 

including all flows) a gain in performance (from 0.66 to 0.74). Thus, the decrease in the value of 

NSE for the low-moderate flows in WVYN6 is likely due to trade-offs in some of the parameter 

values. Indeed, for the 8 selected basins, the performance of the calibrated simulation runs is 
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overall (i.e. including all flows) satisfactory, with NSE values ranging from 0.68 to 0.86 (Table 

2). Additionally, there is a large improvement in the percent bias, PB, of the calibrated 

simulation runs. For instance, the PB for the uncalibrated runs in the Potomac River basin are 

20.01% for DAWM2 and 27.67% for BRKM2 (Table 2), which are reduced to -0.67% and 

2.99%, respectively, in the calibrated runs.  

2) High flows 

Comparing the performance of the calibrated runs against the uncalibrated ones for the 

high flows, the values of R and Rm mostly improve, in a few cases they stay relatively the same. 

For example, the value of Rm in the Potomac River basin increased from 0.29 to 0.79 at 

DAWM2 and from 0.70 to 0.87 at BRKM2, while the value of R stayed nearly the same at 

PYAV2 in the James River basin (Table 2). Using the value of Rm for the calibrated runs to 

contrast the performance of the high and low-moderate flows, the high flows tend to outperform 

the low-moderate flows, but in a few basins (WALN6, SHBN6, and RMDV2 in Table 2) the 

low-moderate flows perform better. To further understand this, we examined the simulation runs 

(hydrographs) and noticed that some of the high flow events, mostly during the winter months 

(Nov-April), are somewhat underestimated. Thus, incorporating additional data when 

implementing the SNOW-17 mode could, in the future, contribute to improving the performance 

of the winter high flows in these basins.   

The NSE value for the high flows, averaged across all the selected basins, improves from 

0.31 with the uncalibrated runs to 0.58 with the calibrated ones. However, the NSE values for the 

overall flow conditions (i.e. including all flows) are higher; they improve on average from 0.64 

to 0.77. Based on the NSE values, the high flows perform better than the low-moderate flows. 

Further, as was the case with the low-moderate flows, the uncalibrated runs for the high flows 

tend to show some unusually high PB values. For example, PB=-34.65% at DAWM2 in the 

Potomac River basin, which after calibration is reduced to -5.15%. Ultimately, the PB values for 

the calibration runs are satisfactory, ranging from 0.88 to -5.54% (Table 2). Moreover, the 

performance of the calibrated simulation runs in this study compare well with results from 

previous studies using the same model and region (Tang et al. 2006; van Werkhoven et al. 2008) 

as well as with HL-RDHM model performance statistics shown in the past (Mejia and Reed 

2011; Reed et al. 2004).   

 

b. Verification of the raw ensemble streamflow forecasts  

This subsection presents and discusses the verification results for the raw (without 

postprocessing) ensemble streamflow forecasts, generated by forcing the calibrated HL-RDHM 

model with the GEFS precipitation and near surface temperature reforecasts. To verify the raw 

ensemble streamflow forecasts, we use the RME, CRPSS, and BSS (see appendix) as the 

verification metrics for the period 2004-2013. For each of the three verification metrics used, we 

compute two different version of the metric, one using observed flows as the reference and 

another one using simulated flows. The former captures the influence of the total (meteorological 

and hydrological) uncertainty on the streamflow forecasts and the latter emphasizes the influence 

of meteorological uncertainty alone. The difference between the two versions of the same metric 

is used to assess the relative influence of hydrological uncertainty on the streamflow forecasts.  

1) Low-moderate flows 

We use the RME to quantify the flow forecast error (see appendix). A negative RME 

indicates the presence of an underforecasting bias while a positive RME indicates 

overforecasting bias. For our selected basins, the RME exhibits mostly a negative bias whose 
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absolute value increases with the lead time (Fig. 2). This result is in agreement with previous 

findings (Siddique et al. 2015) which demonstrate that precipitation forecasts from the GEFSRv2 

across the MAR are consistently underforecasted for 1-7 days of lead time. Moreover, this is the 

case for both RMEs (i.e. relative to observed flows as well as relative to simulated flows), with 

the exception of the Potomac River basin (BRKM2, Fig. 2e) that shows a positive bias that 

increases with the lead time relative to the simulated flows. Further, most of the basins show a 

relatively small difference between the two RMEs (except WALN6 and BRKM2 in Figs. 2c and 

2e, respectively). This indicates that the effect of the hydrological uncertainty on the RME of 

low-moderate flow forecasts is for the most part small as compared to the effect of the 

meteorological uncertainty. 

To measure the skill of the raw ensemble flow forecasts, we use the CRPSS (see 

appendix). A CRPSS value of zero means no skill (i.e. same skill as the reference system) and a 

CRPSS value of one indicates maximum skill. As was the case with the RME, the CRPSS values 

are computed with reference to both the observed and simulated climatological flows (Fig. 3). In 

all the selected basins, except DAWM2 (Fig. 3a), the CRPSS shows that the skill of the low-

moderate flow forecasts, with reference to the simulated flows, is high for the initial lead times, 

but it gradually declines as the lead time increases. The CRPSS is low for DAWM2 because this 

is a small basin and meteorological forecast skill tends to decrease considerably with decreasing 

spatial scale or basin size (Li et al. 2009; Siddique et al. 2015). Further, by comparing the two 

versions of the CRPSS metric (i.e. the solid line against the dashed line in Fig. 3), we find that 

the hydrological uncertainty is relatively dominant for the initial lead times (days 1-3) but it 

becomes less dominant as the lead time increases (days 6-7). Also, at the initial lead times, the 

skill of the forecasts with reference to the observed flows is generally low relative to the 

simulated flows. For instance, at a lead time of 1 day in Fig. 3d, the CRPSS is only ~0.3 with 

reference to the observed flows but jumps to ~0.9 with reference to the simulated flows. This 

highlights the skill of the meteorological ensembles at the initial lead times, whose uncertainty 

becomes dominant at the longer lead times, as suggested by the tendency of the two CRPSS 

metrics to converge towards each other at the 7 day lead time (see, e.g., Figs. 3g and 3h). 

To assess the skill of the raw seasonal flow forecasts, the BSS is determined for the ‘dry’ 

(including the months of June-November) and ‘wet’ (including the months of December-May) 

season for each of the 8 selected basins, under low-moderate flow conditions (Fig. 4). The BSS 

is computed from the Brier Score (BS) which is analogous to the mean squared error of the 

forecasts (see appendix). A BSS score of one implies perfect skill and a BSS score of zero no 

skill. As was the case with the other metrics, the BSS is shown here with reference to both 

simulated and observed climatological flows (Fig. 4). As expected from our previous results 

(e.g., Fig. 3), the skill of the seasonal forecasts tends to decline with increasing lead time (Fig. 4). 

The skill declines more rapidly when measured relative to the simulated flows, as opposed to 

observed, highlighting that hydrological uncertainty strongly affects forecast skill at the initial 

lead times and, at longer lead times, meteorological uncertainty becomes a more dominant factor 

in determining seasonal forecast skill. For example, for the large basin in the Potomac River 

(BRKM2, Fig. 4e) and the wet season, the BSS has a value of ~0.9 and 0.45 at a lead time of 1 

day relative to the simulated and observed flows, respectively, but these values decrease to ~0.4 

and 0.35, respectively, at a lead time of 7 days (Fig. 4e). The dry season forecasts tend to display 

similar (e.g., PYAV2 and BRKM2 in Figs. 4d and 4e, respectively) or slightly better skill than 

the wet season ones relative to both observed and simulated flows. Overall, the seasonal values 

of the BSS are similar across the selected basins. DAWM2 (Fig. 4a) seems to be the only 
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exception, exhibiting a notably low skill relative to the other basins, suggesting that basin size 

may be an important factor in determining seasonal skill. Note that DAWM2 is the basin with 

the smallest drainage area, 262 km
2
, out of the 8 basins considered (Table 1).  

 

2) High flows 

In relation to the high flows, the RME indicates mainly underforecasting across the 

selected basins (Fig. 5). BRKM2 (Fig. 5e) is the only exception, which is characterized by a 

strong positive bias when the simulated flows are used as reference. The underestimation is 

<30% across the initial lead times (days 1-3), in some basins is much smaller; however, it 

increases with increasing lead time. The high flows, irrespective of the basin size, exhibit a 

greater influence of meteorological uncertainty than the low-moderate flows. For instance, in 

Fig. 5f, the high flows are almost unbiased at lead times of 1-2 days when accounting for 

meteorological uncertainty alone (i.e. RME relative to simulated flows), but the negative bias 

jumps to ~18-20% when the total uncertainty (i.e. RME relative to observed flows) is 

considered. Thus, in this case, the propagation of the meteorological uncertainties to the 

hydrological predictions has greater potential to influence the quality of the high flow forecasts 

than the low-moderate ones. This is not surprising since the high flows result from the direct 

response of the basin to the precipitation events, whereas the low-moderate flows are in this case 

dominated by subsurface processes and only indirectly by the precipitation events. 

As expected, the high flow forecasts are less skillful as the forecast lead time increases 

(Fig. 6). As was the case with the low-moderate flows, at the initial lead times (1-3 days), the 

CRPSS shows that the major source of uncertainty for the high flows is hydrological (Fig. 6). 

Hydrological uncertainty becomes less pronounced and meteorological uncertainty starts to 

dominate as the lead time grows (> 3 days). Overall, the skill of the high flow forecasts across 

the selected basins is similar. For instance, with the exception of DAWM2 (Fig. 6a) and PYAV2 

(Fig. 6d), and relative to the observed flows, the CRPSS tends to be between 0.4-0.6 at a lead 

time of 1 day and between 0.1-0.3 at a lead time of 7 days. The results also show that, in most 

cases, meteorological uncertainty has a greater effect on the small basins compared to the large 

basins. Accordingly, there is a tendency for the large basins to show slightly better flow forecast 

skill than the small ones. For instance, in the Delaware River, the large basin (Fig. 6g) has a skill 

of 0.6 at a lead time of 1 day and the small basin (Fig. 6c) a skill of 0.43 at the same lead time. 

This gain in skill with basin size is, however, due to both improvements in the performance of 

the meteorological forecasts (Siddique et al. 2015) and hydrological model (Table 2). 

Interestingly, the only selected basins that do not follow this scaling trend are the ones in the 

Susquehanna River basin (Figs. 6b and 6f), where the overall skill (i.e. relative to the observed 

flows) is higher in the small basin than in the large one. This indicates that the large basin is in 

this case subject to high hydrological uncertainty. This uncertainty may be due to inaccurate 

model initial conditions and large parametric uncertainty. The latter is particularly relevant in the 

Susquehanna River basin due to its complex geological conditions, which complicates the 

estimation of reliable subsurface parameters. 

The skill of the raw, seasonal ensemble flow forecasts is illustrated in Fig. 7. In Fig. 7, 

the BSS values are shown for high flow conditions, according to the dry (June-November) and 

wet (December-May) months, and with reference to both observed and simulated climatological 

flows. In the wet season, relative to the observed flows (i.e. accounting for the total uncertainty), 

the forecasts tend to be more skillful than in the dry one, except for SHBN6 and PYAV2 (Figs. 

7b and 7d, respectively) which are both small basins. Relative to the simulated flows (i.e. 
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emphasizing meteorological uncertainty), the situation reverses and the forecasts exhibit slightly 

better skill in the dry season compared to the wet season (Fig. 7). This suggests that hydrological 

uncertainty tends, in this case, to be greater in the dry season than in the wet one across basin 

sizes in the MAR region. A similar phenomenon was reported by Li et al. (2009) for seasonal 

hydrological forecasts in the eastern U.S. They suggested that this is due to having a larger 

uncertainty in the model initial conditions (e.g., soil moisture states) during the dry season than 

the wet one. 

 In general, the CRPSS indicates that streamflow ensembles in the MAR are more skillful 

than the deterministic forecasts (Fig. 8). The CRPSS values in Fig. 8 are computed with 

reference to the deterministic (unperturbed GEFSRv2 member) forecasts. The improvement is 

small across the initial lead times (<3 days), however, it increases as the lead times increases. 

This is the case for both low-moderate and high flows (Fig. 8). For instance, the CRPSS for both 

the low-moderate as well as the high flows in the large basin of the Potomac River (BRKM2, 

Fig. 8e) is slightly higher than zero at the day 1 lead time but rises by ~20% at the day 7 lead 

time. This highlights the fact that ensemble forecasting is particularly beneficial for medium-

range predictions. The overall gain in skill between the ensemble and deterministic forecasts, 

from the day 1 to the day 7 lead time, is ~10-20% and ~15-40% for the low-moderate and high 

flows, respectively. It is also interesting to note that the ensemble forecasts show consistent 

improvements across all the basins in the MAR, despite their differences in hydroclimatic, 

landscape, and subsurface conditions. 

 

c. Verification of the postprocessed ensemble streamflow forecasts 

1) Low-moderate flows 

To verify the postprocessed ensemble forecasts for the low-moderate flow conditions, the 

RME is plotted for both the postprocessed and raw (without postprocessing) ensemble mean (Fig 

9). For the low-moderate flows, the RME indicates that postprocessing tends to reduce the 

forecast bias in some of the selected basins. For example, SHBN6 (Fig. 9b), PYAV2 (Fig. 9d), 

BRKM2 (Fig. 9e), and RMDV2 (Fig. 9h) demonstrate improved RME values relative to the raw 

forecast values. The most noticeable improvements are seen in SHBN6 and PYAV2, where the 

postprocessed forecasts are nearly unbiased across all the lead times. At lead times longer than 3 

days, the postprocessor is unable to reduce the RME for DAWM2 (Fig. 9a), WALN6 (Fig. 9c), 

WVYN6 (Fig. 9f), and TREN4 (Fig. 9g). Besides identifying limitations in the postprocessor, 

this serves to diagnose flow conditions that could potentially benefit from improved hydrological 

modeling. For instance, the bias in the low flows could be partly due to the fact that low flows 

are regulated in some of the selected basins, e.g., the basins of the Delaware River, WALN6 and 

TREN4. In these basins, it may be necessary to account for low-flow regulations to ultimately 

improve the RME. 

The CRPSS is used to investigate the skill of the postprocessed forecasts (Fig. 10). The 

CRPSS is computed, in this case, with reference to the raw ensemble forecasts. Overall, 

postprocessing improves the skill of the low-moderate flows at the initial lead times (<4 days) 

across basins; however, the level of improvement varies from basin-to-basin. It can be as low as 

2% (WVYN6 at a lead time of 1 day, Fig. 10f) and as high as 35% (BRKM2 at a lead time of 1 

day, Fig. 10e). 

 

2) High flows 
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Postprocessing is more effective for the high flows than the low-moderate flows. For the 

high flow conditions, the postprocessed ensemble forecasts show significant improvements 

relative to the raw ensemble forecasts across lead times (Figs. 9 and 10). For instance, the raw 

ensemble forecast mean for DAWM2 (Fig. 9a) underestimates the observed one by ~60% at the 

7 day lead time, while this underestimation drops to 20% after postprocessing. Similar 

improvements are seen in other basins, although improvements in the small basins tend to be 

smaller compared to the large basins. In terms of the skill, the CRPSS shows that the skill of the 

high flows are consistently improved across lead times after postprocessing (Fig. 10), with the 

exception of DAWM2 (Fig. 10a), which reveals little to no gains from postprocessing. 

Postprocessing demonstrates, overall, significant potential for improving flow forecasts. 

 

5. Summary and conclusions 

In this study, we generated, using the RHEPS, short- to medium-range (1-7 days) 

ensemble streamflow forecasts over the MAR. The RHEPS consisted of a distributed 

hydrological model, namely HL-RDHM, forced by GEFSRv2 ensemble reforecasts 

(precipitation and near surface temperature). The ensemble streamflow forecasts were generated 

for a 10-year period (2004-2013) in eight river basins, encompassing some of the major rivers 

(Delaware, James, Potomac, and Susquehanna) in the MAR. For each of these rivers, we chose 

one large basin and a smaller, nested subbasin to consider the effect of spatial scale on the 

performance of the streamflow forecasts. To account for different sources of forecast uncertainty, 

the streamflow forecasts were verified relative to both simulated and observed flows. On the 

basis of the present implementation of the RHEPS, the following main conclusions are 

emphasized: 

- The RME shows that the raw ensemble forecast mean mostly underestimates the observed and 

simulated mean across lead times of 1 to 7 days, under both low-moderate and high flow 

conditions. The underestimation increases with increasing lead time and the RME is lower in 

the large basins compared to the small ones. 

- The CRPSS values for the raw ensemble streamflow forecasts imply that the skill of the 

meteorological forcing is relatively high for the initial lead time (day 1) but it decreases as the 

lead times increases. Thus, at lead times of 1-3 days, the raw ensembles seem largely affected 

by hydrological uncertainty. Across longer lead times (>4 days), hydrological uncertainty 

becomes less pronounced and meteorological uncertainty dominates. This trend is apparent in 

both the low-moderate and high flows. 

- The raw ensemble streamflow forecasts exhibit seasonal behavior across all the basins in the 

MAR, with forecasts having slightly better skill in the wet season compared to the dry one. 

Overall, hydrological uncertainty seems to have a greater impact on the streamflow forecasts 

in the dry season than the wet one. 

- The smaller basins reveal greater meteorological uncertainty than the large ones, whereas 

hydrological uncertainty varies widely across basin sizes, even though the performance of the 

hydrological simulations is somewhat improved in the large basins. The latter highlights the 

need to benchmark both simulation and forecasting outputs from hydrological models, as 

done in this study, to fully understand and assess model performance. 

- The raw ensemble streamflow forecasts show more skill than the deterministic (unperturbed 

GEFSRv2 member) forecasts across lead times of 1-7 days. The improvement is small at the 

initial lead time (day 1), but gradually increases with increasing forecast lead times. 
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- Results also show that postprocessing can improve the skill of streamflow forecasts over the 

raw streamflow ensembles. After postprocessing, the skill of the streamflow forecasts for high 

flow conditions are improved across the entire 7-day forecast cycle. The improvements in 

low-moderate forecasts are mainly seen across the short-range lead times (<4 days). 

 

APPENDIX 
Correlation coefficient (R): 

The correlation coefficient R represents the linear association between two variables 

(observed and simulated flow in this study). The correlation coefficient R is defined as: 
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  (4) 

where Si and Yi denote the simulated and observed flow, respectively, at time i, and N  denotes 

the total number of pairs of observed and simulated flows. 

 

Modified correlation coefficient (Rm): 

The correlation coefficient only accounts for the shape but not the size of the hydrograph. 

In addition, it can be strongly affected by outliers. To overcome these limitations, McCuen and 

Snyder (1975) developed a modified version of the correlation coefficient to compare event 

specific observed and simulated hydrographs. In the modified version, an adjustment factor 

based on the ratio of the observed and simulated flow is introduced to refine the conventional 

correlation coefficient R. The modified correlation coefficient Rm is defined as: 
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where sim  and obs  denote the standard deviation of the simulated and observed flows, 

respectively. 

  

Percent bias (PB): 

PB measures the average tendency of the simulated values to be larger or smaller than the 

observed. The PB is given by 
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where Si and Yi denote the simulated and observed flow, respectively, at time i.  

 

Nash-Sutcliffe efficiency (NSE): 

The NSE is defined as the ratio of the residual variance to the initial variance. It is widely 

used to measure the accuracy of the simulated flows in comparison to the observed mean. The 

range of NSE can vary between negative infinity to 1. Any positive value close to 1 indicates a 

good match between the simulated and observed variable while a negative value indicates that 

the observed mean is better than the simulated. The NSE is defined as:  
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where Si, Yi, and iY are the simulated, observed, and mean observed flow, respectively, at time i.   

 

Relative mean error (RME):  

RME quantifies the average error between the ensemble mean forecast and their 

corresponding observation as a fraction of the averaged observed value. RME gives an indication 

how good the forecast is relative to the observation. RME is expressed as follows: 
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k  and time i , iY  denotes the corresponding observation at time i , and n  denotes the total 

number of pairs of forecasts and observed values. 

 

Brier Skill Score (BSS): 

The Brier score (BS) is analogous to the mean squared error, but where the forecast is a 

probability and the observation is either a 0 or 1 (Brown and Seo 2010). The BS is given by 
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where the probability of Xi to exceed a fixed threshold q is  
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n is again the total number of forecast-observation pairs, and 
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In order to compare the skill score of the main forecast system with respect to the reference 

forecast, it is convenient to define the Brier Skill Score (BSS): 

 main

reference

BS
BSS 1 ,

BS
    (12) 

where BSmain and BSreference are the BS values for the main forecast system (i.e. the system to be 

evaluated) and reference forecast system, respectively. Any positive values of the BSS, from 0 to 

1, indicate that the main forecast system performs better than the reference forecast system. 

Thus, a BSS of 0 indicates no skill and a BSS of 1 indicates perfect skill. 

