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1.    ACCOMPLISHMENTS 

 
The realtime convective-scale ensemble data assimilation and forecasting performed under this 

NOAA CSTAR project, together with retrospective analyses using the real time data, directly 

addresses the priority of the CSTAR program: “Improving the lead time and accuracy of forecasts 

and warnings for high impact weather events”, and in particular “Utilizing of convection-allowing 

models and a storm scale ensemble system to advance Warn on Forecast capabilities”.  By 

producing and evaluating realtime storm-scale ensemble forecasts and participating NOAA 

testbeds HWT and HMT, this project aims to: 1) Improve application of NWP information in the 

forecast and warning process at Day 1 to Day 3 time scales; 2) Improve the use of ensemble 

predictions systems to: enable more effective forecaster assessment of uncertainty and historical 

context of potential high impact events; and develop probabilistic hazard information; 3) Provide 

direct guidance for the optimal design of an operational High Resolution Ensemble Forecast 

(HREF) system for NWS, as well as for determining the optimal DA strategy at the convective 

scale. 

 

1.1 Summary of accomplishments 

 Realtime SSEF contributed to NOAA 2016, 2017, 2018, 2019 HWT SFE 

 Realtime SSEF contributed to NOAA 2016, 2017, 2018 HMT FFaIR 

 GSI EnKF based radar assimilation experiment and examination 

 Implemented and contributed FV3 and SAR-FV3 SSEF at CAM resolution 

 QPF verifications from realtime testbed experiments 

 Developed optimal ensemble consensus products such as localized probability matched 

mean precipitation (LPM)  

 Authored/Co-authored over 25 journal papers, and dozens of conference presentations 

 

1.2 CAPS realtime SSEF production in supporting HWT SFE 

The Center for Analysis and Prediction of Storm (CAPS) produced multi-model multi-physics 

storm-scale ensemble forecasts (SSEF) at convection-allowing horizontal grid spacing of 3-4 km 

in realtime every year since 2007 from late April to early June to support the NOAA Hazardous 

Weather Testbed (HWT) Spring Forecasting Experiment (SFE). The primary funding came from 

the NOAA CSTAR grant as well as other NOAA grants.  During current three-year reporting 

period from 2016 to 2019, CAPS remained a key contributor to the Community Leveraged Unified 

Ensemble (CLUE) for HWT SFE, implemented GSI EnKF data assimilation and ensemble forecast 

system. As WRF-ARW model remained as the primary modeling system in the SSEF, the 

operational model core NMMB was included in 2016 season, and the newly designated NGGPS 
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Finite-Volume Cubed-Sphere (FV3) model system, and its reginal stand-alone version SAR-FV3, 

were included since 2017 HWT SFE. Table 1 outlines the SSEF highlights from 2016 to 2019 for 

HWT SFEs under this CSTAR grant.  

 

Table 1. CAPS HWT SSEF highlights for the reporting period 

 2016 2017 2018 2019 

member 24 (12) 24 (10) 40 (10) 15 (10) 

Domain (grid) CONUS (3 km) CONUS (3 km) CONUS (3 km) CONUS (3 km) 

Lead time 36-60 h 36-60 h 36-60 h 60 h 

NWP models 

ARW 

 (v3.7.1) 

NMMB (6) 

ARW  

(v3.8.1) 

FV3 (1) 

ARW  

(v3.9.1.1) 

FV3 (12) 

ARW 

(v4.0.3) 

SAR-FV3 (15) 

EnKF 
GSI+EnKF 

 full domain 

GSI+EnKF  

full domain 

GSI+EnKF  

full domain 

GSI+EnKF  

full domain 

* Numbers in brackets in the member row refer to GSI+EnKF ensemble member; Non-ARW model forecast 

member counts are shown in brackets in the NWP row. 

1.2.1 CAPS SSEF overview for NOAA/HWT SFE2016  

The CAPS 2016 Storm-Scale Ensemble Forecast for the SFE2016 started on 18 April through 

3 June 2016, encompassing the NOAA HWT 2016 Spring Forecasting Experiment that was 

officially between 2 May and 3 June. The regular 0000 UTC 3-km ensembles consist of 18 WRF-

ARW members initialized with a onetime 3DVAR analysis, with the forecast lead time of 60 hours 

Figure 1 shows the model domains (both ARW and NMMB) used in the 2016 season.  

Operational NMMB model core was added in 2016 season, with 6 members. Only one NMMB 

member (nmmb_cn) had radar data analysis. Other five non-radar NMMB members had IC and 

LBC perturbations provided from SREF perturbed members. All NMMB members used a fixed 

set of physics configuration matching the NCEP operational high-res NMMB runs. 

The CAPS non-cycled 3DVAR-based SSEF and the cycled GSI+EnKF based SSEF during 

NOAA/HWT SFE2016 also contribute into a larger Community Leveraged Unified Ensemble 

(CLUE) coordinated among various groups including NSSL, SPC, CAPS, NCAR, UND, EMC, 

GSD, and DTC, in an effort to provide guidance to the design of near-future operational SSEF 

systems. 
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Figure 1. The 2016 CAPS Spring Forecast Experiment domains, with ARW domain marked by thick lines 

(1680x1152 at 3 km) and the NMMB domain marked as red dots. 

Tables 1 lists member configurations for the 3DVAR initialized SSEF ensemble (non-cycled 

3DVAR-based SSEF). As part of CLUE (Clark et al. 2016), all 3DVAR based ARW members are 

grouped into two sub-ensembles. The control member cn and members m3-m10 are members with 

both IC/LBC perturbation and physics variations. This group is called mixed sub-ensemble. The 

group containing members cn and m11 – m19 is called single physics (s_phys) sub-ensemble, 

among them m11-m19 do have IC and LBC perturbations. In Table 1, NAMa and NAMf refer to 

the NCEP operational 12 km NAM analysis and forecast, respectively. ARPSa refers