   

Mean Continuous Ranked Probability Skill Score (CRPSS): 

Continuous Ranked Probability Score (CRPS), which is  less sensitive to sampling 

uncertainty, is used to measure the integrated square difference between the cumulative 
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distribution function (cdf) of a forecast, ( )xF q , and the corresponding cdf of the observation, 

( )yF q . The CRPS is given by  

 
2
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To evaluate the skill of the main forecast system relative to the reference forecast system, the 

associated skill score, the mean Continuous Ranked Probability Skill Score (CRPSS), is defined 

as: 

 
main
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where the CRPS is averaged across n pairs of forecasts and observations to calculate the mean 

CRPS of the main forecast system ( mainCRPS ) and reference forecast system ( referenceCRPS ). The 

CRPSS ranges from -∞ to 1, with negative scores indicating that the system to be evaluated has 

worse CRPS than the reference forecast system, while positive scores indicate a higher skill for 

the main forecast system relative to the reference forecast system, with 1 indicating perfect skill. 

  



16 

 

References 

Addor, N., S. Jaun, F. Fundel, and M. Zappa, 2011: An operational hydrological ensemble 

prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios. 

Hydrol. Earth Syst. Sci., 15, 2327-2347. 

Alemu, E., R. Palmer, A. Polebitski, and B. Meaker, 2010: Decision Support System for 

Optimizing Reservoir Operations Using Ensemble Streamflow Predictions. Journal of 

Water Resources Planning and Management, 137, 72-82. 

Alfieri, L., F. Pappenberger, F. Wetterhall, T. Haiden, D. Richardson, and P. Salamon, 2014: 

Evaluation of ensemble streamflow predictions in Europe. Journal of Hydrology, 517, 

913-922. 

Anderson, R. M., V. I. Koren, and S. M. Reed, 2006: Using SSURGO data to improve 

Sacramento Model a priori parameter estimates. Journal of Hydrology, 320, 103-116. 

Anghileri, D., N. Voisin, A. Castelletti, F. Pianosi, B. Nijssen, and D. P. Lettenmaier, 2016: 

Value of long-term streamflow forecasts to reservoir operations for water supply in snow-

dominated river catchments. Water Resources Research, 52, 4209-4225. 

Bartholmes, J. C., J. Thielen, M. H. Ramos, and S. Gentilini, 2009: The european flood alert 

system EFAS–Part 2: Statistical skill assessment of probabilistic and deterministic 

operational forecasts. Hydrology and Earth System Sciences, 13, 141-153. 

Bennett, J. C., D. E. Robertson, D. L. Shrestha, Q. J. Wang, D. Enever, P. Hapuarachchi, and N. 

K. Tuteja, 2014: A System for Continuous Hydrological Ensemble Forecasting (SCHEF) 

to lead times of 9 days. Journal of Hydrology, 519, Part D, 2832-2846. 

Boucher, M. A., F. Anctil, L. Perreault, and D. Tremblay, 2011: A comparison between 

ensemble and deterministic hydrological forecasts in an operational context. Adv. 

Geosci., 29, 85-94. 

Boyle, D. P., H. V. Gupta, S. Sorooshian, V. Koren, Z. Zhang, and M. Smith, 2001: Toward 

improved streamflow forecasts: value of semidistributed modeling. Water Resources 

Research, 37, 2749-2759. 

Brown, J., 2014: Verification of temperature, precipitation and streamflow forecasts from the 

Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service: an 

evolution of the medium-range forecasts with forcing inputs from NCEP's Global 

Ensemble Forecast System (GEFS) and a comparison to the frozen version of NCEP's 

Global Forecast System (GFS). Hydrologic Solutions Limited, Subcontract Agreement 

2013-09 with LEN Technologies Inc. 

Brown, J., J. Demargne, D.-J. Seo, and Y. Liu, 2010: The Ensemble Verification System (EVS): 

A software tool for verifying ensemble forecasts of hydrometeorological and hydrologic 

variables at discrete locations Environmental Modeling and Software, 25, 854-872. 

Brown, J. D., and D.-J. Seo, 2010: A Nonparametric Postprocessor for Bias Correction of 

Hydrometeorological and Hydrologic Ensemble Forecasts. Journal of Hydrometeorology, 

11, 642-665. 

Brown, J. D., M. He, S. Regonda, L. Wu, H. Lee, and D.-J. Seo, 2014: Verification of 

temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic 

Ensemble Forecast Service (HEFS): 2. Streamflow verification. Journal of Hydrology, 

519, Part D, 2847-2868. 

Burnash, R., and V. Singh, 1995: The NWS river forecast system-Catchment modeling. 

Computer models of watershed hydrology., 311-366. 



17 

 

Burnash, R. J., R. L. Ferral, and R. A. McGuire, 1973: A generalized streamflow simulation 

system, conceptual modeling for digital computers. 

Carpenter, T. M., and K. P. Georgakakos, 2006: Intercomparison of lumped versus distributed 

hydrologic model ensemble simulations on operational forecast scales. Journal of 

Hydrology, 329, 174-185. 

Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood forecasting: A review. Journal of 

Hydrology, 375, 613-626. 

Day, G., 1985: Extended Streamflow Forecasting Using NWSRFS. Journal of Water Resources 

Planning and Management, 111, 157-170. 

Demargne, J., and Coauthors, 2014: The science of NOAA's operational hydrologic ensemble 

forecast service. Bulletin of the American Meteorological Society, 95, 79-98. 

Demeritt, D., S. Nobert, H. Cloke, and F. Pappenberger, 2010: Challenges in communicating and 

using ensembles in operational flood forecasting. Meteorological Applications, 17, 209-

222. 

ene Michaud, J., and S. Sorooshian, 1994: Comparison of simple versus complex distributed 

runoff models on a midsized semiarid watershed. Water Resources Research, 30, 593-

605. 

Famiglietti, J. S., and M. Rodell, 2013: Water in the Balance. Science, 340, 1300-1301. 

Fan, F. M., W. Collischonn, A. Meller, and L. C. M. Botelho, 2014a: Ensemble streamflow 

forecasting experiments in a tropical basin: The São Francisco river case study. Journal 

of Hydrology, 519, Part D, 2906-2919. 

——, 2014b: Ensemble streamflow forecasting experiments in a tropical basin: The São 

Francisco river case study. Journal of Hydrology. 

Franz, K. J., T. S. Hogue, and S. Sorooshian, 2008: Snow Model Verification Using Ensemble 

Prediction and Operational Benchmarks. Journal of Hydrometeorology, 9, 1402-1415. 

Georgakakos, A. P., H. Yao, and K. P. Georgakakos, 2014: Ensemble streamflow prediction 

adjustment for upstream water use and regulation. Journal of Hydrology, 519, Part D, 

2952-2966. 

Glahn, H. R., and D. A. Lowry, 1972: The Use of Model Output Statistics (MOS) in Objective 

Weather Forecasting. Journal of Applied Meteorology, 11, 1203-1211. 

Habib, E., A. T. Haile, Y. Tian, and R. J. Joyce, 2012: Evaluation of the High-Resolution 

CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-

Based Estimates. Journal of Hydrometeorology, 13, 1784-1798. 

Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble Reforecasting: Improving Medium-

Range Forecast Skill Using Retrospective Forecasts. Monthly Weather Review, 132, 

1434-1447. 

Hamill, T. M., and Coauthors, 2013: NOAA's Second-Generation Global Medium-Range 

Ensemble Reforecast Dataset. Bulletin of the American Meteorological Society, 94, 1553-

1565. 

Harshburger, B. J., V. P. Walden, K. S. Humes, B. C. Moore, T. R. Blandford, and A. Rango, 

2012: Generation of Ensemble Streamflow Forecasts Using an Enhanced Version of the 

Snowmelt Runoff Model. JAWRA Journal of the American Water Resources Association, 

48, 643-655. 

Hashino, T., A. A. Bradley, and S. S. Schwartz, 2007: Evaluation of bias-correction methods for 

ensemble streamflow volume forecasts. Hydrol. Earth Syst. Sci., 11, 939-950. 



18 

 

Hitchens, N. M., H. E. Brooks, and R. S. Schumacher, 2013: Spatial and Temporal 

Characteristics of Heavy Hourly Rainfall in the United States. Monthly Weather Review, 

141, 4564-4575. 

Jones, K. B., and Coauthors, 1997: An ecological assessment of the United States mid-Atlantic 

region: a landscape atlas. 

Journel, A. G., and C. J. Huijbregts, 1978: Mining geostatistics.  Academic press. 

Kelly, P., 2014: What to do when we run out of water. Nature Clim. Change, 4, 314-316. 

Khan, M., A. Shamseldin, B. Melville, and M. Shoaib, 2014: Stratification of NWP Forecasts for 

Medium-Range Ensemble Streamflow Forecasting. Journal of Hydrologic Engineering, 

20, 04014076. 

Kitzmiller, D., and Coauthors, 2011: Evolving Multisensor Precipitation Estimation Methods: 

Their Impacts on Flow Prediction Using a Distributed Hydrologic Model. Journal of 

Hydrometeorology, 12, 1414-1431. 

Koren, V., S. Reed, M. Smith, Z. Zhang, and D.-J. Seo, 2004: Hydrology laboratory research 

modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, 

291, 297-318. 

Koren, V., F. Moreda, S. Reed, M. Smith, and Z. Zhang, 2007: Evaluation of a grid-based 

distributed hydrological model over a large area. Water and Energy Abstracts, 16, 13-14. 

Koren, V. I., M. Smith, D. Wang, and Z. Zhang, 2000: Use of soil property data in the derivation 

of conceptual runoff-runoff model parameters. 15th Conference on Hydrology, AMS, 

January 9-14,2000, Long Beach, CA. 

Krajewski, W. F., V. Lakshmi, K. P. Georgakakos, and S. C. Jain, 1991: A Monte Carlo study of 

rainfall sampling effect on a distributed catchment model. Water resources research, 27, 

119-128. 

Krzysztofowicz, R., 1997: Transformation and normalization of variates with specified 

distributions. Journal of Hydrology, 197, 286-292. 

Kuzmin, V., D.-J. Seo, and V. Koren, 2008: Fast and efficient optimization of hydrologic model 

parameters using a priori estimates and stepwise line search. Journal of Hydrology, 353, 

109-128. 

Kuzmin, V. A., 2009: Algorithms of automatic calibration of multi-parameter models used in 

operational systems of flash flood forecasting. Russian Meteorology and Hydrology, 34, 

473-481. 

Lee, H., D.-J. Seo, and V. Koren, 2011: Assimilation of streamflow and in situ soil moisture data 

into operational distributed hydrologic models: Effects of uncertainties in the data and 

initial model soil moisture states. Advances in Water Resources, 34, 1597-1615. 

Lee, H., Y. Zhang, D.-J. Seo, and P. Xie, 2015: Utilizing satellite precipitation estimates for 

streamflow forecasting via adjustment of mean field bias in precipitation data and 

assimilation of streamflow observations. Journal of Hydrology, 529, Part 3, 779-794. 

Li, H., L. Luo, E. F. Wood, and J. Schaake, 2009: The role of initial conditions and forcing 

uncertainties in seasonal hydrologic forecasting. Journal of Geophysical Research: 

Atmospheres, 114. 

Lin, Y., and K. E. Mitchell, 2005: 1.2 the NCEP stage II/IV hourly precipitation analyses: 

Development and applications. 19th Conf. Hydrology, American Meteorological Society, 

San Diego, CA, USA, Citeseer. 

Madadgar, S., H. Moradkhani, and D. Garen, 2014: Towards improved post-processing of 

hydrologic forecast ensembles. Hydrological Processes, 28, 104-122. 



19 

 

Maupin, M. A., J. F. Kenny, S. S. Hutson, J. K. Lovelace, N. L. Barber, and K. S. Linsey, 2014: 

Estimated use of water in the United States in 2010: U.S. Geological Survey Circular 

1405. 56. 

McCuen, R. H., and W. M. Snyder, 1975: A proposed index for comparing hydrographs. Water 

Resources Research, 11, 1021-1024. 

Mejia, A. I., and S. M. Reed, 2011: Evaluating the effects of parameterized cross section shapes 

and simplified routing with a coupled distributed hydrologic and hydraulic model. 

Journal of Hydrology, 409, 512-524. 

Mekonnen, M. M., and A. Y. Hoekstra, 2016: Four billion people facing severe water scarcity. 

Science Advances, 2. 

Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M. Hamill, 2015: Climatology 

and environmental characteristics of extreme precipitation events in the Southeastern 

United States. Monthly Weather Review, 143, 718-741. 

NOAA, 2014: http://www.nws.noaa.gov/ohd/hrl/general/indexdoc.htm. 

Olsson, J., and G. Lindström, 2008: Evaluation and calibration of operational hydrological 

ensemble forecasts in Sweden. Journal of Hydrology, 350, 14-24. 

Pagano, T. C., D. L. Shrestha, Q. J. Wang, D. Robertson, and P. Hapuarachchi, 2013: Ensemble 

dressing for hydrological applications. Hydrological Processes, 27, 106-116. 

Prat, O. P., and B. R. Nelson, 2015: Evaluation of precipitation estimates over CONUS derived 

from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012). 

Hydrology and Earth System Sciences, 19, 2037-2056. 

Rafieeinasab, A., D.-J. Seo, H. Lee, and S. Kim, 2014: Comparative evaluation of maximum 

likelihood ensemble filter and ensemble Kalman filter for real-time assimilation of 

streamflow data into operational hydrologic models. Journal of Hydrology, 519, Part D, 

2663-2675. 

Rafieeinasab, A., A. Norouzi, D.-J. Seo, and B. Nelson, 2015a: Improving high-resolution 

quantitative precipitation estimation via fusion of multiple radar-based precipitation 

products. Journal of Hydrology, 531, Part 2, 320-336. 

Rafieeinasab, A., and Coauthors, 2015b: Toward high-resolution flash flood prediction in large 

urban areas – Analysis of sensitivity to spatiotemporal resolution of rainfall input and 

hydrologic modeling. Journal of Hydrology, 531, Part 2, 370-388. 

Ramos, M. H., S. J. Van Andel, and F. Pappenberger, 2013: Do probabilistic forecasts lead to 

better decisions? Hydrology and Earth System Sciences, 17, 2219-2232. 

Reed, P. M., and Coauthors, 2006: Bridging river basin scales and processes to assess human‐
climate impacts and the terrestrial hydrologic system. Water Resources Research, 42. 

Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, D.-J. Seo, and D. Participants, 2004: 

Overall distributed model intercomparison project results. Journal of Hydrology, 298, 27-

60. 

Regonda, S. K., D.-J. Seo, B. Lawrence, J. D. Brown, and J. Demargne, 2013: Short-term 

ensemble streamflow forecasting using operationally-produced single-valued streamflow 

forecasts – A Hydrologic Model Output Statistics (HMOS) approach. Journal of 

Hydrology, 497, 80-96. 

Roulin, E., 2006: Skill and relative economic value of medium-range hydrological ensemble 

predictions. Hydrology and Earth System Sciences Discussions, 3, 1369-1406. 



20 

 

Roulin, E., and S. Vannitsem, 2015: Post-processing of medium-range probabilistic hydrological 

forecasting: impact of forcing, initial conditions and model errors. Hydrological 

Processes, 29, 1434-1449. 

Schaake, J., K. Franz, A. Bradley, and R. Buizza, 2006: The Hydrologic Ensemble Prediction 

EXperiment (HEPEX). Hydrology and Earth System Sciences Discussions, 3, 3321-3332. 

Schaake, J. C., T. M. Hamill, R. Buizza, and M. Clark, 2007: HEPEX: The Hydrological 

Ensemble Prediction Experiment. Bulletin of the American Meteorological Society, 88, 

1541-1547. 

Schellekens, J., A. H. Weerts, R. J. Moore, C. E. Pierce, and S. Hildon, 2011: The use of 

MOGREPS ensemble rainfall forecasts in operational flood forecasting systems across 

England and Wales. Adv. Geosci., 29, 77-84. 

Sharma, S., and Coauthors, 2016: Eastern U.S. verification of ensemble precipitation forecasts. 

Weather and Forecasting (In review). 

Siddique, R., A. Mejia, J. Brown, S. Reed, and P. Ahnert, 2015: Verification of precipitation 

forecasts from two numerical weather prediction models in the Middle Atlantic Region of 

the USA: A precursory analysis to hydrologic forecasting. Journal of Hydrology, 529, 

Part 3, 1390-1406. 

Smith, M. B., and Coauthors, 2004: The distributed model intercomparison project (DMIP): 

motivation and experiment design. Journal of Hydrology, 298, 4-26. 

——, 2012: The distributed model intercomparison project – Phase 2: Motivation and design of 

the Oklahoma experiments. Journal of Hydrology, 418–419, 3-16. 

Sorooshian, S., and V. K. Gupta, 1983: Automatic calibration of conceptual rainfall‐ runoff 

models: The question of parameter observability and uniqueness. Water Resources 

Research, 19, 260-268. 

Spies, R. R., K. J. Franz, T. S. Hogue, and A. L. Bowman, 2014: Distributed Hydrologic 

Modeling Using Satellite-Derived Potential Evapotranspiration. Journal of 

Hydrometeorology, 16, 129-146. 

Tang, Y., P. Reed, and T. Wagener, 2006: How effective and efficient are multiobjective 

evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci., 10, 

289-307. 

Tang, Y., P. Reed, K. Van Werkhoven, and T. Wagener, 2007: Advancing the identification and 

evaluation of distributed rainfall‐ runoff models using global sensitivity analysis. Water 

Resources Research, 43. 

Thielen, J., J. Bartholmes, M. H. Ramos, and A. de Roo, 2009: The European Flood Alert 

System – Part 1: Concept and development. Hydrol. Earth Syst. Sci., 13, 125-140. 

Thorstensen, A., P. Nguyen, K. Hsu, and S. Sorooshian, 2015: Using Densely Distributed Soil 

Moisture Observations for Calibration of a Hydrologic Model. Journal of 

Hydrometeorology, 17, 571-590. 

van Andel, S. J., A. Weerts, J. Schaake, and K. Bogner, 2013: Post-processing hydrological 

ensemble predictions intercomparison experiment. Hydrological Processes, 27, 158-161. 

Van Cooten, S., and Coauthors, 2011: The CI-FLOW project: a system for total water level 

prediction from the summit to the sea. Bulletin of the American Meteorological Society, 

92, 1427. 

Van Steenbergen, N., J. Ronsyn, and P. Willems, 2012: A non-parametric data-based approach 

for probabilistic flood forecasting in support of uncertainty communication. 

Environmental Modelling & Software, 33, 92-105. 



21 

 

van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang, 2008: Characterization of watershed 

model behavior across a hydroclimatic gradient. Water Resources Research, 44, n/a-n/a. 

Verbunt, M., A. Walser, J. Gurtz, A. Montani, and C. Schär, 2007: Probabilistic Flood 

Forecasting with a Limited-Area Ensemble Prediction System: Selected Case Studies. 

Journal of Hydrometeorology, 8, 897-909. 

Vörösmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers, 2000: Global Water Resources: 

Vulnerability from Climate Change and Population Growth. Science, 289, 284-288. 

Wetterhall, F., and Coauthors, 2013: HESS Opinions "Forecaster priorities for improving 

probabilistic flood forecasts". Hydrol. Earth Syst. Sci., 17, 4389-4399. 

Wilks, D. S., 2015: Multivariate ensemble Model Output Statistics using empirical copulas. 

Quarterly Journal of the Royal Meteorological Society, 141, 945-952. 

Wood, A. W., and J. C. Schaake, 2008: Correcting Errors in Streamflow Forecast Ensemble 

Mean and Spread. Journal of Hydrometeorology, 9, 132-148. 

Wood, A. W., T. Hopson, A. Newman, L. Brekke, J. Arnold, and M. Clark, 2015: Quantifying 

Streamflow Forecast Skill Elasticity to Initial Condition and Climate Prediction Skill. 

Journal of Hydrometeorology, 17, 651-668. 

Xuan, Y., I. D. Cluckie, and Y. Wang, 2009: Uncertainty analysis of hydrological ensemble 

forecasts in a distributed model utilising short-range rainfall prediction. Hydrol. Earth 

Syst. Sci., 13, 293-303. 

Yuan, X., E. F. Wood, and M. Liang, 2014: Integrating weather and climate prediction: Toward 

seamless hydrologic forecasting. Geophysical Research Letters, 41, 5891-5896. 

Zalachori, I., M. H. Ramos, R. Garçon, T. Mathevet, and J. Gailhard, 2012: Statistical processing 

of forecasts for hydrological ensemble prediction: a comparative study of different bias 

correction strategies. Advances in Science & Research, 8, p. 135 - p. 141. 

Zhang, J., and Coauthors, 2011: NATIONAL MOSAIC AND MULTI-SENSOR QPE (NMQ) 

SYSTEM: Description, Results, and Future Plans. Bulletin of the American 

Meteorological Society, 92, 1321-1338. 

 

 

 



22 

 

Table 1. Main characteristics of the eight study basins. 

*
The number in parenthesis is the historical (based on entire available record, as opposed to the period 2004-2011 used in this study) 

daily minimum, maximum, or mean recorded flow.

  

 Delaware NB Susquehanna Potomac James 

Location of outlet Walton, 

New York 

Trenton, 

New Jersey 

Sherburne 

New York 

Waverly, 

New York 

Dawsonville, 

Maryland 

Little 

Falls, DC 

Palmyra, 

Virginia 

Richmond, 

Virginia 

NWS id WALN6 TREN4 SHBN6 WVYN6 DAWM2 BRKM2 PYAV2 RMDV2 

USGS id 01423000 01463500 01505000 01515000 01645000 01646500 02034000 02037500 

Area [km
2
] 860 17,574 682 12,372 262 29,965 1719 17,504 

Latitude 42
0
09’58” 40

0
13’18” 42

0
40’43” 41

0
59’05” 39

0
07’41” 38

0
56’59” 37

0
51’28” 37

0
33’47” 

Longitude 75
0
08’24” 74

0
46’41” 75

0
30’38” 76

0
30’04” 77

0
20’08” 77

0
07’39” 78

0
15’58” 77

0
32’50” 

Minimum daily 

flow
*
 [m

3
/s] 

0.62 

(0.37) 

71.36 

(35.11) 

0.59 

(0.39) 

13.08 

(6.71) 

1.30 

(0.05) 

11.47 

(3.42) 

0.68 

(0.15) 

12.45 

(0.28) 

Maximum daily 

flow
*
 [m

3
/s] 

634.29 

(634.29) 

6512.87 

(7900) 

278.63 

(278.63) 

4417.42 

(4417.42) 

17.90 

(280.34) 

5436.83 

(12060) 

430.42 

(1926) 

2860.00 

(8382) 

Mean daily flow
*
 

[m
3
/s] 

21.25 

(17.23) 

415.87 

(338.90) 

13.32 

(11.38) 

275.55 

(215.01) 

4.28 

(3.28) 

323.67 

(325.72) 

17.56 

(20.23) 

193.77 

(196.47) 

Climatological flow 

(Pr=0.50) [m
3
/s] 

13.36 241.17 8.7 158 3.03 134.65 11.66 118.47 

Climatological flow 

(Pr=0.90) [m
3
/s] 

42.53 505.31 23.89 434 6.68 404.65 35.88 396.60 
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Table 2. Performance statistics for the uncalibrated and calibrated simulation runs for the entire period of analysis (2004-2013). 

Performance 

statistic 

Model run Flow 

condition 

Delaware North Branch 

Susquehanna 

Potomac James 

WALN6 TREN4 SHBN6 WVYN6 DAWM2 BRKM2 PYAV2 RMDV2 

Correlation 

coefficient, R 

Uncalibrated Low-moderate 0.76 0.81 0.59 0.82 0.72 0.73 0.75 0.79 

High 0.74 0.88 0.76 0.62 0.55 0.86 0.67 0.58 

Overall 0.86 0.92 0.85 0.82 0.68 0.91 0.82 0.84 

Calibrated Low-moderate 0.76 0.83 0.87 0.79 0.71 0.76 0.79 0.80 

High 0.81 0.89 0.77 0.72 0.82 0.88 0.66 0.76 

Overall 0.88 0.93 0.89 0.86 0.86 0.92 0.82 0.89 

Modified 

correlation 

coefficient, 

Rm 

Uncalibrated Low-moderate 0.74 0.59 0.46 0.66 0.43 0.44 0.50 0.71 

High 0.45 0.84 0.50 0.59 0.29 0.70 0.57 0.56 

Overall 0.60 0.90 0.61 0.79 0.46 0.75 0.80 0.74 

Calibrated Low-moderate 0.74 0.63 0.80 0.64 0.40 0.60 0.60 0.76 

High 0.67 0.89 0.53 0.69 0.79 0.87 0.66 0.66 

Overall 0.70 0.92 0.74 0.80 0.84 0.90 0.81 0.88 

Percent bias, 

PB 

Uncalibrated Low-moderate 8.94 -5.67 -17.55 3.45 20.01 27.67 27.21 1.88 

High -23.39 -4.94 17.02 -12.59 -34.65 15.24 1.2 -19.07 

Overall -3.99 -5.23 -0.74 -4.21 4.82 20.54 16.84 -5.52 

Calibrated Low-moderate 6.95 -5.49 4.74 4.71 -0.67 2.99 8.04 -0.78 

High -21.73 -5.57 -8.12 -10.99 -5.15 -5.37 -12.24 -8.03 

Overall -4.52 -5.54 -1.52 -2.79 0.88 -1.8 -0.04 -3.34 

Nash-

Sutcliffe 

efficiency, 

NSE 

Uncalibrated Low-moderate 0.52 0.32 -0.21 0.49 -0.49 -0.50 -0.14 0.53 

High 0.44 0.73 -0.07 0.16 0.18 0.57 0.42 0.03 

Overall 0.71 0.82 0.42 0.66 0.46 0.71 0.64 0.70 

Calibrated Low-moderate 0.52 0.43 0.69 0.41 0.67 0.32 0.34 0.57 

High 0.58 0.79 0.57 0.42 0.66 0.76 0.42 0.40 

Overall 0.77 0.86 0.78 0.74 0.71 0.85 0.68 0.79 



 
 

 

 
Figure 1. Map illustrating the location of the selected study basins in the MAR. 

  



 
 

 

 
 

Figure 2. RME of the mean raw, ensemble streamflow forecasts versus the forecast lead time, 

with reference to both observed (solid line) and simulated (dashed line) flows. Results are shown 

for small (a-d) and large (e-h) basins, under low-moderate flow conditions (flows with 

nonexceedance probability of 0.5). 

  



 
 

 

 
 

Figure 3. CRPSS of the raw, ensemble streamflow forecasts versus the forecast lead time, with 

reference to both the observed (solid line) and simulated (dashed line) climatological flows. 

Results are shown for small (a-d) and large (e-h) basins, under low-moderate flow conditions 

(flows with nonexceedance probability of 0.5). 

  



 
 

 

 
 

Figure 4. BSS of the raw, ensemble streamflow forecasts versus the forecast lead time, with 

reference to both the observed (lines with squared symbols) and simulated (lines with dotted 

symbols) climatological flows. Results are shown for the dry (dotted lines) and wet (solid lines) 

seasons, for small (a-d) and large (e-h) basins, under low-moderate flow conditions (flows with 

nonexceedance probability of 0.5). The dry season includes the months of June-November and 

the wet season the months of December-May. 

  



 
 

 

 
 

Figure 5. RME of the mean raw, ensemble streamflow forecasts versus the forecast lead time, 

with reference to both the observed (solid line) and simulated (dashed line) flows. Results are 

shown for small (a-d) and large (e-h) basins, under high flow conditions (flows with 

nonexceedance probability of 0.9). 

  



 
 

 

 
 

Figure 6. CRPSS of the raw, ensemble streamflow forecasts versus the forecast lead time, with 

reference to both the observed (solid line) and simulated (dashed line) climatological flows. 

Results are shown for small (a-d) and large (e-h) basins, under high flow conditions (flows with 

nonexceedance probability of 0.9). 

  



 
 

 

 
 

Figure 7. BSS of the raw, ensemble streamflow forecasts versus the forecast lead time, with 

reference to both the observed (lines with squared symbols) and simulated (lines with dotted 

symbols) climatological flows. Results are shown for the dry (dotted lines) and wet (solid lines) 

seasons, for small (a-d) and large (e-h) basins, under high flow conditions (flows with 

nonexceedance probability of 0.9). The dry season includes the months of June-November and 

the wet season the months of December-May. 

  



 
 

 
 

Figure 8. CRPSS of the raw, ensemble streamflow forecasts versus the forecast lead time, with 

reference to the deterministic forecasts. Results are shown for small (a-d) and large (e-h) basins, 

under low-moderate (dotted lines) and high (solid lines) flow conditions. The low-moderate and 

high flows are flows with nonexceedance probabilities of 0.5 and 0.9, respectively. 

  



 
 

 

 
 

Figure 9. RME of the mean postprocessed (lines with squared symbols) and raw (lines with 

dotted symbols), ensemble streamflow forecasts versus the forecast lead time. Results are shown 

for small (a-d) and large (e-h) basins, under low-moderate (dotted lines) and high (solid lines) 

flow conditions. The low-moderate and high flows are flows with nonexceedance probabilities of 

0.5 and 0.9, respectively. 

  



 
 

 
 

Figure 10. CRPSS of the postprocessed, ensemble streamflow forecasts versus the forecast lead 

time, with reference to the raw forecasts. Results are shown for small (a-d) and large (e-h) 

basins, under low-moderate (dashed lines) and high (solid lines) flow conditions. The low-

moderate and high flows are flows with nonexceedance probabilities of 0.5 and 0.9, respectively. 



 
 

Chapter 6: Relative effects of statistical preprocessing and 

postprocessing on a regional hydrological ensemble 

prediction system 
 

ABSTRACT 

The relative roles of statistical weather preprocessing and streamflow postprocessing in 

hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1-7) are 

investigated. For this purpose, a regional hydrologic ensemble prediction system (RHEPS) is developed 

and implemented. The RHEPS is comprised by the following components: i) hydrometeorological 

observations (multisensor precipitation estimates, gridded surface temperature, and gauged 

streamflow); ii) weather ensemble forecasts (precipitation and near-surface temperature) from the 

National Centers for Environmental Prediction 11-member Global Ensemble Forecast System 

Reforecast version 2 (GEFSRv2); iii) NOAA’s Hydrology Laboratory-Research Distributed Hydrologic 

Model (HL-RDHM); iv) heteroscedastic censored logistic regression (HCLR) as the statistical 

preprocessor; v) two statistical postprocessors, an autoregressive model with a single exogenous 

variable (ARX(1,1)) and quantile regression (QR); and vi) a comprehensive verification strategy. To 

implement the RHEPS, 1 to 7 days weather forecasts from the GEFSRv2 are used to force HL-RDHM 

and generate raw ensemble streamflow forecasts. Forecasting experiments are conducted in four nested 

basins in the U.S. middle Atlantic region, ranging in size from 381 to 12,362 km
2
. 

Results show that the HCLR preprocessed ensemble precipitation forecasts have greater skill 

than the raw forecasts. These improvements are more noticeable in the warm season at the longer 

lead times (>3 days). Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw 

ensemble flood forecasts but QR outperforms ARX(1,1).  Preprocessing alone has little effect on 

improving the skill of the ensemble flood forecasts. Indeed, postprocessing alone performs similar, 

in terms of the relative mean error, skill, and reliability, to the more involved scenario that includes 

both preprocessing and postprocessing. We conclude that statistical preprocessing may not always 

be a necessary component of the ensemble flood forecasting chain.  

 

1. Introduction 

The intersection of climate variability and change, increased exposure from expanding 

urbanization, and sea level rise are increasing the frequency of damaging flood events and 

making their prediction more challenging across the globe (Dankers et al., 2014; Wheater and 

Gober, 2015; Ward et al., 2015). Accordingly, current research and operational efforts in 

hydrological forecasting are seeking to develop and implement enhanced forecasting systems, 

with the goals of improving the skill and reliability of short- to medium-range flood forecasts (0-

14 days), and providing more effective early warning services (Pagano et al., 2014; Thiemig et 

al.,  2015; Emerton et al., 2016; Siddique and Mejia, 2017). Ensemble-based forecasting systems 

have become the preferred paradigm, showing substantial improvements over single-valued 

deterministic ones (Schaake et al., 2007; Cloke and Pappenberger, 2009; Demirel et al., 2013; 

Fan et al., 2014; Demargne et al., 2014; Schwanenberg et al., 2015; Siddique and Mejia, 2017). 

Ensemble flood forecasts can be generated in a number of ways, being the most common 

approach the use of meteorological forecast ensembles to force a hydrological model (Cloke and 

Pappenberger, 2009; Thiemig et al., 2015). Such meteorological forecasts can be generated by 

multiple alterations of a numerical weather prediction model, including perturbed initial 

conditions and/or multiple model physics and parameterizations.  



 
 

A number of ensemble prediction systems (EPSs) are being used to generate flood forecasts. 

In the United States (U.S.), the NOAA’s National Weather Service River Forecast Centers are 

implementing and using the Hydrological Ensemble Forecast Service to incorporate 

meteorological ensembles into their flood forecasting operations (Demargne et al., 2014; Brown 

et al., 2014). Likewise, the European Flood Awareness System from the European Commission 

(Alfieri et al., 2014) and the Flood Forecasting and Warming Service from the Australia Bureau 

of Meteorology (Pagano et al., 2016) have adopted the ensemble paradigm. Furthermore, 

different regional EPSs have been designed and implemented for research purposes, meet 

specific regional needs, and/or real-time forecasting applications. Two examples, among several 

others (Zappa et al., 2008; Zappa et al., 2011; Hopson and Webster, 2010; Demuth and 

Rademacher, 2016; Addor et al., 2011; Golding et al., 2016; Bennett et al., 2014; Schellekens et 

al., 2011), are the Stevens Institute of Technology’s Stevens Flood Advisory System for short-

range flood forecasting (Saleh et al., 2016), and the National Center for Atmospheric Research 

(NCAR)’s System for Hydromet Analysis, Research, and Prediction for medium-range 

streamflow forecasting (NCAR, 2017). Further efforts are underway to operationalize global 

ensemble flood forecasting and early warning systems, e.g., through the Global Flood Awareness 

System (Alfieri et al., 2013; Emerton et al., 2016).  

EPSs are comprised by several system components. In this study, the Regional Hydrological 

Ensemble Prediction System (RHEPS) is used (Siddique and Mejia, 2017). The RHEPS is an 

ensemble-based research forecasting system, aimed primarily at bridging the gap between 

hydrological forecasting research and operations by creating an adaptable and modular forecast 

emulator. The goal with the RHEPS is to facilitate the integration and rigorous verification of 

new system components, enhanced physical parameterizations, and novel assimilation strategies. 

For this study, the RHEPS is comprised by the following system components: i) precipitation 

and near surface temperature ensemble forecasts from the National Centers for Environmental 

Prediction 11-member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2), ii) 

NOAA’s Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) (Reed et 

al., 2004; Smith et al., 2012a; Smith et al., 2012b), iii) statistical weather preprocessor (hereafter 

referred to as preprocessing), iv) statistical streamflow postprocessor (hereafter referred to as 

postprocessing), v) hydrometeorological observations, and vi) verification strategy. Recently, 

Siddique and Mejia (2017) employed the RHEPS to produce and verify ensemble streamflow 

forecasts over some of the major river basins in the U.S. middle Atlantic region. Here, the 

RHEPS is specifically implemented to investigate the relative roles played by preprocessing and 

postprocessing in enhancing the quality of ensemble flood forecasts.  

The goal with statistical processing is to use statistical tools to quantify the uncertainty of 

and remove systematic biases in the weather and streamflow forecasts in order to improve the 

skill and reliability of forecasts. In weather and hydrological forecasting, a number of studies 

have demonstrated the benefits of separately implementing preprocessing (Sloughter et al., 2007; 

Verkade et al., 2013; Messner et al., 2014a; Yang et al., 2017) and postprocessing (Brown and 

Seo, 2010; Madadgar et al., 2014; Wang et al., 2016; Siddique and Mejia, 2017). However, only 

a very limited number of studies have investigated the combined ability of preprocessing and 

postprocessing to improve the overall quality of ensemble streamflow forecasts (Kang et al., 

2010; Zalachori et al., 2012; Roulin and Vannitsem, 2015). At first glance, in the context of 

medium-range streamflow forecasting, preprocessing seems necessary and beneficial since 

meteorological forcing are often biased and their uncertainty more dominant than the 

hydrological one (Cloke and Pappenberger, 2009; Bennett et al., 2014; Siddique and Mejia, 



 
 

2017). In addition, some streamflow postprocessors assume unbiased forcing (Zhao et al., 2011) 

and hydrological models can be sensitive to forcing biases. 

The few studies that have analyzed the joint effects of preprocessing and postprocessing on 

short- to medium-range streamflow forecasts have mostly relied on weather ensembles from the 

European Centre for Medium-range Weather Forecasts (ECMWF) (Roulin and Vannitsem 

(2015), Zalachori et al. (2012) Benninga et al., 2016). Kang et al. (2010) used different forcing 

but focused on monthly, as opposed to daily, streamflow. The conclusions from these studies 

have been mixed (Benninga et al., 2016). Some have found statistical processing to be useful, 

particularly postprocessing, while others have found that it contributes little to forecast quality. 

Overall, studies indicate that the relative effects of preprocessing and postprocessing depend 

strongly on the forecasting system (e.g., forcing, hydrological model, statistical processing 

technique, etc.) and conditions (e.g., lead time, study area, season, etc.), underscoring the 

research need to rigorously verify and benchmark new forecasting systems that incorporate 

statistical processing. 

The main objective of this study is to verify and assess the ability of preprocessing and 

postprocessing to improve ensemble flood forecasts from the RHEPS. This study differs from 

previous ones in several important respects. The assessment of statistical processing is done 

using a spatially distributed hydrological model whereas previous studies have tended to 

emphasize spatially lumped models. Much of the previous studies have used ECMWF forecasts, 

here we rely on GEFSRv2 precipitation and temperature outputs. Also, we test and implement a 

preprocessor, namely heteroscedastic censored logistic regression (HCLR), which has not been 

used before in streamflow forecasting. We also consider a relatively wider range of nested, basin 

sizes and longer study period than in previous studies. In particular, this paper addresses the 

following questions: 

 What are the separate and joint contributions of preprocessing and postprocessing over 

the raw RHEPS outputs? 

 What forecast conditions (e.g., lead time, season, flood threshold, and basin size) benefit 

potential increases in skill? 

 How much skill improvement can be expected from statistical processing under different 

uncertainty scenarios (i.e., when skill is measured relative to observed or simulated flow 

conditions)? 

The remainder of the paper is organized as follows. In section 2, the study area and datasets 

employed are described. Section 3 describes the methodology, including the preprocessor, 

postprocessor, hydrological model, and forecast verification strategy. The main results and their 

implications are examined in section 4. Lastly, section 5 summarizes key findings. 

 

2. Study area and datasets 

2.1 Study area 

The North Branch Susquehanna River basin in the U.S. middle Atlantic region (MAR) is 

selected as the study area (Fig. 1), with an overall drainage area of 12,362 km
2
. The MAR is 

selected as flooding is an important regional concern. The MAR has a high level of urbanization 

and high frequency of extreme weather events, making it particularly vulnerable to damaging 

flood events  (Gitro et al., 2014; MARFC, 2017). In the North Branch Susquehanna River basin, 

four different U.S. Geological Survey (USGS) daily gauge stations, representing a system of 

nested subbasins, are selected as the forecast locations (Fig. 1). The selected locations are the 

Ostellic River at Cincinnatus (USGS gauge 01510000), Chenango River at Chenango Forks 



 
 

(USGS gauge 01512500), Susquehanna River at Conklin (USGS gauge 01503000), and 

Susquehanna River at Waverly (USGS gauge 01515000) (Fig. 1). The drainage area of the 

selected basins ranges from 381 to 12,362 km
2
. Table 1 outlines some key characteristics of the 

study basins. 

 

2.2 Datasets 

2.2.1 Hydrometeorological observations 

Three main observation datasets are used: multisensor precipitation estimates (MPEs), 

gridded near-surface air temperature, and daily streamflow. MPEs and gridded near-surface air 

temperature are used to run the hydrological model in simulation mode for parameter calibration 

purposes and to initialize the RHEPS. Both the MPEs and gridded near-surface air temperature 

data at 4 x 4 km
2
 resolution were provided by the NOAA’s Middle Atlantic River Forecast 

Center (MARFC). Similar to the NCEP stage-IV dataset (Moore et al., 2015; Prat and Nelson, 

2015), the MARFC’s MPEs represent a continuous time series of hourly, gridded precipitation 

observations at 4 x 4 km
2
 cells, which are produced by combining multiple radar estimates and 

rain gauge measurements. The gridded near-surface air temperature data at 4 x 4 km
2
 resolution 

were developed by combining multiple temperature observation networks as described by 

Siddique and Mejia (2017). Daily streamflow observations for the selected basins were obtained 

from the USGS. The streamflow observations are used to verify the simulated flows, and the raw 

and postprocessed ensemble streamflow forecasts. 

 

2.2.2 Meteorological forecasts 

GEFSRv2 data are used for the ensemble precipitation and near-surface air temperature 

forecasts. The GEFSRv2 uses the same atmospheric model and initial conditions as the version 

9.0.1 of the Global Ensemble Forecast System and runs at T254L42 (~0.50
o 

Gaussian grid 

spacing or ~55 km) and T190L42 (~0.67
o
 Gaussian grid spacing or ~73 km) resolutions for the 

first and second 8 days, respectively (Hamill et al., 2013). The reforecasts are initiated once daily 

at 00 Coordinated Universal Time. Each forecast cycle consists of 3 hourly accumulations for 

day 1 to day 3 and 6 hourly accumulations for day 4 to day 16. In this study, we use 9 years of 

GEFSRv2 data, from 2004 to 2012, and forecast lead times from 1 to 7 days. The period 2004 to 

2012 is selected to take advantage of data that were previously available to us (i.e., GEFSRv2 

and MPEs for the MAR) from a recent verification study (Siddique et al., 2015). Forecast lead 

times of up to 7 days are chosen since we previously found that the GEFSRv2 skill is low after 7 

days (Siddique et al., 2015; Sharma et al., 2017). 

 

3. Methodology 

3.1 Distributed hydrological model 

NOAA’s HL-RDHM is used as the spatially distributed hydrological model (Koren et al., 

2004). Within HL-RDHM, the Sacramento Soil Moisture Accounting model with Heat Transfer 

(SAC-HT) is used to represent hillslope runoff generation, and the SNOW-17 module is used to 

represent snow accumulation and melting.  

HL-RDHM is a spatially distributed conceptual model, where the basin system is divided 

into regularly spaced, square grid cells to account for spatial heterogeneity and variability. Each 

grid cell, in turn, is comprised of storage components that store and transmit water; i.e., each cell 

acts as a hillslope capable of generating surface, interflow, and groundwater runoff that 

discharges directly into the streams. The cells are connected to each other through the stream 



 
 

network system. Through the SNOW-17 module, each cell can also accumulate snow and 

generate hillslope snow melt based on the near-surface air temperature. The hillslope runoff, 

generated at each grid cell by SAC-HT and SNOW-17, is routed to the stream network using a 

nonlinear kinematic wave algorithm (Koren et al., 2004; Smith et al., 2012a). Likewise, flows in 

the stream network are routed downstream using a nonlinear kinematic wave algorithm that 

accounts for parameterized stream cross-section shapes (Smith et al., 2012a; Koren et al., 2004). 

Here we run HL-RDHM in a fully distributed manner at a spatial resolution of 2 x 2 km
2
. Note 

that HL-RDHM requires the forcing to be input at the 4 x 4 km
2
 resolution but the model itself 

can actually be ran at different resolutions. The 2 x 2 km
2
 resolution mainly allows for a more 

realistic representation of the stream network. Further information about the HL-RDHM can be 

found elsewhere (Koren et al., 2004; Reed et al., 2007; Smith et al., 2012a; Fares et al., 2014; 

Rafieeinasab et al., 2015; Thorstensen et al., 2016; Siddique and Mejia 2017). 

To calibrate HL-RHDM, we first run the model using a-priori parameter estimates 

previously derived from available datasets (Koren et al., 2000; Reed et al., 2004; Anderson et al., 

2006). We then select 10 out of the 17 SAC-HT parameters for calibration based upon prior 

experience and preliminary sensitivity tests. During the calibration process, each a-priori 

parameter field is multiplied by a factor. Therefore, we calibrate these factors instead of the 

parameter values at all grid cells, assuming that the a-priori parameter distribution is true (e.g., 

Mendoza et al., 2012).The multiplying factors are adjusted manually first; once the manual 

changes do not yield noticeable improvements in model performance, the factors are tuned-up 

using stepwise line search (SLS; Kuzmin et al., 2008; Kuzmin, 2009). This method is readily 

available within HL-RDHM, and has been shown to provide reliable parameter estimates 

(Kuzmin et al., 2008; Kuzmin, 2009). With SLS, the following objective function is optimized: 
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where qi and si denote the daily observed and simulated flows at time i, respectively;   is the 

parameter vector being estimated; and m is the total number of days used for calibration. Three 

years (2003-2005) of streamflow data are used to calibrate the HL-RDHM for the selected 

basins. The first year (year 2003) is used to warm-up HL-RDHM. To assess the model 

performance during calibration, we use the percent bias (PB), modified correlation coefficient 

(Rm), and Nash-Sutcliffe efficiency (NSE) (see appendix for details). Note that these metrics are 

used during the manual phase of the calibration process, and to assess the final results from the 

implementation of the SLS. However, the actual implementation of the SLS is based on the 

objective function in Eq. (1). 

 

3.2 Statistical weather preprocessor 

Heteroscedastic censored logistic regression (HCLR) (Messner et al., 2014a; Yang et al., 

2017) is implemented to preprocess the ensemble precipitation forecasts from the GEFSRv2. 

HCLR is selected since it offers the advantage, over other regression-based preprocessors 

(Wilks, 2009), of obtaining the full, continuous  predictive probability density function  (pdf) of 

precipitation forecasts (Messner et al., 2014b). Also, HCLR has been shown to outperform other 

widely used preprocessors (Yang et al., 2017). In principle, HCLR fits the conditional logistic 

probability distribution function to the transformed (here the square root) ensemble mean and 

bias corrected precipitation ensembles. Note that we tried different transformations (square root, 

cube root, and fourth root), and found a similar performance between the square and cube root, 

both outperforming the fourth root. In addition, HCLR uses the ensemble spread as a predictor, 

which allows the use of uncertainty information contained in the ensembles.  



 
 

The development of the HCLR follows the logistic regression model initially proposed by 

Hamill et al. (2004) as well as the extended version of that model proposed by Wilks (2009). The 

extended logistic regression of Wilks (2009) is used to model the probability of binary responses 

such that 

 ( | ) ( )( ) ,]P y z x xz      (2) 

where Ʌ(.) denotes the cumulative distribution function of the standard logistic distribution, y is 

the transformed precipitation, z is a specified threshold, x is a predictor variable that depends on 

the forecast members, δ(x) is a linear function of the predictor variable x, and the transformation 

ω(.) is a monotone nondecreasing function. Messner et al. (2014a) proposed the heteroscedastic 

extended logistic regression (HELR) preprocessor with an additional predictor variable φ to 

control the dispersion of the logistic predictive distribution, 
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where η(.) is a linear function of φ. The functions δ(.) and η(.) are defined as: 
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where a0, a1, b0, and b1 are parameters that need to be estimated; 1/2
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
  , i.e., the 

predictor variable x is the mean of the transformed, via the square root, ensemble forecasts f; K is 

the total number of ensemble members; and φ is the standard deviation of the square root 

transformed, precipitation ensemble forecasts.  

To estimate the parameters associated with Eq. (3), maximum likelihood estimation with the 

log-likelihood function is used (Messner et al., 2014a; Messner et al., 2014b). For this, one needs 

to determine the predicted probability πi of the ith observed outcome. One variation of the HELR 

postprocessor that can straightforwardly accommodate nonnegative variables that are continuous 

for positive values and have a natural threshold at zero, such as precipitation amounts, is 

censored regression or, as termed by Messner et al. (2014a), HCLR. For HCLR, πi can be 

expressed as (Messner et al., 2014a) 
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where λ[.] denotes the likelihood function of the standard logistic function. As indicated by 

equation (6), HCLR fits a logistic error distribution with point mass at zero to the transformed 

predictand. 

HCLR is applied here to each GEFSRv2 grid cell within the selected basins. At each cell, 

HCLR is implemented for the period 2004-2012 using a leave-one-out approach. For this, we 

select 7 years for training and the two remaining years for verification purposes. This is repeated 

until all the 9 years have been preprocessed and verified independently of the training period. 

This is done so that no training data is discarded and the entire 9-year period of analysis can be 

used to generate the precipitation forecasts. HCLR is employed for 6-hourly precipitation 

accumulations for lead times from 6 to 168 hours. To train the preprocessor, we use a stationary 

training period, as opposed to a moving window, for each season and year to be forecasted, 

comprised by the seasonal data from all the 7 training years. Thus, to forecast a given season and 



 
 

specific lead time, we use ~6930 forecasts (i.e., 11 members x 90 days per season x 7 years). We 

previously tested using a moving window training approach and found that the results were 

similar to the stationary window one (Yang et al., 2017). To make the implementation of HCLR 

as straightforward as possible, the stationary window is used here. Finally, the Schaake Shuffle 

method as applied by Clark et al. (2004) is implemented to maintain the observed space-time 

variability in the preprocessed GEFSRv2 precipitation forecasts. At each individual forecast 

time, the Schaake Shuffle is applied to produce a spatial and temporal rank structure for the 

ensemble precipitation values that is consistent with the ranks of the observations. 

 

3.3 Statistical streamflow postprocessors 

To statistically postprocess the flow forecasts generated by the RHEPS, two different 

approaches are tested, namely a first-order autoregressive model with a single exogenous 

variable, ARX(1,1), and quantile regression (QR). We select the ARX(1,1) postprocessor since it 

has been suggested and implemented for operational applications in the U.S. (Regonda et al., 

2013). QR is chosen because it is of similar complexity as the ARX(1,1) postprocessor but for 

some forecasting conditions it has been shown to outperform it (Mendoza et al., 2016). 

Furthermore, the ARX (1,1) and QR postprocessors have not been compared against each other 

for the forecasting conditions specified by the RHEPS. The postprocessors are implemented for 

the years 2004-2012, using the same leave-one-out approach used for the preprocessor. The 

postprocessors are applied at each individual lead time from day 1 to 7. For this, the 6-houlry 

streamflow forecasts from HL-RDHM are averaged over 24 hours to get the streamflow forecast 

for a particular day. 

 

3.3.1 First-order autoregressive model with a single exogenous variable 

To implement the ARX(1,1) postprocessor, the observation and forecast data are first 

transformed into standard normal deviates using the normal quantile transformation (NQT) 

(Krzysztofowicz, 1997; Bogner et al., 2012). The transformed observations and forecasts are 

then used as predictors in the ARX(1,1) model (Siddique and Mejia, 2017). Specifically, for each 

forecast lead time, the ARX (1,1) postprocessor is formulated as follows: 
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where T

iq  and 1

T

iq   are the NQT transformed observed flows at time steps i and i+1, respectively; 

c is the regression coefficient; 1

T

if   is the NQT transformed forecast flow at time step i+1; and   

is the residual error term. In Eq. (7), assuming that there is significant correlation between 1i   

and T

iq , 1i   can be calculated as: 
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 are the standard deviation of i  and 1i  , respectively; 1( , )i i    is the serial 
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To implement Eq. (7), ten equally spaced values of ci+1 are selected from 0.1 to 0.9. For 

each value of ci+1, 
1

2

i



 is determined from Eq. (9) using the training data to determine the other 



 
 

variables in Eq. (9). Then, 
1i 
 is generated from 

1

2(0, )
i


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¥  and 
1i 
 is calculated from Eq. (8). 

The result from Eq. (8) is used with Eq. (7) to generate a trace of 1

T

iq   which is transformed back 

to real space using the inverse NQT. These steps are repeated to generate multiple traces for each 

value of ci+1. Lastly, the value of ci+1 that produces the ensemble forecast with the smallest mean 

continuous ranked probability skill (CRPS) is selected. The ARX (1,1) postprocessor is applied 

at each individual lead time. For lead times beyond the initial one (day 1), one day-ahead 

predictions are used as the observed streamflow. For the cases where 1

T

iq   falls beyond the 

historical maxima, extrapolation is used by modeling the upper tail of the forecast distribution as 

hyperbolic (Journel and Huijbregts, 1978). 

 

3.3.2 Quantile regression 

Quantile regression (QR; Koenker and Bassett Jr, 1978; Koenker, 2005) is employed to 

determine the error distribution, conditional on the ensemble mean, resulting from the difference 

between observations and forecasts (Dogulu et al., 2015; López et al., 2014; Weerts et al., 2011; 

Mendoza et al., 2016). QR is applied here in streamflow space, since it has been shown that, in 

hydrological forecasting applications, QR has similar skill performance in streamflow and 

normal space (López et al., 2014). Another advantage of QR is that it does not make any prior 

assumptions regarding the shape of the distribution. Further, since QR results in conditional 

quantiles rather than conditional means, QR is less sensitive to the tail behavior of the 

streamflow dataset, and consequently, less sensitive to outliers. Note that although QR is here 

implemented separately for each lead time, the mathematical notation does not reflect this for 

simplicity. 

The QR model is given by 

 ' ,d e f       (10) 

where '

  is the error estimate at quantile interval τ; f  is the ensemble mean; and dτ and eτ are 

the linear regression coefficients at τ. The coefficients are determined by minimizing the sum of 

the residuals based on the training data as follows: 

 '

,

1

min [ ( , )],
N

i i

i

w i f   


   (11) 

,i  and if  are the thi  paired samples from a total of N samples; ,i  is computed as the observed 

flow minus the forecasted one, q f  ; and w  is the weighting function for the 
th quantile 

defined as: 
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i  is the residual term defined as the difference between ,i  and ' ( , )ii f for the quantile τ. The 

minimization in Eq. (11) is solved using linear programming (Koenker, 2005). 

Lastly, to obtain the calibrated forecast fτ, the following equation is used: 

 
' .f f     (13) 

In Eq. (13), the estimated error quantiles and the ensemble mean are added to form a calibrated 

discrete quantile relationship for a particular forecast lead time and thus generate an ensemble 

streamflow forecast. 

 

3.4 Forecast experiments and verification 



 
 

The verification analysis is carried out using the Ensemble Verification System (Brown et 

al., 2010). For the verification, the following metrics are considered: relative mean error (RME), 

Brier skill score (BSS), mean continuous ranked probability skill score (CRPSS), and the 

decomposed components of the CRPS (Hersbach, 2000), i.e., the CRPS reliability (CRPSrel) and 

CRPS potential (CRPSpot). The definition of each of these metrics is provided in the appendix. 

Additional details about the verification metrics can be found elsewhere (Wilks, 2011;Jolliffe 

and Stephenson, 2012). Confidence intervals for the verification metrics are determined using the 

stationary block bootstrap technique (Politis and Romano, 1994), as done by Siddique et al. 

(2015). The verification is focused on flood events by choosing flow amounts greater than that 

implied by a non-exceedance probability, in the sampled climatological probability distribution, 

of ~0.95. Thus, hereafter the term floods is used instead of streamflow to denote the forecasts 

generated by HL-RDHM. All the forecast verifications are done for lead times from 1 to 7 days. 

To verify the forecasts for the period 2004-2012, six different forecasting scenarios are 

considered (Table 2). The first (S1) and second (S2) scenarios verify the raw and preprocessed 

ensemble precipitation forecasts, respectively. Scenarios 3 (S3), 4 (S4) and 5 (S5) verify the raw, 

preprocessed, and postprocessed ensemble flood forecasts, respectively. The last scenario, S6, 

verifies the combined preprocessed and postprocessed ensemble flood forecasts. In S1 and S2, 

the raw and preprocessed ensemble precipitation forecasts are verified against the MPEs. For the 

verification of S1 and S2, each grid cell is treated as a separate verification unit. Thus, for a 

particular basin, the average performance is obtained by averaging the verification results from 

different verification units. The flood forecast scenarios, S3-S6, are verified against daily 

streamflow observations from the USGS. The quality of the flood forecasts is evaluated 

conditionally upon forecast lead time, season (cool and warm), and flow threshold.  

 

4. Results and discussion 

This section is divided into four subsections. The first subsection demonstrates the 

performance of the spatially distributed model, HL-RDHM. The second subsection describes the 

performance of the raw and preprocessed GEFSRv2 ensemble precipitation forecasts 

(forecasting scenarios S1 and S2). In the third subsection, the two statistical postprocessing 

techniques are compared. Lastly, the verification of different ensemble flood forecasting 

scenarios is shown in the fourth subsection (forecasting scenarios S3-S6).  

 

4.1 Performance of the distributed hydrological model 

To assess the performance of HL-RDHM, the model is used to generate streamflow 

simulations which are verified against daily observed flows, covering the entire period of 

analysis (years 2004-2012).  Note that the simulated flows are obtained by forcing HL-RDHM 

with gridded precipitation and near surface temperature observations. The verification is done for 

the four basin outlets shown in Fig. 1. To perform the verification and assess the quality of the 

streamflow simulations, the following statistical measures of performance are employed: 

modified correlation coefficient, Rm; Nash-Sutcliffe efficiency, NSE; and percent bias, PB. The 

mathematical definition of these metrics is provided in the appendix. The verification is done for 

both uncalibrated and calibrated simulation runs for the entire period of analysis. The main 

results from the verification of the streamflow simulations are summarized in Fig. 2. 

The performance of the calibrated simulation runs is satisfactory, with Rm values ranging 

from ~0.75 to 0.85 (Fig. 2a). Likewise, the NSE, which is sensitive to both the correlation and 

bias, ranges from ~0.69 to 0.82 for the calibrated runs (Fig. 2b), while the PB ranges from ~5 to -



 
 

11% (Fig. 2c). Relative to the uncalibrated runs, the Rm, NSE, and PB values improve by ~18, 

29, and 47%, respectively. Further, the performance of the calibrated simulation runs is similar 

across the four selected basins, although the largest size basin, WVYN6 (Fig. 2), seems to 

slightly outperform the other basins with Rm, NSE, and PB values of 0.85, 0.82, and -3% (Fig. 

2), respectively. The lowest performance is seen in CNON6 with Rm, NSE, and PB values of 

0.75, 0.7, and -11% (Fig. 2), respectively. Nonetheless, the performance metrics for both the 

uncalibrated and calibrated simulation runs do not deviate widely from each other in the selected 

basins, with perhaps the only exception being PB (Fig. 2c).  

As part of the calibration process, we adjusted 10 out the 17 SAC-HT parameters associated 

with each model grid cell. Note that we adjusted the parameter fields rather than the actual 

parameter values. The adjusted parameters were associated with baseflow, percolation, 

evaporation, storm runoff, and the channel routing process. The most sensitive parameters were 

found to be the lower zone supplemental withdrawal rate (LZSK), upper zone free water 

maximum storage (UZFWM), and the channel routing parameters. In addition, the performance 

of the model was lower during the cool season. By comparing the performance of individual 

hydrographs during the cool season, it was observed that high flow events are consistently 

underestimated with the a-priori parameter set. To improve this, the SNOW-17 parameters were 

also adjusted. The adjusted SNOW-17 parameters included the maximum negative melt factor 

(NMF), temperature threshold that separates rain from snow (PXTMP), and the snow fall 

correction factor (SCF). Adjusting these parameters improve the performance some but, in the 

future, snow data when available could be used to directly assess the modeling of the snow 

dynamics. Nonetheless, the performance of the HL-RDHM at the selected outlet locations is 

reasonably good. 

 

4.2 Verification of the raw and preprocessed ensemble precipitation forecasts 

To examine the skill of both the raw and preprocessed GEFSRv2 ensemble precipitation 

forecasts, we plot in Fig. 3 the CRPSS (relative to sampled climatology) as a function of the 

forecast lead time (day 1 to 7) and season for the selected basins. Two seasons are considered: 

cool (October-March) and warm (April-September). Note that a CRPSS value of zero means no 

skill (i.e., same skill as the reference system) and a value of one indicates maximum skill. The 

CRPSS is computed using 6 hourly precipitation accumulations and high precipitation events. 

High precipitation events are here defined by an amount greater than that implied by a non-

exceedance probability, in the sampled climatological probability distribution, of ~0.95. 

The skill of both the raw and preprocessed ensemble precipitation forecasts tends to decline 

with increasing forecast lead time (Fig. 3). In the warm season (Figs. 3a-d), the CRPSS values 

vary overall, across all the basins, in the range from ~0 to 0.4 and from ~-0.2 to 0.3 for the 

preprocessed and raw forecasts, respectively; while in the cool season (Figs. 3e-h) the CRPSS 

values vary overall in the range from ~0.1 to 0.6 and from 0 to 0.5 for the preprocessed and raw 

forecasts, respectively. The skill of the preprocessed ensemble precipitation forecasts tends to be 

greater than the raw ones across basins, seasons, and forecast lead times. Comparing the raw and 

preprocessed forecasts against each other, the relative skill gains from preprocessing are 

somewhat more apparent in the medium-range lead times (>3 days) and warm season. That is, 

the differences in skill seem not as significant in the short-range lead times (≤3 days). This seems 

particularly the case in the cool season where the confidence intervals for the raw and 

preprocessed forecasts tend to overlap.   



 
 

Indeed, seasonal skill variations are noticeable in all the basins. Even though the relative gain 

in skill from preprocessing is slightly greater in the warm season, the overall skill of both the raw 

and preprocessed forecasts is better in the cool season than the warm one. This may be due, 

among other potential factors, to the greater uncertainty associated with modeling convective 

precipitation, which is more prevalent in the warm season, by the NWP model used to generate 

the GEFSRv2 outputs (Hamill et al., 2013; Baxter et al., 2014). Nonetheless, the warm season 

preprocessed forecasts show gains in skill across all the lead times and basins. For a particular 

season, the forecast ensembles across the different basins tend to display similar performance; 

i.e. the analysis does not reflect skill sensitivity to the basin size as in other studies (Siddique et 

al., 2015; Sharma et al., 2017). This is expected here since the verification is performed for each 

GEFSRv2 grid cell, rather than verifying the average for the entire basin. That is, the results in 

Fig. 3 are for the average skill performance obtained from verifying each individual grid cell 

within the selected basins.  

Based on the results presented in Fig. 3, we may expect some skill contribution to the flood 

ensembles from forcing the HL-RDHM with the preprocessed precipitation, as opposed to using 

the raw forecast forcing. Although the contribution may not be as large, since the differences 

between the preprocessed and raw precipitation forecasts are only mild. It may also be expected 

that the contributions are greater for the medium-range lead times and warm season. This will be 

examined in subsection 4.4, prior to that we compare next the two postprocessors, namely 

ARX(1,1) and QR. 

 

4.3 Selection of the flood postprocessor 

The ability of the ARX(1,1) and QR postprocessors to improve ensemble flood forecasts is 

investigated here. The postprocessors are applied to the raw flood ensembles at each forecast 

lead time from day 1 to 7. To examine the skill of the postprocessed flood forecasts, Fig. 4 

displays the CRPSS (relative to the raw ensemble flood forecasts) versus the forecast lead time 

for all the selected basins, for both cool (Fig. 4a-d) and warm (Fig. 4e-h) seasons. The overall 

tendency is for both postprocessing techniques to demonstrate improved forecast skill across all 

the basins, seasons, and most of the lead times. The skill can improve as much as 40% at the later 

lead times (Fig. 4b). The general trend in Fig. 4 is for the skill of the postprocessors to increase 

with increasing lead time. Note that this is the case since the skill is here measured relative to the 

raw flood forecasts which is done to better isolate the effect of the postprocessors on the flood 

forecasts. This means that the postprocessors are more able to improve the medium-range (>3 

days) forecasts than the short-range (≤3 days) ones. 

The gains in skill from QR vary from ~5% (Fig. 4a at the day 1 lead time) to 40% (Fig. 4b at 

the day 5 lead time) depending upon the season and lead time. While the gains from ARX(1,1) 

vary from ~4% (Fig. 4e at the day 1 lead time) to a much lower level of ~22% (Fig. 4c at the day 

2 lead time). In most cases, both postprocessors exhibit somewhat similar performance at the 

initial lead times (days 1-2), with skills varying from nearly 0.1 (e.g., Figs. 4a and 4e) to 0.4 (Fig. 

4f at the day 2 lead time). At the later lead times (4-7 days), QR tends to outperform ARX(1,1), 

with the difference in performance being as high as 30% (Fig. 4d at the day 7 lead time). This is 

noticeable across all the basins and for both seasons. The skill improvement of QR over 

ARX(1,1) is significant at later lead times (> day 3), as indicated by the fact that the confidence 

intervals for the curves representing the postprocessors in Fig. 4 often do not overlap. There are 

also seasonal differences in the performance of the postprocessors. In particular, the gains in skill 

from ARX(1,1) in the warm season can be quite low (Figs. 4a and 4c).  



 
 

As discussed and demonstrated in Fig. 4, QR performs better than ARX(1,1). Indeed, we also 

found (plots not shown) that QR displays better reliability than ARX(1,1) across lead times, 

basins, and seasons. Therefore, we select QR as the statistical flood postprocessor to examine the 

interplay between preprocessing and postprocessing in the RHEPS.   

  

4.4 Verification of the ensemble flood forecasts for different statistical processing scenarios 

In this subsection, we examine the effects of different statistical processing scenarios on the 

ensemble flood forecasts from the RHEPS. Recall that, to consider flood events, the verification 

is done for flow events with an amount greater than that implied by a non-exceedance 

probability, in the sampled climatological probability distribution, of ~0.95. The forecasting 

scenarios considered here are S3-S6 (Table 1 defines the scenarios). To facilitate presenting the 

verification results, this subsection is divided into the following four parts: relative mean error, 

CRPSS, CRPS decomposition, and BSS. 

 

4.4.1 Relative mean error  

To examine the bias associated with the mean ensemble flood forecasts under scenarios S3-

S6, we plot the RME versus the forecast lead time for all the basins (Fig. 5), and the warm (Fig. 

5a-d) and cool seasons (Fig. 5e-h). Results in Fig. 5 show that, under all the considered 

scenarios, the mean ensemble flood forecasts exhibit underforecasting bias across basins, lead 

times, and seasons. The underforecasting bias increases with the lead time, and decreases 

somewhat with the increase in basin size. For example, the bias for the largest basin, WVYN6, is 

-0.1 at the day 1 lead time and scenario S3 (Fig. 5d), while for the same lead time and scenario 

the bias is -0.35 for the smallest basin (Fig. 5a). In essence, the GEFSRv2-based flood ensembles 

exhibit a conditional bias that is consistent with the conditional bias (i.e., to significantly 

underforecast large events) for the GEFSRv2 precipitation ensembles (Siddique et al., 2015; 

Sharma et al., 2017). 

The two most striking features of Fig. 5 are: i) the significant difference in performance 

between the pair S3-S4 and S5-S6 and, in contrast, ii) the similarity in performance between S5 

and S6. The former confirms that statistical processing, in particular postprocessing, has a 

significant effect on the flood ensembles. Recall that to generate the ensemble flood forecasts S5 

only employs postprocessing, while S6 considers both preprocessing and postprocessing (Table 

1). Yet, the RME across basins, lead times, and seasons for both S5 and S6 are quite similar, 

with differences tending to be not as significant. The similarity between S5 and S6 indicates that 

in this case preprocessing has a mild effect on the flood forecasts.  

As a corollary to the latter comment, it can be argued that by only postprocessing the raw 

flood ensembles most of the benefits from statistical processing can be realized. This seems also 

supported by the results for S3 and S4 (Fig. 5). The differences between the RME of the flood 

forecasts generated by forcing the HL-RDHM with raw, S3, versus preprocessed precipitation 

ensembles, S4, are only significant at lead times greater than 4 days. In addition, the differences 

are not as large, with the largest one being ~-0.18 at the day 5 lead time in CNON6 (Fig. 5b). 

This is not entirely surprising as we previously saw (Fig. 3) that differences between the raw and 

preprocessed precipitation ensembles are only significant at the later lead times where the skill of 

the forecast is, in any case, already somewhat low. In terms of the seasonal analysis, both S5 and 

S6 tend to be less biased in the cool season than in the warm one, particularly at the short-range 

lead times (<3 days). This can be seen by comparing Fig. 4c against Fig. 4g at the day 1 lead 



 
 

time. The role played by preprocessing and postprocessing in ensemble flood forecasting is 

further evaluated next in terms of the forecast skill.  

 

4.4.2 CRPSS 

The skill of the ensemble flood forecasts for S3-S6 is assessed using the CRPSS relative to 

the sampled climatology (Fig. 6). Fig. 6 shows that, across lead times, basin sizes, and seasons, 

the results for the CRPPS are qualitatively similar to those for the RME (Fig. 5). That is, the 

most salient feature of Fig. 6 is that the performance of the flood forecasts tends to progressively 

improve from S3 to S6. This means that the forecast skill tends to improve across lead times, 

basin sizes, and seasons as additional statistical processing steps are included in the RHEPS’ 

forecasting chain. The skill first increases from the raw scenario (i.e., S3 where no statistical 

processing is done) to the scenario where only preprocessing is performed, S4. However, the 

gain in skill between S3 and S4 is generally small, particularly at the short lead times, reinforcing 

the fact that preprocessing may have little effect on the flood forecasts. The skill then shows a 

more significant improvement for both S5 and S6, relative to S4. As was the case with the RME, 

the differences in skill between S5 and S6 are not as significant, suggesting that postprocessing 

alone (i.e., without preprocessing) may be sufficient to remove systematic biases in the flood 

forecasts. 

In terms of the warm and cool seasons, at the initial forecast lead times (≤ 2 days), the skill of 

the flood forecasts tends to be slightly greater in the cool season (Figs. 6e-h) than in the warm 

one (Figs. 6a-d), with the exception of CNON6. As was the case in the calibration results (e.g., in 

Fig. 2c), during the cool season CNON6 has a lower performance prior to postprocessing (S3 or 

S4 in Fig. 6f) than the other basins. Interestingly, after postprocessing (S5 in Fig. 6f), the skill of 

CNON6 is as good as that of CINN6, even though at the day 1 lead time the skill for S3 is ~0.3 

for CNON6 (Fig. 6f) and ~0.5 for CINN6 (Fig. 6e). Hence, the postprocessor seems capable to 

compensate some for the lesser performance of CNON6 during calibration. 

 

 4.4.3 CRPS decomposition 

Fig. 7 displays different components of the mean CRPS against lead times of 1, 3, and 7 days 

for all the basins according to both the warm (Figs. 7a-d) and cool (Figs. 7e-h) seasons. The 

components presented here are reliability (CRPSrel) and potential CRPS (CRPSpot) (Hersbach, 

2000). CRPSrel measures the average reliability of the ensemble forecasts across all the possible 

events, i.e., it examines whether the fraction of observations that fall below the j-th of n ranked 

ensemble members is equal to j/n on average. CRPSpot represents the lowest possible CRPS that 

could be obtained if the forecasts were made perfectly reliable (i.e., CRPSrel=0). Note that the 

CRPS, CRPSrel, and CRPSpot are all negatively oriented, with perfect score of zero. Overall, as 

was the case with the RME (Fig. 5) and CRPSS (Fig. 6), the CRPS decomposition reveals that 

forecasts reliability increases from S3 to S6. 

Interestingly, improvements in forecast quality for S5 and S6, relative to the raw flood 

forecasts of S3, are mainly due to reductions in CRPSrel (i.e., by making the forecasts more 

reliable), whereas for S4 better forecast quality is achieved by reductions in CRPSpot. The latter 

is seen across all basins, lead times, and seasons. The explanation for this lies in the 

implementation of the HCLR preprocessor, which uses the ensemble spread as a predictor of the 

dispersion of the predictive pdf and the CRPSpot is sensitive to the spread (Messner et al., 2014a). 

Although the forecasts from S3 have lower CRPSpot, the forecasts including postprocessing, S5 



 
 

and S6, ultimately result in lower CRPS. This indicates that the forecasts for S5 and S6 are more 

reliable than for S3 and S4. 

 

4.4.4 BSS 

In our final verification comparison, the BSS of the ensemble flood forecasts for S5 (Figs. 

8a-d) and S6 (Figs. 8e-h) are plotted against the non-exceedance probability associated with 

different flood thresholds ranging from 0.95 to 0.99. The BSS is computed for all the basins, 

warm season, and lead times of 1, 3 and 7 days. In addition, the BSS is computed relative to both 

observed (solid lines in Fig. 8) and simulated (dashed lines in Fig. 8) floods. When the BSS is 

computed relative to observed floods, it considers the effect on forecast skill of both 

meteorological and hydrological uncertainties. While the BSS relative to simulated floods is 

mainly affected by meteorological uncertainties. The difference between the two, i.e., the BSS 

relative to observed floods minus the BSS relative to simulated ones, provides an estimate of the 

effect of hydrological uncertainties on the skill of the flood forecasts. Similar to the CRPSS, the 

BSS value of zero means no skill (i.e., same skill as the reference system) and a value of one 

indicates perfect skill.  

In general, the skill of flood forecasts tends to decrease with lead time across the flow 

thresholds and basins. As was the case with the CRPSS (Fig. 6), the BSS values appear similar 

for S5 (Figs. 8a-d) and S6 (Figs. 8e-h). The only exception is CKLN6 (Figs. 8c and 8g) where, at 

the higher flood thresholds, S6 has better skill than S5 at the day 1 and 3 lead times. With respect 

to the basin size, the skill tends to improve some from the small to the large basin. For instance, 

for non-exceedance probabilities of 0.95 and 0.99 at the day 1 lead time, the BSS values for the 

smallest basin (Fig. 8a), measured relative to the observed flows, are ~0.49 and 0.35, 

respectively. For the same conditions, both values increase to ~0.65 for the largest basin (Fig. 

8d). 

Indeed, the most notable feature in Fig. 8 is that the effect of hydrological uncertainties on 

forecast skill is evident at the day 1 lead time, while meteorological uncertainties clearly 

dominate at the day 7 lead time. With respect to the latter, notice that the solid and dashed green 

lines for the day 7 lead time tend to be very close to each other in Fig. 8, indicating that 

hydrological uncertainties are relatively small compared to meteorological ones. Hydrological 

uncertainties are largest at the day 1 lead time, particularly for the small basins (Figs. 8a-b and 

8e-f). For example, for a non-exceedance probability of 0.95 and at a day 1 lead time (Fig. 8b), 

the BSS value relative to the simulated and observed floods are ~0.79 and 0.38, respectively, 

suggesting a reduction of ~50% skill due to hydrological uncertainties.  

 

5. Summary and conclusion 

In this study, we used the RHEPS to investigate the effect of statistical processing on short- 

to medium-range ensemble flood forecasts. First, we assessed the raw precipitation forecasts 

from the GEFSRv2 (S1), and compared them with the preprocessed precipitation ensembles 

(S2). Then, flood ensembles were generated with the RHEPS for four different forecasting 

scenarios involving no statistical processing (S3), preprocessing alone (S4), postprocessing alone 

(S5), and both preprocessing and postprocessing (S6). The verification of ensemble precipitation 

and flood forecasts was done for the years 2004-2012, using four basins in the U.S. MAR. We 

found that – for the models, datasets, and study domain used here - the skill gains from joint 

preprocessing and postprocessing are similar to those from postprocessing alone. Other specific 

findings are as follows: 



 
 

 The HCLR preprocessed ensemble precipitation forecasts show improved skill relative to the 

raw forecasts. The improvements are more noticeable in the warm season at the longer lead 

times (>3 days). 

 Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw ensemble 

flood forecasts. For the medium-range lead times (>3 days), the gains with QR, however, 

tend to be greater than with ARX(1,1), particularly during the warm season. 

 By comparing different statistical processing scenarios for the ensemble flood forecasts, it 

was found that the scenario with preprocessing alone has little effect on improving the skill 

of the flood forecasts in contrast with the postprocessing alone scenario.  

 The scenario including only postprocessing performs similar, in terms of the relative mean 

error, CRPSS, and reliability, to the more complex scenario consisting of both preprocessing 

and postprocessing. It thus seems for our conditions, using GEFSRv2 forecasts, that 

preprocessing may be unnecessary.  

 The skill of the postprocessing alone scenario and the scenario that combines preprocessing 

and postprocessing was further assessed using the Brier skill score for different flood 

thresholds. This assessment further confirmed that both scenarios have similar skill and 

performance behavior. 

These conclusions are specific to the RHEPS forecasting system, which is mostly relevant to 

the U.S. research and operational communities as it relies on a weather and a hydrological model 

that are used in this domain. However, the use of a global weather forecasting system illustrates 

the potential of applying the statistical techniques tested here in other regions worldwide.  

The emphasis of this study has been on benchmarking the contributions of statistical 

processing to the RHEPS. To accomplish this, our approach required that the quality of ensemble 

flood forecasts be verified over multiple years (i.e., across many flood cases) to obtain robust 

verification statistics. Future research, however, could be focused on studying how distinct 

hydrological processes contribute or constrain forecast quality. This effort could be centered 

around specific flood events rather than in the statistical, many-cases approach taken here. To 

further assess the relative importance of the various components of the RHEPS, additional tests 

involving the uncertainty to initial hydrologic conditions and hydrological parameters could be 

performed. For instance, the combined use of data assimilation and postprocessing has been 

shown to produce more reliable and sharper streamflow forecasts (Bourgin et al., 2014). The 

potential for the interaction of preprocessing and postprocessing with data assimilation to 

significantly enhance streamflow predictions, however, has not been investigated. This could be 

investigated in the future with the RHEPS, as the pairing of data assimilation with preprocessing 

and postprocessing could facilitate translating the improvements in the preprocessed 

meteorological forcing down the hydrological forecasting chain.  

 

Data availability: Daily streamflow observation data for the selected forecast stations can be 

obtained from the USGS website (https://waterdata.usgs.gov/nwis/). Multisensor precipitation 

estimates are obtained from the NOAA’s Middle Atlantic River Forecast Center. Precipitation 

and temperature forecast datasets can be obtained from the NOAA Earth System Research 

Laboratory website (https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html). 

 

Appendix A: Verification metrics 
Modified correlation coefficient (Rm): 

https://waterdata.usgs.gov/nwis/
https://www.esrl.noaa.gov/psd/forecasts/reforecast2/download.html


 
 

McCuen and Snyder (1975) developed a modified version of the correlation coefficient to 

compare event specific observed and simulated hydrographs. In the modified version, an 

adjustment factor based on the ratio of the observed and simulated flow is introduced to refine 

the conventional correlation coefficient R. The modified correlation coefficient Rm is defined as: 
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where s  and q  denote the standard deviation of the simulated and observed flows, 

respectively. 

 

Percent bias (PB): 

PB measures the average tendency of the simulated flows to be larger or smaller than their 

observed counterparts. Its optimal value is 0.0 where positive values indicate model 

overestimation bias, and negative values indicate model underestimation bias. The PB is 

estimated as follows: 
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where si and qi denote the simulated and observed flow, respectively, at time i.  

 

Nash-Sutcliffe efficiency (NSE): 

The NSE (Nash and Sutcliffe, 1970) is defined as the ratio of the residual variance to the 

initial variance. It is widely used to indicate how well the simulated flows fit the observations. 

The range of NSE can vary between negative infinity to 1.0, with 1.0 representing the optimal 

value and values should be larger than 0.0 to indicate minimally acceptable performance.  The 

NSE is computed as follows:  
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where si, qi, and iq  are the simulated, observed, and mean observed flow, respectively, at time i.   

 

Relative mean error (RME):  

RME quantifies the average error between the ensemble mean forecast and their 

corresponding observation as a fraction of the averaged observed value. RME gives an indication 

how good the forecast is relative to the observation. RME is expressed as follows: 
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where ,1
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
  , m is the number of ensemble members, ,i kf  is the forecast for member 

k  and time i , qi denotes the corresponding observation at time i, and n denotes the total number 

of pairs of forecasts and observed values. 

 

Brier Skill Score (BSS): 



 
 

The Brier score (BS; Brier, 1950) is analogous to the mean squared error, but where the 

forecast is a probability and the observation is either a 0.0 or 1.0 (Brown and Seo 2010). The BS 

is given by 

 2

1

1
BS [ ( ) ( )] ,

i i

n

f q

i

F z F z
n 

    (A5) 

where the probability of fi to exceed a fixed threshold z is  

 r( ) P [ ],
if iF z f z      (A6) 

n is again the total number of forecast-observation pairs, and 

 
1,  ;

( )
0,  otherwise.i

i
q

q z
F z






   (A7) 

In order to compare the skill score of the main forecast system with respect to the reference 

forecast, it is convenient to define the Brier Skill Score (BSS): 

 main

reference

BS
BSS 1 ,

BS
    (A8) 

where BSmain and BSreference are the BS values for the main forecast system (i.e. the system to be 

evaluated) and reference forecast system, respectively. Any positive values of the BSS, from 0 to 

1, indicate that the main forecast system performs better than the reference forecast system. 

Thus, a BSS of 0 indicates no skill and a BSS of 1 indicates perfect skill. 

   

Mean Continuous Ranked Probability Skill Score (CRPSS): 

Continuous Ranked Probability Score (CRPS), which is  less sensitive to sampling 

uncertainty, is used to measure the integrated square difference between the cumulative 

distribution function (cdf) of a forecast, ( )fF z , and the corresponding cdf of the observation, 

( )qF z . The CRPS is given by  

 
2

CRPS ( ) ( ) .f qF z F z dz





      (A9) 

To evaluate the skill of the main forecast system relative to the reference forecast system, the 

associated skill score, the mean Continuous Ranked Probability Skill Score (CRPSS), is defined 

as: 

 main

reference

CRPS
CRPSS 1 ,

CRPS
   (A10) 

where the CRPS is averaged across n pairs of forecasts and observations to calculate the mean 

CRPS of the main forecast system ( mainCRPS ) and reference forecast system ( referenceCRPS ). The 

CRPSS ranges from -∞ to 1, with negative scores indicating that the system to be evaluated has 

worse CRPS than the reference forecast system, while positive scores indicate a higher skill for 

the main forecast system relative to the reference forecast system, with 1 indicating perfect skill. 

In addition, to further explore the effect of postprocessing on forecast skill, we separate the 

mainCRPS  into different components according to the procedure developed by Hersbach (2000). 

Specifically, we consider the CRPS reliability (CRPSrel) and potential (CRPSpot) such that 

 main rel potCRPS CRPS +CRPS .  (A11) 

The CRPSrel measures the ability of the precipitation ensembles to generate cumulative 

distributions that have, on average, the correct or desired statistical properties. The reliability is 



 
 

closely connected to the rank histogram, which shows whether the frequency that the verifying 

analysis was found in a given bin is equal for all bins (Hersbach 2000). The CRPSpot measures 

the CRPS that one would obtain for a perfect reliable system. It is sensitive to the average spread 

of the ensemble and outliers. For instance, the narrower the spread of the ensemble is, the 

smaller the CRPSpot becomes. As indicated by Hersbach (2000), provided a certain degree of 

unpredictability, a balance between the ensemble spread and the statistics of outliers will result 

in the optimal value of the CRPSpot. 
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Table 1. Main characteristics of the four study basins. 

*
The number in parenthesis is the historical (based on entire available record, as opposed to the 

period 2004-2012 used in this study) daily minimum, maximum, or mean recorded flow. 
**

Pr=0.95 indicates flows with exceedance probability of 0.05.  

Location of outlet Cincinnatus, 

New York 

Chenango Forks, 

New York 

Conklin, New 

York 

Waverly, New 

York 

NWS id CINN6 CNON6 CKLN6 WVYN6 

USGS id 01510000 01512500 01503000 01515000 

Area [km
2
] 381 3841 5781 12362 

Latitude 42
0
32’28” 42

0
13’05” 42

0
02’07” 41

0
59’05” 

Longitude 75
0
53’59” 75

0
50’54” 75

0
48’11” 76

0
30’04” 

Minimum daily flow
*
 

[m
3
/s] 

0.31 

(0.11) 

4.05 

(2.49) 

6.80 

(5.32) 

13.08 

(6.71) 

Maximum daily flow
*
 

[m
3
/s] 

172.73 

(273.54) 

1248.77 

(1401.68) 

2041.64 

(2174.734) 

4417.42 

(4417.42) 

Mean daily flow
*
 [m

3
/s] 8.89 

(9.17) 

82.36 

(81.66) 

122.93 

(121.99) 

277.35 

(215.01) 

Climatological flow 

(Pr=0.95)
**

 [m
3
/s] 

29.45 266.18 382.28       843.84 



 
 

Table 2. Summary and description of the verification scenarios. 

Scenario Description 

S1 Verification of the raw ensemble precipitation forecasts from the GEFSRv2 

S2 Verification of the preprocessed ensemble precipitation forecasts from the 

GEFSRv2: GEFSRv2+HCLR 

S3 Verification of the raw ensemble flood forecasts: GEFSRv2+HL-RDHM 

S4 Verification of the preprocessed ensemble flood forecasts: GEFSRv2+HCLR+HL-

RDHM 

S5 Verification of the postprocessed ensemble flood forecasts: GEFSRv2+HL-

RDHM+QR 

S6 Verification of the preprocessed and postprocessed ensemble flood forecasts: 

GEFSRv2+HCLR+HL-RDHM+QR 

 

  

 

  



 
 

 
Figure 1. Map illustrating the location of the four selected river basins in the U.S. middle 

Atlantic region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 
Figure 2. Performance statistics for the uncalibrated and calibrated simulation runs for the entire 

period of analysis (years 2004-2012): (a) Rm, (b) NSE, and (c) PB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

Figure 3. CRPSS (relative to sampled climatology) of the raw (red curves) and preprocessed 

(blue curves) ensemble precipitation forecasts from the GEFSRv2 vs the forecast lead time 

during the (a)-(d) warm (April-September) and (e)-(h) cool season (October-March) for the 

selected basins.  

 

 

 

 

 

 

 

 



 
 

 
Figure 4. CRPSS (relative to the raw forecasts) of the ARX(1,1) (red curves) and QR (blue 

curves) postprocessed ensemble flood forecasts vs the forecast lead time during the (a)-(d) warm 

(April-September) and (e)-(h) cool season (October-March) for the selected basins.  

 

 



 
 

 
 

Figure 5. Relative mean error (RME) of the mean ensemble flood forecasts vs the forecast lead 

time during the (a)-(d) warm (April-September) and (e)-(h) cool season (October-March) for the 

selected basins. The curves represent the different forecasting scenarios S3-S6. Note that S3 

consists of GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of GEFSRv2+HL-

RDHM+QR, and S6 of GEFSRv2+HCLR+HL-RDHM+QR. 



 
 

 
Figure 6. As in Fig. 5, but for the CRPSS (relative to sampled climatology) of the ensemble flood 

forecasts vs the forecast lead time. 

 



 
 

 
Figure 7. Decomposition of the CRPS into CRPS potential (CRPSpot) and CRPS reliability 

(CRPSrel) for forecasts lead times of 1, 3, and 7 days during the warm (a)-(d) (April-September) 

and cool season (e)-(h) (October-March) for the selected basins. The four columns associated 

with each forecast lead time represent the forecasting scenarios S3-S6 (from left to right). Note 

that S3 consists of GEFSRv2+HL-RDHM, S4 of GEFSRv2+HCLR+HL-RDHM, S5 of 

GEFSRv2+HL-RDHM+QR, and S6 of GEFSRv2+HCLR+HL-RDHM+QR. 



 
 

 
Figure 8. Brier skill score (BSS) of the mean ensemble flood forecasts for S5 (a-d) and S6 (e-h) 

vs the flood threshold for forecast lead times of 1, 3, and 7 days during the warm (April-

September) season for the selected basins. The BSS is shown relative to both observed (solid 

lines) and simulated floods (dashed lines). 

 



 
 

Chapter 7: Hydrological Model Diversity Enhances 

Streamflow Forecast Skill More than the Ensemble Size at 

Short- to Medium-Range Timescales 
 

ABSTRACT 

We investigate the ability of hydrological multimodel ensemble predictions to enhance 

the skill of streamflow forecasts at short- to medium-range timescales. To generate the 

multimodel ensembles, we implement a new statistical postprocessor, namely quantile 

regression-Bayesian model averaging (QR-BMA). QR-BMA uses QR to bias correct the 

ensemble streamflow forecasts from the individual models and BMA to optimally combine their 

probability density functions. Additionally, we use an information-theoretic measure, namely 

conditional mutual information, to quantify the skill enhancements from the multimodel 

forecasts. We generate ensemble streamflow forecasts at lead times from 1 to 7 days using three 

hydrological models: i) Antecedent Precipitation Index (API)-Continuous, ii) Hydrology 

Laboratory-Research Distributed Hydrologic Model (HL-RDHM), and iii) Weather Research 

and Forecasting Hydrological (WRF-Hydro) modeling system. As forcing to the hydrological 

models, we use weather ensemble forecasts from the National Centers for Environmental 

Prediction 11-member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2). The 

forecasting experiments are performed for four nested basins of the North Branch Susquehanna 

River, USA. We find that after bias-correcting the streamflow forecasts from each model their 

skill performance becomes comparable. We find that the multimodel ensemble forecasts have 

higher skill than the best single-model forecasts. Furthermore, the skill enhancements obtained 

by the multimodel ensemble forecasts are found to be dominated by model diversity, rather than 

by increased ensemble size alone. This result, obtained using conditional mutual information, 

indicates that each hydrological model contributes additional information to enhance forecast 

skill. Overall, our results highlight benefits of hydrological multimodel forecasting for improving 

streamflow predictions. 

  

1. Introduction 
Multimodel forecasting is a well-established technique in atmospheric science (Bosart, 1975; 

Gyakum, 1986; Krishnamurti, 2003; Sanders, 1973; Weisheimer et al., 2009), which consists of 

using the outputs from several models to make and improve predictions about future events 

(Fritsch et al., 2000). The motivation for multimodel forecasting is that for a complex system, 

such as the atmosphere or a river basin, comprised by multiple processes interacting nonlinearly 

and with limited observability, predictions solely based on the outputs from a single model will 

be prone to errors and biases (Fritsch et al., 2000). Indeed, early experiments comparing blended 

forecasts from different weather models against single-model predictions demonstrated the 

ability of multimodel predictions to improve the skill and reduce the errors of weather forecasts 

(Bosart, 1975; Gyakum, 1986; Sanders, 1973; Thompson, 1977; Winkler et al., 1977). This was 

found to be the case for both forecasts issued by humans (Sanders, 1963, 1973) and from 

numerical models (Bosart, 1975; Fraedrich & Leslie, 1987; Fraedrich & Smith, 1989; Fritsch et 

al., 2000; Gyakum, 1986; Krishnamurti et al., 1999, 2000; Sanders, 1973).  

Initial meteorological multimodel experiments accounted for model-related uncertainties but 

not for uncertainties in the initial states. To account for the latter, multimodel ensembles were 

introduced, where multiple ensemble members from individual models are generated for the 



 
 

same lead time and geographic area by perturbing the models’ initial states (Hamill & Colucci, 

1997; Stensrud et al., 1999; Toth & Kalnay, 1993). An illustrative example of a recent, 

successful multimodel framework is the North American Multimodel Ensemble experiment for 

subseasonal to seasonal timescales (Bastola et al., 2013; Becker et al., 2014; Kirtman et al., 

2013). Indeed, most of the established operational systems across the globe for short- to medium-

range weather forecasting are multimodel, multiphysics ensemble systems (Buizza et al., 2005; 

Du et al., 2003; Hamill et al., 2013; Palmer et al., 2004). In contrast, hydrological multimodel 

ensemble prediction systems (HMEPS) have not been widely implemented and remain an 

underexplored area of research. To our knowledge, there is currently no operational HMEPS in 

the world, despite their success in weather (Hagedorn et al., 2012; Hamill et al., 2013) and 

climate forecasting (Bastola et al., 2013; Becker et al., 2014; Kirtman et al., 2013). 

HMEPS can be classified into the following three general categories, depending on whether 

multiple weather and/or hydrological models are used: i) a single hydrological model forced by 

outputs from multiple numerical weather prediction (NWP) models (Thirel et al., 2008, 2010), ii) 

multiple hydrological models forced by outputs from a single NWP model (Randrianasolo et al., 

2010), and iii) multiple hydrological models forced by outputs from multiple NWP models 

(Velázquez et al., 2011). As is the case in meteorology, hydrological multimodel outputs can be 

deterministic or probabilistic, depending on how many and the manner in which ensembles are 

generated from each model (Davolio et al., 2008). It is important to note that, although 

hydrological multimodel approaches have been investigated before (Ajami et al., 2007; Duan et 

al., 2007; Vrugt & Robinson, 2007), the vast majority of those studies have been performed in 

simulation mode (i.e., by forcing the hydrological models with observed weather variables), as 

opposed to forecasting mode. Simulation studies may provide useful information for near-real 

time hydrological forecasting conditions. However, at medium-range timescales (≥ 3 days), 

where weather uncertainties tend to be as important or more dominant than hydrological 

uncertainties, hydrological simulations provide considerably less information about forecast 

behavior (Sharma et al., 2018; Siddique & Mejia, 2017). 

One of the earliest attempt at hydrological multimodel prediction is that of Shamseldin and 

O’Connor (1999). They combined streamflow simulations from different rainfall-runoff models 

by assigning different weights to the models based on their performance during historical runs. 

Since then, several simulation studies have been performed to address the potential of 

hydrological multimodel approaches to improve understanding and prediction of hydrological 

variables (Ajami et al., 2007; Bohn et al., 2010; Duan et al., 2007; Georgakakos et al., 2004; 

Regonda et al., 2006; Vrugt & Robinson, 2007). In hydrological forecasting, recent 

implementations of the multimodel approach have been focused on seasonal or longer timescales 

(Nohara et al., 2006; Yuan & Wood, 2013), while very few studies are available at short- to 

medium-range timescales (Hopson & Webster, 2010; Velázquez et al., 2011). Furthermore, a 

shortcoming of the latter studies has been the use of similar hydrological models to generate the 

multimodel forecasts. For example, Hopson and Webster (2010) as well as Velázquez et al. 

(2011) used similar spatially lumped or semi-distributed hydrological models for their respective 

multimodel experiments.  

To maximize the benefits from a multimodel approach, it is critical to use dissimilar models 

(Thompson, 1977), a property that is referred to as model diversity (DelSole et al., 2014). In 

hydrological science, different model types are available that could be used to fulfill model 

diversity, e.g., spatially lumped, spatially distributed, process-based, or land-surface models 

(Reed et al., 2004; Smith et al., 2012). These different types of models tend to differ markedly in 



 
 

their spatial discretization, physical parameterizations, and numerical schemes (Kollet et al., 

2017), potentially making them good candidates for multimodel forecasting. Another important 

concern with the multimodel approach is that of distinguishing whether any gains in skill from 

the multimodel are due to model diversity itself or are related to increases in the ensemble size. 

Recently, an information-theoretic measure, namely conditional mutual information (CMI), was 

proposed to address this issue in climate forecasts (DelSole et al., 2014). CMI is implemented 

here with hydrological multimodel forecasts for the first time.  

Any multimodel forecast requires some type of statistical technique (with simple averaging 

being the simplest approach (DelSole, 2007; DelSole et al., 2013)) or postprocessor (Duan et al., 

2007; Fraley et al., 2010; Raftery et al., 1997) to optimally combine the ensemble forecasts from 

the individual models. Multimodel postprocessing is typically employed to accomplish several 

objectives: i) reduce systematic biases in the outputs from each model, ii) assign each model a 

weight that measures its contribution to the final multimodel forecast, and iii) quantify the 

overall forecast uncertainty. Although a number of multimodel postprocessors have been 

developed and implemented for dealing with hydrological simulations (Duan et al., 2007; Hsu et 

al., 2009; Madadgar & Moradkhani, 2014; Najafi et al., 2011; Shamseldin et al., 1997; 

Steinschneider et al., 2015; Vrugt & Robinson, 2007; Xiong et al., 2001), few have been applied 

in a forecasting context (Hopson & Webster, 2010). In this study, we implement a new quantile 

regression-Bayesian model averaging (QR-BMA) postprocessor. The postprocessor uses QR to 

bias correct the streamflow forecasts from the individual models (Sharma et al., 2018) and BMA 

to optimally combine their probability density functions (pdfs) (Duan et al., 2007; Vrugt & 

Robinson, 2007). QR-BMA takes advantage of the proven effectiveness and simplicity of QR to 

remove systematic biases (Sharma et al., 2018) and of BMA to produce optimal weights (Duan 

et al., 2007; Liang et al., 2013). 

Our primary goal with this study is to understand the ability of hydrological multimodel 

ensemble predictions to improve the skill of streamflow forecasts at short- to medium-range 

timescales. With this goal, we seek to answer the following two main questions: Are multimodel 

ensemble streamflow forecasts more skillful than single-model forecasts? Are any skill 

improvements from the multimodel ensemble streamflow forecasts dominated by model 

diversity or increasing ensemble size? Answering the latter is relevant to operational forecasting 

because generating many ensembles in real time is often not feasible or realistic, and may not be 

as effective if skill enhancements are dominated by model diversity. The paper is structured as 

follows. Section 2 describes our methodology. Section 3 describes the experimental setup. The 

main results and their implications are presented in Section 4. Lastly, Section 5 summarizes our 

conclusions. 

 

2. Methodology 

 

2.1. Statistical Multimodel Postprocessor 

The proposed postprocessor uses QR to bias correct the ensemble forecasts from individual 

models and BMA to combine the bias-corrected forecasts. We begin by briefly revisiting the 

BMA technique. BMA generates an overall forecast pdf by taking a weighted average of the 

conditional pdfs associated with the individual model forecasts. Letting   be the forecasted 

variable, D  the training data, and 1 2[ , ,...., ]kM M M M  the independent predictions from a total 

of K hydrological models, the pdf of the BMA probabilistic prediction of   can be expressed by 

the law of total probability as 
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where  | kP M  is the posterior distribution of   given the model prediction kM , and 

 |kP M D  is the posterior probability of model kM  being the best one given the training data 

D.  |kP M D  reflects the performance of model kM  in predicting the forecast variable during 

the training period.  

The posterior model probabilities are nonnegative and add up to one (Raftery et al., 2005), 

such that 
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Thus,  |kP M D  can be viewed as the model weight, kw , reflecting an individual model’s 

relative contribution to predictive skill over the training period. The BMA pdf is therefore a 

weighted average of the conditional pdfs associated with each of the individual model forecasts, 

weighted by their posterior model probabilities. Since model predictions are time variant, letting 

t be the forecast lead time, equation (1) can be written as 
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The efficient application of BMA requires bias-correcting the ensemble forecasts from the 

individual models and optimizing their weights t

kw  (Raftery et al., 2005). We used QR to bias-

correct the forecasts. QR has several advantages as compared to the linear regression bias 

correction used in the original BMA approach (Raftery et al., 2005). It does not make any prior 

assumptions regarding the shape of the distribution and, since QR results in conditional quantiles 

rather than conditional means, QR is less sensitive to the tail behavior of the streamflow data 

and, consequently, more robust to outliers.  

To implement QR, the bias-corrected ensemble forecasts from each model k and forecast lead 

time t, ,

t

kf  , are determined using 

 $
,, ,

ttt

kk k
f f      (4) 

where 
t

kf  is the ensemble mean forecast of model k  at time t , and $,

t

k   is the error estimate at 

the quantile interval   defined as 
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t tt t

k k k k
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In equation (5), ,

t

ka   and ,

t

kb   are the regression parameters for model k and quantile interval   at 

time t. The parameters associated with each model are determined separately by minimizing the 

sum of the residuals from a training dataset as follows 
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,

t

j  and 
jf  are the thj  paired samples from a total of J  samples; ,

t

j  is computed as the 

observed flow minus the forecasted one at time t ; t

  is the QR function for the th quantile at 

time t  defined as      
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and 
j

t  is the residual term computed as the difference between ,

t

j  and $, ( , )
t

j jj f  for any 

quantile  0,1  . The resulting minimization problem in equation (6) is solved using linear 

programming via the interior point method (Koenker, 2005). By varying the values of  , QR 

allows describing the entire conditional distribution of the error estimate in equation (5).  

After bias-correcting the single-model forecasts using equations (4)-(7), the posterior 

distribution of each model is assumed Gaussian. Thus, before implementing equation (3), both 

the observations and bias-corrected forecasts are transformed into standard normal deviates using 

the normal quantile transformation (NQT) (Krzysztofowicz, 1997). The NQT matches the 

empirical cumulative distribution function (cdf) of the marginal distribution to the standard 

normal distribution such that 

  1

, ( ) ,t t

k NQT kf G cdf f   (8)  

where  .cdf  is the cdf of the bias-corrected forecasts from model k  at time t , t

kf ; G is the 

standard normal distribution and 1G  its inverse; and ,

t

k NQTf  are the transformed, bias-corrected 

forecasts from model k  at time t . When applying the NQT, extrapolation is used to model the 

tails of the forecast distribution for those cases where a sampled data point in normal space falls 

outside the range of the training data maxima or minima. For the upper tail, a hyperbolic 

distribution (Journel & Huijbregts, 1978) is used while linear extrapolation is used for the lower 

tail.  

Lastly, to determine the BMA probabilistic prediction in equation (3), the weight t

kw  and 

variance 2,t

k  of model k at the forecast lead time t are estimated using the log likelihood 

function. Note that 2,t

k  is the variance associated with the Gaussian posterior distribution of 

model k. Setting the parameter vector  2,,  ,  1,  2,...,  t t

k kw k K   , the log likelihood function 

of   at the forecast lead time t is approximated as 
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where  .g denotes a Gaussian pdf, and 
t

NQT  is the forecasted variable in Gaussian space. 

Because of the high dimensionality of this problem, the log likelihood function typically cannot 

be maximized analytically. Thus, the maximum likelihood estimates of   are determined using 

the expectation maximization (EM) optimization algorithm (Bilmes, 1998). The steps required to 

implement the EM algorithm are provided in Appendix A. 

Our proposed QR-BMA approach consists of implementing equations (3)-(9). To apply QR-

BMA, we used a leave-one-out approach where part of the forecast dataset was used to train QR-

BMA and the rest to verify the multimodel ensemble forecasts. We applied QR-BMA at each 

forecast lead time t of interest for selected forecast locations. As part of our forecast experiments, 

we generated both single-model and multimodel ensemble forecasts. The single-model forecasts 

were postprocessed using QR following the same leave-one-out approach used with QR-BMA. 

 

2.2. Measures of Forecast Skill 

 



 
 

2.2.1. Conditional Mutual Information  

CMI is used as a measure of skill improvement following the approach by DelSole et al. 

(2014). The approach allows to distinguish whether multimodel skill improvements are 

dominated by model diversity (i.e., additional information provided by the different models) or 

increased ensemble size. To present the CMI measure, we first introduce three related 

information-theoretic measures: entropy, conditional entropy, and mutual information. 

In the case of a continuous random variable (e.g., the streamflow forecasts F  with pdf 

 P f , where uppercase is used to denote the random variable and lowercase its realizations), 

the amount of average information required to describe F is given by the entropy  F  defined 

as 

    ( ) ln .F P f P f df     (10) 

Entropy measures the uncertainty of F (Cover & Thomas, 1991). The entropy of a random 

variable conditional upon the knowledge of another can be defined by the conditional entropy. 

The conditional entropy between the streamflow observations O  and forecasts F  can be 

calculated using the chain rule 

    ( | ) , .O F O F F     (11) 

With equations (10)-(11), the mutual information (MI) between the streamflow observations and 

the forecasts, ( ; )MI O F , is given by (Cover & Thomas, 1991) 
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where ( , )P o f  is the joint pdf of O and F, with marginal pdfs  P o  and  P f , respectively. MI 

is an elegant and powerful measure to quantify the amount of information that one random 

variable contains about another random variable. It is nonnegative and equal to zero if and only 

if O and F are independent from each other. MI has several important benefits. It is a domain 

independent measure such that the information provided is relatively insensitive to the size of 

datasets and outliers, unaffected by systematic errors, and invariant to any nonlinear 

transformations of the variables (Cover & Thomas, 1991; Kinney & Atwal, 2014).  

In the case of multimodel combinations, where 1F  represents the single-model ensemble 

mean and 2F  represents the multimodel mean of the remaining models, the CMI between O and 

2F , conditioning out 1F , is given by 

    2 1 1 2 1; | ( ;( , )) ; ,CMI O F F MI O F F MI O F    (13)  

where the mutual information 1 2( ;( , ))MI O F F  measures the degree of dependence between the 

observation and the joint variability of the forecasts 1F and 2F . According to equation (13), CMI 

quantifies the additional decrease in uncertainty due to adding a single model forecast to the 

multimodel forecast mean of the other models. When the distributions are Gaussian, the CMI 

reduces to a simple function of partial correlation as follows (Sedghi & Jonckheere, 2014) 
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where 
2|1O  denotes the partial correlation between O  and 

2F  conditioned on 
1F . The partial 

correlation is related to the pairwise correlations by (Abdi, 2007) 
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where 1O  and 
2O  are the correlation skills of 

1F  and 
2F , respectively; and 12  is the 

correlation between 
1F  and 

2F . Hereafter the subscript 1 denotes single-model forecasts and the 

subscript 2 denotes either single-model forecasts or multimodel forecasts, depending on whether 

one is assessing the skill of single-model or multimodel forecasts. 

To further understand any skill enhancements provided by a multimodel forecast, the 

streamflow forecasts and observations can be partitioned into a conditional mean, called the 

signal variable  , and a deviation about the conditional mean, called the noise variable  . As 

shown by DelSole et al. (2014), in the case that all the ensemble members are drawn from the 

same model and the forecasts are computed with means of ensemble size 1E  and 2E , the partial 

correlation in equation (15) becomes   
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where the signal-to-noise ratio SNR is defined as the ratio of signal variance to noise variance, 

and O  is the correlation between the signal variable and streamflow observation. The partial 

correlation in equation (16) is nonzero when a predictable signal exists (i.e., 0SNR  ), forecast 

skill exists ( 0O  ), and the ensemble sizes are finite. To the extent that forecast skill exceeds 

predictability skill, 
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Equation (17) implies that an upper bound on O  results in an upper bound on the partial 

correlation in equation (16). Thus, an upper bound on the skill improvement due to adding new 

ensemble members from the same model can be estimated by combining equations (16)-(17) and  

taking the limit SNR , 
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Thus, any skill enhancement measured by equation (15) that exceeds the upper bound of 

equation (18) is dominated by the addition of new predictable signals (DelSole et al., 2014).  

We computed CMI using equations (14)-(15), together with the streamflow ensemble 

forecasts and observations. We used equation (18) to obtain an upper bound for the skill 

improvement due to increased ensemble size. Any improvements beyond this upper bound, we 

attributed to the addition of new signals or model diversity. When using equations (14)-(15) and 

(18), the subscript 1 refers to the single model forecasts F1 that one is trying to improve and the 

subscript 2 the multimodel forecasts F2 or, in the case of a single-model experiment, the addition 

of new members from the same model. CMI was computed for each individual model and 

multimodel combination at every lead time of interest for selected forecast locations. Before 



 
 

computing CMI, both the streamflow observations and forecasts were transformed into Gaussian 

space using NQT.  

Additionally, we estimated CMI in streamflow space using the approach discussed by Meyer 

(2008). The approach relies on the Miller-Madow asymptotic bias-corrected empirical estimator 

for entropy estimation (Meyer, 2008; Miller, 1955) and an equal frequency binning algorithm for 

data discretization (Meyer, 2008). This approach does not require transforming streamflow into 

Gaussian space but has the drawback that an exact upper bound, akin to equation (18), is not 

available. The CMI in streamflow space was computed using the same experimental conditions 

described before for CMI in Gaussian space.  

 

2.2.2. Continuous Ranked Probability Skill Score 

Besides using CMI to measure skill improvements, we used the mean Continuous Ranked 

Probability Skill Score (CRPSS) (Hersbach, 2000) since this is a commonly used verification 

metric to assess the quality of ensemble forecasts (Brown et al., 2014). The CRPSS is derived 

from the Continuous Ranked Probability Skill Score (CRPS). The CRPS evaluates the overall 

accuracy of a probabilistic forecast by estimating the quadratic distance between the forecasts’ 

cdf and the corresponding observations. The CRPS is defined as 
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Π(.) is the Heaviside step function.  

To evaluate the skill of the forecasting system relative to a reference system, the associated 

skill score or CRPSS is computed as 
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where the CRPS is averaged across n pairs of forecasts and observations to calculate the mean 

CRPS of the main forecast system, mCRPS , and reference forecast system, rCRPS . The CRPSS 

ranges from[ ,1] . Positive CRPSS values indicate the main forecasting system has higher skill 

than the reference forecasting system, with 1 indicating perfect skill. In this study, we used 

sampled climatology as the reference forecasting system. Similar to our implementation of CMI, 

the CRPSS was computed for both single-model and multimodel ensemble streamflow forecasts 

at each lead time of interest for selected forecast locations. Our proposed multimodel forecasting 

approach is summarized in Figure 1. 



 
 

Figure 1. Diagrammatic representation of the proposed multimodel forecasting approach. The 

approach starts with the hydrometeorological ensemble forcing. The forcing is used to drive 

different hydrological models to generate single model ensemble streamflow forecasts. The 

single model forecasts are subsequently bias-corrected, transformed to Gaussian space, and 

combined using BMA to generate multimodel ensemble streamflow forecasts. Lastly, both the 

single model and multimodel forecasts are verified using the CRPSS and CMI.  

 

3. Experimental Setup 

3.1. Study Area  

The North Branch Susquehanna River (NBSR) basin in the United States (US) Middle 

Atlantic Region (MAR) was selected as the study area (Figure 2) (Nelson, 1966). Severe weather 

and flooding hazards are an important concern in the NBSR, e.g., the City of Binghamton, New 

York, has been affected by multiple damaging flood events over recent years (Gitro et al., 2014; 



 
 

Jessup & DeGaetano, 2008). In the NBSR, four different US Geological Survey (USGS) daily 

gauge stations were selected as the forecast locations (Figure 2). The selected locations are the 

Ostelic  

River at Cincinnatus (USGS gauge 01510000), Chenango River at Chenango Forks (USGS 

gauge 01512500), Susquehanna River at Conklin (USGS gauge 01503000), and Susquehanna 

River at Waverly (USGS gauge 01515000). These forecast locations represent a system of nested 

subbasins with drainage areas ranging from ~381 to 12,362 km
2
. A summary of the main 

characteristics of the selected gauge locations is provided in Table 1. 

Figure 2. Map of the study area showing the terrain elevations, stream network, and the location 

of the selected gauged stations. The inset map shows the approximate location of the stduy area 

in the US. 

 

Table 1. Characteristics of the Selected Gauged Locations. 

 

 

3.2. Datasets 

 

3.2.1 Meteorological Forecasts 

NOAA’s latest global, medium-range ensemble reforecast dataset, the Global Ensemble 

Location of outlet Cincinnatus, 

New York 

Chenango 

Forks, New 

York 

Conklin,  

New York 

Waverly, 

 New York 

NWS id CINN6 CNON6 CKLN6 WVYN6 

USGS id 01510000 01512500 01503000 01515000 

Area [km
2
] 381 3841 5781 12362 

Outlet latitude [North] 42
0
32’28” 42

0
13’05” 42

0
02’07” 41

0
59’05” 

Outlet longitude [West] 75
0
53’59” 75

0
50’54” 75

0
48’11” 76

0
30’04” 

Minimum daily flow
a
 

[m
3 

s
-1

] 

0.31 

(0.11) 

4.05 

(2.49) 

6.80 

(5.32) 

13.08 

(6.71) 

Maximum daily flow
a
 

[m
3 

s
-1

] 

172.73 

(273.54) 

1248.77 

(1401.68) 

2041.64 

(2174.734) 

4417.42 

(4417.42) 

Mean daily flow
a
  

[m
3 

s
-1

] 

8.89 

(9.17) 

82.36 

(81.66) 

122.93 

(121.99) 

277.35 

(215.01) 
a
The number in parenthesis is the historical (based on the entire available record, as opposed to 

the period 2004-2009 used in this study) daily minimum, maximum, or mean recorded flow. 



 
 

Forecast System Reforecast version 2 (GEFSRv2; 

https://www.esrl.noaa.gov/psd/forecasts/reforecast2/), was used as the forecast forcing. The 

following GEFSRv2 variables were used: precipitation, specific humidity, surface pressure, 

downward short and long wave radiation, u-v components of wind speed, and near-surface air 

temperature. The GEFSRv2 is an 11-member ensemble forecast generated by stochastically 

perturbing the initial numerical weather prediction model conditions using the ensemble 

transform technique with rescaling (Wei et al., 2008). The GEFSRv2 data are based on the same 

atmospheric model and initial conditions as the version 9.0.1 of the NOAA’s Global Ensemble 

Forecast System, and runs at T254L42 (0.50
0
 Gaussian grid spacing or ~ 55 km) resolution up to 

day 8. The 11-member reforecasts are generated every day at 00 Coordinated Universal Time. 

The GEFSRv2 forecast cycle consists of 3-hourly accumulations for the first 3 days and 6-hourly 

accumulations after that. To generate the ensemble streamflow forecasts, we used the first 7 days 

of GEFSRv2 data for the period 2004-2009. Table 2 summarizes key information about the 

GEFSRv2 dataset. Additional details about the GEFSRv2 can be found elsewhere (Hamill et al., 

2013). 

 

Table 2. Summary and Main Characteristics of the Datasets Used in the Study. 

Dataset Source Horizontal 

Resolution 

[km
2
] 

Temporal 

Resolution [hour] 

Variables 

Meteorological forecasts 

GEFSRv2 NCEP ~55 x 55 

(0.5
0 
x 0.5

0
) 

3 (days 1-3) and 6 

(days 4-7)hourly 

accumulations 

Precipitation, near-surface 

temperature, specific 

humidity, surface pressure, 

downward short and long 

wave radiation, and u-v 

components of wind speed 

Hydrometeorological observations 

NLDAS-2 NASA ~13 x 13 

(0.125
0 
x 0.125

0
) 

Hourly Near-surface temperature, 

specific humidity, surface 

pressure, downward long and 

short wave radiation, and u-v 

components of wind speed 

MPEs MARFC ~4 x 4 Hourly Gridded precipitation 

Temperature MARFC ~4 x 4 Hourly Gridded temperature 

Gauge 

discharge 

USGS - Hourly Streamflow 

 

3.2.2. Hydrometeorological Observations 

Four main observational datasets were used: multi-sensor precipitation estimates (MPEs), 

gridded near-surface air temperature, Phase 2 of the North American Land Data Assimilation 

System (NLDAS-2; https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php), and daily streamflow. 

These observational datasets were used to calibrate and verify the hydrological models, perform 

the hydrological model simulations, and obtain initial conditions for the forecasting runs for the 

period 2004-2009. Both the MPEs and gridded near-surface air temperature data at 4 x 4 km
2
 

https://www.esrl.noaa.gov/psd/forecasts/reforecast2/
https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php


 
 

were obtained from the MARFC. Similar to the NCEP stage IV MPEs (Moore et al., 2014; Prat 

& Nelson, 2015), the MARFC MPE product combines radar estimated precipitation with in-situ 

gauge measurements to create a continuous time series of hourly, gridded precipitation 

observations. The gridded near-surface air temperature data were produced by the MARFC using 

multiple observation networks, including the meteorological terminal aviation routine weather 

report (METAR), USGS stations, and National Weather Service Cooperative Observer Program 

(Siddique & Mejia, 2017). Additionally, we used NLDAS-2 data for near-surface air 

temperature, specific humidity, surface pressure, downward long and short wave radiation, and 

u-v components of wind speed. The spatial resolution of the NLDAS-2 data is 1/8
th

-degree grid 

spacing while the temporal resolution is hourly. Further details about the NLDAS-2 data can be 

found elsewhere (Mitchell et al., 2004). To calibrate the hydrological models and verify the 

streamflow simulations and forecasts, daily streamflow observations for the selected gauged 

locations were obtained from the USGS. In total, 6 years (2004-2009) of hydrometeorological 

observations were used. Table 2 summarizes the observational datasets. 

 

3.3. Hydrological Models 

To generate the multimodel forecasts, we used the following three hydrological models: 

Antecedent Precipitation Index (API)-Continuous (Moreda et al., 2006), NOAA’s Hydrology 

Laboratory-Research Distributed Hydrologic Model (HL-RDHM) (Koren et al., 2004), and the 

Weather Research and Forecasting Hydrological (WRF-Hydro) modeling system (Gochis et al., 

2015). We selected these three hydrological models because they are relevant to operational 

forecasting in the US and represent varying levels of model structural complexity as well as 

different spatial resolutions and parameterizations. The selected models collectively represent a 

sufficiently diverse set of models favorable for multimodel forecasting. The description of each 

model and the details about the configuration, calibration, and performance of the models in 

simulation mode are provided in the supplemental information.  



 
 

The models were used to simulate and forecast flows over the entire period of analysis (years 

2004-2009, warm season only, May-October) at the selected gauge locations (Figure 1). The 

simulated flows were obtained by forcing the hydrological models with meteorological 

observations. The streamflow simulations were verified against daily observed flows for the 

entire period of analysis. Figure 3 summarizes the models’ performance in simulation mode 

using the Pearson’s correlation coefficient, R, and Nash-Sutcliffe efficiency, NSE, between the 

simulated and observed streamflows at daily resolution for the entire analysis period. The overall 

performance of the models was satisfactory (Figures 3a-b). API and HL-RDHM exhibited 

comparable performance while WRF-Hydro tended to underperform relative to API and HL-

RDHM. The performance of the models is discussed further in Section 4. 

Figure 3. Performance of the hydrological models in simulation mode over the entire period of 

analysis (2004-2009, May-October): (a) Pearson’s correlation coefficient, R, and (b) Nash-

Sutcliffe efficiency, NSE, between the daily simulated and observed flows.  

 

3.4. Ensemble Streamflow Forecasts 

To perform our forecast experiments, we generated and verified the following three different 

datasets of ensemble streamflow forecasts: i) raw single-model, ii) postprocessed single-model, 

and iii) multimodel. The raw single-model dataset consists of ensemble streamflow forecasts 

from each hydrological model without postprocessing. The postprocessed single-model dataset 

was generated by using QR to postprocess the raw ensemble streamflow forecasts from each 



 
 

hydrological model. Lastly, the multimodel dataset was generated by optimally combining the 

ensemble forecasts from the different hydrological models using QR-BMA. As part of the 

multimodel dataset, we also generated an equal weight multimodel forecast by using the same 

weight, 1/K, to combine the models rather than the optimal weights from QR-BMA. 

Additionally, for both the single-model and multimodel forecast datasets, we varied the number 

of ensemble members used (9 to 33 members) to perform different experiments. 

All the forecast datasets were verified across lead times of 1 to 7 days using 6 years of data 

(2004-2009) for the warm season only (May-October). To postprocess and verify both the single 

model and multimodel ensemble streamflow forecasts, a leave-one-out approach was 

implemented by using 4 years of forecast data to train the postprocessor and the remaining 2 

years to verify the forecasts. The subdaily streamflow forecasts generated by the hydrological 

models were averaged over 24 hours to get the mean daily flow. Six-hourly streamflow forecasts 

were generated from API and HL-RDHM, and 3-hourly forecasts from WRF-Hydro. The mean 

daily ensemble streamflow forecasts were verified against mean daily streamflow observations 

for the selected gauged locations. 

 

4. Results and Discussion 

 

4.1. CRPSS Verification of the Single-Model Forecasts 

 

4.1.1. Raw Ensemble Streamflow Forecasts 



 
 

In terms of the CRPSS (relative to sampled climatology), the raw single-model ensemble 

streamflow forecasts remain skillful across lead times (1-7 days) and basins (Figures 4a-d), with 

the exception of WRF-Hydro that has slightly negative CRPSS values at the longer lead times (6-

7 days). In Figures 4a-d, the CRPSS values tend overall to decline with increasing lead time, as 

might be expected since the weather uncertainties tend to grow and become more dominant of 

forecast skill as the lead time progresses (Siddique & Mejia, 2017). There is also a slight 

tendency for the CRPSS values to exhibit spatial scale-dependency. The CRPSS values for each 

model tend to increase from the smallest (Figure 4a) to the largest (Figure 4d) basin across lead 

times. This tendency is, however, rather weak throughout all of our forecasts and it is somewhat 

more apparent for the API and HL-RHDM forecasts than for the WRF-Hydro (Figures 4a-d). 

Figure 4. CRPSS (relative to sampled climatology) of the (a)-(d) raw and (e)-(h) QR-

postprocessed single model ensemble streamflow forecasts versus the forecast lead. The CRPSS 

are shown for the four selected basins. 

 

Across all lead times and basins (Figures 4a-d), the CRPSS values vary approximately from -

0.15 (WRF-Hydro at the day 7 lead time; Figure 4d) to 0.6 (API at the day 1 lead time; Figure 

4d). Contrasting the hydrological models, the performance of API and HL-RDHM is 

comparable, with the exception of CNON6 (Figure 4b) where API outperforms HL-RDHM. This 

is due to HL-RDHM having an unusually high percent simulation bias of -14.3 for CNON6 

relative to API whose simulation bias is -5.8. The performance of the models in forecasting 

mode tends to mimic their performance in simulation mode (Figure 3). That is, API tends to 



 
 

perform better than HL-RDHM and, in turn, both of these models tend to outperform WRF-

Hydro. Deviations from this tendency, however, do emerge. For example, WRF-Hydro has 

similar forecasting skill as HL-RDHM at the day 1 lead time in CINN6 (Figure 4a), even though 

in this basin HL-RDHM performs better than WRF-Hydro in simulation mode. Similarly, API 

performs slightly better than HL-RDHM in forecasting mode at the later lead times (>4 days) in 

CINN6 (Figure 4a) but HL-RDHM shows better performance in simulation mode. Thus, the 

results obtained here in simulation mode do not always translate to similar performance in 

forecasting mode. This is not surprising given the nonlinear relationship between hydrological 

processes and weather forcings. It reinforces the need to verify hydrological models in both 

simulation and forecasting mode to gain a more complete understanding of model behavior. 

The underperformance of WRF-Hydro, in both simulation and forecasting mode, in 

comparison to API and HL-RDHM may be due to several factors. One factor is likely to be the 

additional model complexity of WRF-Hydro. That is, WRF-Hydro requires more forcing inputs 

and parameters to be specified than the other two models. For example, in terms of forcings, HL-

RDHM requires only precipitation and near-surface air temperature to be specified, whereas 

WRF-Hydro requires 7 different forcings. It is possible that any biases in the NLDAS-2 or 

GEFSRv2 forcings used here to configure the WRF-Hydro simulations and forecasts, 

respectively, could be affecting its performance. However, we evaluated (results not shown) for 

the WRF-Hydro streamflow forecasts the effect of each individual forcing on the CRPSS values 

and found that precipitation was the most dominant forcing. At least in forecasting mode, the 

additional forcings used by WRF-Hydro do not seem to have a strong influence on its forecast 

skill. 

The determination of model parameter values for the WRF-Hydro is another factor that is 

likely affecting its performance. Although we calibrated selected WRF-Hydro parameter values, 

both manually and numerically (see supplemental information), there is generally less 

community knowledge about and experience with WRF-Hydro than API and HL-RDHM. The 

latter two have been around for much longer (e.g., Moreda et al., 2006; Koren et al., 2004; 

Anderson et al., 2006; Reed et al., 2004) than WRF-Hydro. In the future, a more in-depth 

sensitivity analysis of the WRF-Hydro model parameters could be beneficial. Nonetheless, the 

performance of WRF-Hydro in this study is comparable to those previously reported in the 

literature (Givati et al., 2016; Kerandi et al., 2017; Naabil et al., 2017; Salas et al., 2018; Silver et 

al., 2017; Yucel et al., 2015).     

 

4.1.2. Postprocessed (Single-Model) Ensemble Streamflow Forecasts 

We used QR to postprocess the raw single-model ensemble streamflow forecasts. Using the 

CRPSS (relative to sampled climatology) to assess the forecast skill (Figures 4e-h), we found that 

the postprocessed single-model ensemble streamflow forecasts show, overall, skill improvements 

relative to the raw forecasts. The relative improvements are more noticeable for the WRF-Hydro. 

For example, at WVYN6 (Figure 4d), the raw WRF-Hydro forecasts have a CRPSS value of 

~0.27 at the day 1 lead time, and that value increases to ~0.6 after postprocessing (Figure 4h).  

Interestingly, the CRPSS values for the postprocessed single-model forecasts reveal that, 

after postprocessing, the models have comparable skill across lead times and basins (Figures 4e-

h), perhaps with the exception of CNON6 (Figure 4f) where API tends to outperform the other 

models. This indicates that the streamflow forecasts are influenced by systematic biases and, in 

this case, those biases are stronger in WRF-Hydro than in the other models. Such streamflow 

forecast biases result from the combined effect of biases in the weather forcings and hydrological 



 
 

models. In regards to the former, precipitation forecasts from the GEFSRv2 are characterized by 

an underforecasting bias in our study region (Sharma et al., 2017; Siddique et al., 2015), 

particularly at the longer lead times. This underforecasting bias affects all of our hydrological 

model forecasts so it is unlikely to be the cause of the strong biases seen in the WRF-Hydro 

forecasts.  

Hydrological model biases appear to have a strong effect on the performance of WRF-Hydro, 

given the relatively mild skill gains from postprocessing for the API and HL-RHDM models and 

the larger gains for WRF-Hydro (Figures 4e-h). Nonetheless, the QR postprocessor is able in this 

case to handle those biases. This suggests that models with simple structure (e.g., API which is 

spatially lumped and has fewer parameters) may benefit less from postprocessing while models 

with complex structure (e.g., WRF-Hydro which is spatially distributed and has more 

parameters) may be good candidates for postprocessing. It is also possible that systematic biases 

in the WRF-Hydro could be reduced through improved parameter sensitivity analysis and 

calibration, as opposed to statistical postprocessing. 

Another interesting outcome from the postprocessed single-model results is that the ranking 

of the models, in terms of the CRPSS, varies depending on the lead time and basin. For example, 

both HL-RDHM and WRF-Hydro tend to slightly outperform API at the day 1 lead time in 

Figure 4e, but API outperforms both models at the later lead times (>6 days) in Figures 4f-h. 

This is important because it indicates that there is no single model that consistently outperforms 

the other models. In other words, it is not possible, at least in terms of the CRPSS, to choose one 

model as the best in all cases. This suggests that it may be possible to maximize forecast skill 

across lead times and basins by optimally combining the outputs from the different models, as 

opposed to relying on a single model. It shows that multimodel forecasting may be a viable 

option to enhance streamflow predictions. 

 

4.2. CRPSS Verification of the Multimodel Forecasts 

We now examine with the CRPSS the ability of multimodel forecasts to improve streamflow 

predictions. For this, the CRPSS is again plotted against the forecast lead time for the selected 

basins (Figure 5). In Figure 5, the following three different multimodel forecasting experiments 

are shown: i) equal weight, ii) 9-m, and iii) 33-m. For the equal weight experiment, the same 

weight, 1/K, was used to combine the predictive distribution of the streamflow forecasts from 

each hydrological model. That is, instead of using the optimal weights from QR-BMA, the same 

weight was used to form a 9-member multimodel forecast. For the 9-m and 33-m experiments, 

we used 3 and 11 members per model, respectively, to obtain a multimodel forecast with QR-

BMA. In the 9-m and 33-m experiments, the weights were optimized with QR-BMA employing 

different number of ensemble members, 3 members per model in the case of 9-m and 11 

members per model in 33-m. Additionally, the reference system used to compute the CRPSS 

values in Figure 5 consists of the postprocessed ensemble streamflow forecasts from API, as 

opposed to sampled climatology. We selected API as the reference system since this is currently 

the regional operational model being used to generate streamflow forecasts in our study area. 

We found that the 33-m multimodel forecasts result in higher CRPSS values than API across 

lead times and basins (Figure 5). The 9-m multimodel forecasts perform similarly to the 33-m 

forecasts, but in a few cases (e.g., Figure 5c at the day 5 lead time) the 9-m forecasts result in 

lower (negative) CRPSS values than API. The equal weight experiment is only able to improve 

the CRPSS values at the initial lead times (<3 or 4 days; Figure 5), while at the later lead times 

its CRPSS values are lower than API. CNON6 offers an interesting case to further compare the 



 
 

single-model and multimodel forecasts. In the single-model forecasts for CNON6 (Figure 4f), 

API tends to clearly outperform the other models. Despite the better performance of API, the 

multimodel forecasts are still able to improve the skill for CNON6 relative to the performance of 

API, with the largest improvement being ~0.16 at the day 7 lead time for the 33-m experiment. 

Figure 5. CRPSS of the multimodel ensemble streamflow forecasts versus the forecast lead time 

for a) CINN6, b) CNON6, c) CKLN6, and d) WVYN6. The CRPSS is plotted with reference to 

the QR-postprocessed API forecasts. Three different experiments are shown: equal weight (9-m), 

QR-BMA (9-m), and QR-BMA (33-m). The equal weight experiment uses the same weight to 

combine the predictive distribution of the streamflow forecasts from each hydrological model. 

The 9-m and 33-m experiments use 3 and 11 members per model, respectively, to obtain a 

multimodel forecast with optimal weights using QR-BMA. 

 

In sum, the multimodel forecasts reveal skill improvements relative to API, which may be 

considered here the best performing model in terms of the overall simulation and raw forecasts 

results; the optimal weights from QR-BMA result in more skillful multimodel forecasts than 

using equal weights, particularly at the later lead times (>3 days); and increasing the ensemble 

size of the multimodel forecasts results in relatively mild skill gains. Several studies have 

investigated the source of improvements (skill gains) from multimodel forecasts (Hagedorn et 

al., 2012; Weigel et al., 2008, 2009). Those studies have found that multimodel forecasts can 

improve predictions by error cancellation and correcting deficiencies (underdispersion) in the 

ensemble spread of the single models. These sources of skill gain appear to be mainly statistical. 

This way of understanding the benefits of multimodel forecasts does not consider whether a 

particular model contributes additional information to the forecasts. Considering the latter is 

important to be able to justify adding any new models to an existing forecasting system. Another 

way to assess the source of improvements from multimodel forecasts that accounts for the 

contribution of model information, signal as opposed to noise, is through CMI, which we do 

next. 

 

4.3. Skill Assessment Using Conditional Mutual Information 

We used CMI to determine whether the skill improvements from the multimodel forecasts 

are dominated by model diversity or increased ensemble size. To this end, CMI was computed 



 
 

using equations (14) and (15), together with the ensemble mean forecast, at lead times of 1-7 

days for the selected basins (Figure 6). In Figure 6, the following three different experiments are 

shown: i) 9-m single model, ii) 9-m multimodel, and iii) 33-m multimodel. 

The 9-m single-model experiment consists of a 3-member single-model forecast combined 

with a 6-member ensemble from the same model. The experiment was repeated for each of the 

models used. The results from this experiment are shown in Figures 6a-c. In the 9-m multimodel 

experiment, a 3-member single model ensemble from one of the models was combined with a 6-

member ensemble from the remaining other two models (3 members per model; Figures 6d-f). 

The last experiment, 33-m multimodel, was the same as the 9-m multimodel experiment but 

using instead 33 members (Figures 6g-i). That is, an 11-member single-model ensemble from 

one of the models was combined with a 22-member ensemble from the remaining two other 

models (11 members per model). Thus, the ensemble size for the first and second experiments 

was 9, and for the third experiment was 33. Note that in all three experiments the ensemble 

members were randomly selected to form any of the model combinations considered. The single-

model ensembles were selected from the raw forecasts, whereas the multimodel forecasts were 

selected from the postprocessed QR-BMA output. Raw single-model and postprocessed 

multimodel forecasts were combined to emulate basic operational conditions. Note that we also 

tried combining only postprocessed single-model and multimodel forecasts and the results (not 

shown) were similar. 



 
 

For the first experiment, we used equations (14) and (18) to obtain a theoretical upper bound 

for CMI. This theoretical bound represents the potential skill gain from the ensemble size alone. 

We found that the theoretical bound is in this case equal to 0.090. Figure 6a-c shows that indeed 

the empirical CMI values for the 9-m single-model forecasts tend to be less than or around 0.090 

for all three models across lead times and basins. The 9-m single-model CMI values tend to be 

greater for API than HL-RDHM and WRF-Hydro. This indicates that the less complex model, 

API, is able to maximize the skill gains from the ensemble size alone. For example, in terms of 

the CRPSS, the raw single-model forecasts from API and HL-RDHM have comparable skill in 

the case of CKLN6 (Figure 4c) and WVYN6 (Figure 4d). In contrast, the 9-m single model CMI 

values tend to be greater for API than HL-RDHM in both cases, CKLN6 and WVYN6 (Figures 

6a and 6b), particularly at the longer lead times. This ability of API to maximize the benefits 

from ensemble size alone may be due to API having a lesser impact on the weather ensembles, 

i.e., contributing less uncertainty to the streamflow forecasts. Also, in Figures 6a-c, the tendency 



 
 

is for the CMI values to increase some with the lead time for all the basins. This is more apparent 

for API and HL-RDHM than WRF-Hydro.  

Figure 6. CMI of the ensemble streamflow forecasts versus both the basin and forecast lead time 

for three different experiments: a-c) 9-m single model, d-f) 9-m multimodel, and g-i) 33-m 

multimodel forecasts. The 9-m single model experiment consists of a 3-member single model 

forecast from one of the hydrological models combined with a 6-member ensemble from the 

same model. In the 9-m multimodel experiment, a 3-member single model ensemble forecast 

from one of the models is combined with a 6-member ensemble from the remaining other two 

models (3 members from each model). The last experiment, 33-m multimodel, is the same as the 

9-m multimodel experiment but using instead 33 members (11 members from each model). 

 

Contrasting the CMI values between the 9-m single-model (Figures. 6a-c) and 9-m 

multimodel (Figures. 6d-f) experiment, it is apparent that the multimodel forecasts have 



 
 

substantially greater CMI values than the single-model forecasts across lead times and basins. 

This indicates that any of the single-model forecasts (API, HL-RDHM or WRF-Hydro) can be 

improved by combining them with forecasts from the other models. Indeed, this improvement is 

dominated by model diversity rather than increased ensemble size alone. Although the 

multimodel forecasts show skill gains at all the lead times, the tendency is for the CMI values to 

increase with the lead time, suggesting that the multimodel forecasts may be particularly useful 

for improving medium-range streamflow forecasts.  

To further examine the hypothesis that improvements in CMI are dominated by model 

diversity rather than the ensemble size, the CMI values from the 9-m multimodel experiment 

(Figures 6d-f) can be compared against the values from the 33-m multimodel experiment 

(Figures 6g-i). From this comparison, it is seen that the CMI values for these two experiments 

are, overall, very similar across lead times and basins. This further supports that incorporating 

additional information by adding new models plays a bigger role than the ensemble size in 

enhancing the skill of the multimodel forecasts. The results in Figure 6 indicate that hydrological 

multimodel forecasting can be a viable approach to improve streamflow forecasts at short- and 

medium-range timescales. They suggest that model diversity may be a more important 

consideration than the ensemble size when trying to enhance the skill of streamflow forecasts.  

We also tested the effect on the CMI values of using postprocessed single-model forecasts, as 

opposed to raw forecasts. Thus, we calculated CMI (results not shown) for each basin and lead 

time using the QR postprocessed single-model forecasts, i.e., the experiments in Figure 6 were 

repeated using the postprocessed single-model forecasts. We found that, as was the case with the 

raw forecasts, the CMI values for the multimodel combinations exceeded the theoretical upper 

bound of 0.090, and the CMI values remained very similar after increasing the ensemble size, 

i.e., between the 9-m and 33-m multimodel experiments. Thus, the ability of model diversity to 

enhance the skill of the streamflow forecasts is independent of whether raw or postprocessed 

single-model forecasts are used.  

Additionally, the CMI values for all the different experiments in Figure 6 were recomputed 

(results not shown) in streamflow space using the approach by Meyer (2008). Although a 

theoretical upper bound is not available for this approach, the CMI values in streamflow space 

for the multimodel forecasts tended to be noticeably greater than the values for the single-model 

forecasts for most lead times. Moreover, differences in the CMI values between the 9-m and 33-

m multimodel forecasts were only marginal. Thus, the results for the experiments in Figure 6 

using CMI values computed in both real (streamflow) and Gaussian space, overall, exhibited 

similar trends. This is again indicative of the ability of model diversity to enhance forecast skill 

beyond the improvements achievable by ensemble size alone. 

 

5. Summary and Conclusions 

In this study, we generated single-model ensemble streamflow forecasts at short- to medium-

range lead times (1-7 days) from three different hydrological models: API, HL-RDHM, and 

WRF-Hydro. These models were selected because they represent different types of hydrological 

models with varying structures and parameterizations. API is a spatially lumped model; HL-

RDHM is a conceptual, spatially distributed hydrological model; and WRF-Hydro is a land 

surface model. By forcing each hydrological model with GEFSRv2 data, single-model ensemble 

streamflow forecasts were generated for four nested basins of the US NBSR basin over the 

period 2004-2009, and the warm season (May-October). The single-model forecasts were used to 

generate multimodel forecasts using a new statistical postprocessor, namely QR-BMA. QR-



 
 

BMA uses first QR to correct systematic biases in the single-model forecasts and, in a 

subsequent step, BMA to optimally combine the predictive distribution from each model. To 

further understand the performance and behavior of the multimodel forecasts, we performed 

different ensemble streamflow forecast experiments by varying the number of ensemble 

members, models, and weights used to create the multimodel forecasts. 

From the forecast experiments performed, we found that the raw single-model ensemble 

streamflow forecasts from both API and HL-RHDM tended to outperform, in terms of the 

CRPSS, the forecasts from WRF-Hydro across lead times and basins. However, after 

postprocessing the raw single-model forecasts using QR, we found that the CRPSS performance 

of the individual models was mostly comparable across lead times and basins. In terms of the 

multimodel ensemble streamflow forecasts, we found that the implementation of QR-BMA 

tended to improve the skill of the forecasts relative to the performance of API, which can be 

considered here the best performing model in terms of the raw single-model forecasts. 

Additionally, we compared the forecasts from QR-BMA against an equal-weight experiment, 

where each model was assigned the same weight. We found from this experiment that the 

optimal-weight forecasts from QR-BMA outperform the equal-weight forecasts. The latter was 

particularly evident at the later lead times (> 3 days). 

Lastly, we used CMI to distinguish the source of the improvements for the multimodel 

forecasts. We found that skill enhancements across lead times and basins are largely dominated 

by model diversity and that increasing the ensemble size has only a small influence on the CMI 

values. This is important because it indicates that in an operational setting the combination of 

different hydrological models, as opposed to increasing the ensemble size of a single model, may 

be a more effective approach to improve forecast skill. It also highlights that there is no single 

model that can be considered best in all forecasting cases, instead the benefits or strengths of 

different models can be combined to produce the best forecast. Importantly, the benefits from 

using different models are, in this case, not due to the noise reduction associated with the 

ensemble size but with the ability of each model to contribute additional information to the 

forecasts.  

 

Appendix A: Implementation of the Expectation Maximization Algorithm 

We describe here the steps followed to implement the EM algorithm. The description uses 

the variables and notation previously defined in Subsection 2.1. To implement the EM algorithm, 

the latent variable ,t i

kz  is introduced, which has a value of 1 if the thk  model ensemble is the best 

prediction at time step i  and a value of 0 otherwise. The EM algorithm starts with an initial 

weight and variance for each model set to  
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allowing the calculation of an initial log-likelihood 
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where T  is the length of the training period extending over the time steps  1,i T . After 

initializing the weight and variance for each model, the EM algorithm alternates iteratively 

between an expectation and maximization step until a convergence criteria is satisfied. In the 

expectation step, the 
,t i

kz$  for each time step is estimated given the initial values of the weight and 

variance as    
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In the subsequent maximization step, the values of the weight and variance are updated using the 

current estimate of 
,

,

t i

k Iterz  as follows 
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The log-likelihood function in equation (A3) is then recomputed using the updated weight and 

variance as  
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The expectation and maximization steps are iterated until the improvement in the log-likelihood 

is no less than some pre-defined tolerance, i.e.      1| |Iter Iterl l tol    , in this case tol=10
-6

. 

 

Supporting Information: Description of the Hydrological Models Used to Generate the 

Multimodel Ensemble Streamflow Forecasts 

 

API 

API is the current operational rainfall-runoff model used by the NOAA’s Middle Atlantic 

River Forecast Center (MARFC) to generate daily streamflow forecasts. The API model was 

developed by NOAA (Nemec & Sittner, 1982; Sittner et al., 1969). It is a conceptual, spatially 

lumped hydrological model (Moreda et al., 2006). The model uses a graphical technique that 

consists of four quadrants to compute surface runoff and baseflow. The first quadrant accounts 

for the seasonal relationship between API and current soil moisture conditions referred to as the 

Antecedent Index (AI). The second quadrant adjusts the AI value from the first quadrant to 

account for the effects of soil moisture. The third quadrant computes incremental surface runoff 

based on surface and overall soil moisture conditions. Finally, the fourth quadrant computes the 

portion of precipitation that enters groundwater storage and becomes baseflow runoff.  

The API streamflow simulations and ensemble forecasts used in this study were generated by 

the MARFC. For calibration purposes, the API was forced with mean areal precipitation and 

temperature estimates from gauge observations. To run API, the model parameters associated 

with surface runoff, vegetation, snow, and frozen ground, among others, were determined via 

calibration. The MARFC calibrated the model manually. The overall performance of the API 



 
 

simulation runs was satisfactory during the verification period of 2004-2009 (May to October). 

The R values ranged from 0.78 to 0.95 and the NSE values from 0.61 to 0.89. Other than CINN6, 

the performance of API tended to be similar for the selected basins. The smallest basin, CINN6, 

showed the lowest performance with R and NSE values of 0.78 and 0.61, respectively. Additional 

details about the model can be found elsewhere (Moreda et al., 2006). The API ensemble 

streamflow forecasts were generated by forcing the calibrated model with GEFSRv2 ensemble 

precipitation and near-surface air temperature forecasts.  

 

HL-RDHM 

HL-RDHM is a conceptual, distributed hydrological model developed by NOAA (Koren et 

al., 2004). Within HL-RDHM, we implemented the heat transfer version of the Sacramento Soil 

Moisture Accounting model (SAC-HT) to represent rainfall-runoff generation, and the SNOW-

17 submodel to represent snow accumulation and melt (Koren et al., 2004). The hillslope runoff, 

generated at each grid cell by SAC-HT and SNOW-17, was routed to the stream network using a 

nonlinear kinematic wave algorithm. A similar algorithm was used to route flows along the 

stream network (Koren et al., 2004). We ran HL-RDHM in fully distributed mode at a spatial 

resolution of 2 x 2 km
2
. To perform the simulation runs with HL-RDHM, the model was forced 

with gridded precipitation (MPEs) and near-surface air temperature observations provided by the 

MARFC. As was the case with API, GEFSRv2 ensemble precipitation and near-surface air 

temperature forecasts were used to force HL-RDHM and generate the ensemble streamflow 

forecasts. Further information about the HL-RDHM model can be found elsewhere (Koren et al., 

2004; Siddique & Mejia, 2017).  

To calibrate HL-RDHM, a-priori parameter estimates based on previous studies (Anderson et 

al., 2006; Reed et al., 2004) were first manually adjusted. Once the manual changes did not yield 

noticeable improvements in model performance, the parameter values were tuned up using the 

Stepwise Line Search (SLS) approach (Kuzmin et al., 2008; Kuzmin, 2009). The square root of 

the mean square errors (i.e., the difference between observed and simulated flows) was used as 

the objective function in SLS. We adjusted 10 out the 17 SAC-HT parameters associated with 

each model grid cell. The most sensitive parameters were found to be the upper and lower soil 

zones transport and storage parameters, as well as the stream routing parameters. Note that when 

calibrating HL-RDHM we adjusted the parameter fields rather than the actual parameter values 

at each grid cell using a multiplier approach (Kuzmin et al., 2008; Kuzmin, 2009). We used 3 

years (2003-2005) of streamflow data to calibrate HL-RDHM. The model simulations were 

performed for the period 2004-2009 (May to October), with the year 2003 used as warm-up. 

Overall, the performance of the HL-RDHM simulation runs over the period 2004-2009 was 

satisfactory. The performance was similar for the selected basins, with R values ranging between 

0.87 and 0.93, and NSE values between 0.74 and 0.86. 

 

WRF-Hydro 

WRF-Hydro, the hydrological package extension to the WRF model, is a fully parallelized, 

community modeling architecture. Here we used WRF-Hydro version 3.0 in uncoupled mode. 

WRF-Hydro was configured to use the land surface model Noah with multi-parameterization 

(Noah-MP) options to represent surface and subsurface hydrological processes. We used the 

baseflow bucket model to represent baseflow to the stream network and a fully-unsteady, 

explicit, finite difference, diffusive wave formulation to route surface flows. Additionally, we 

used the Geographic Information System (ArcGIS version 10.3) Preprocessing Tool version 4.0 



 
 

(Gochis et al., 2015) to create the data layers required by WRF-Hydro to model terrestrial 

overland flow, subsurface flow, and the channel routing process. The 1 arc-second (30 m) 

version 2 of the National Hydrography Dataset (NHDPlusV2) was used as a raster input to the 

Preprocessing Tool to delineate different water features. WRF-Hydro was ran at a spatial 

resolution of 1 x 1 km
2
 to generate both streamflow simulations and forecasts. As was the case 

with API and HL-RDHM, GEFSRv2 data were used as forcing to generate the WRF-Hydro 

ensemble streamflow forecasts. In the case WRF-Hydro, the GEFSRv2 data consisted of 

ensemble precipitation, near-surface air temperature, specific humidity, surface pressure, 

downward short and long wave radiation, and u-v components of wind speed. 

Two years (2004-2005; May-October) of streamflow data were used to calibrate WRF-

Hydro. The first year (2004; January-April) was used to warm-up the model. A shorter warm-up 

period than HL-RDHM was selected to ameliorate computational demand. To perform the WRF-

Hydro simulation runs, we forced the model with gridded precipitation, MPEs, and for the 

remainder forcing variables (i.e., near-surface air temperature, specific humidity, surface 

pressure, downward long and short wave radiation, and u-v components of wind speed) NLDAS-

2 data were used. In order to minimize the number of model runs during calibration, we 

implemented a stepwise manual adjustment approach (Yucel et al., 2015), i.e., once a parameter 

value was calibrated its value was kept fixed during the calibration of subsequent parameters. 

We adjusted eight different parameters associated with soil transport, surface runoff, as well as 

groundwater and channelized flows. Out of all the adjusted parameters, the most sensitive 

parameters were the pore size distribution index (BEXP), saturated hydraulic conductivity 

(DKSAT), surface runoff parameter (REFKDT), surface retention depth scaling parameter 

(RETDEPRT), and the channel Manning roughness coefficient (MANN). After the manual 

calibration, the most sensitive parameter values were fine-tuned using an optimization algorithm, 

namely dynamically dimension search (DDS) (Tolson & Shoemaker, 2007). In the DDS 

algorithm, we used NSE as the objective function. The simulation performance of the WRF-

Hydro over the entire analysis period of 2004-2009 (May-October) was reasonable. The R and 

NSE values were in the range 0.71-0.75 and 0.51-0.56, respectively, for the selected basins. 

These performance statistic values compare well with results from previous studies (Givati et al., 

2016; Kerandi et al., 2017; Naabil et al., 2017; Salas et al., 2018; Silver et al., 2017; Yucel et al., 

2015). 
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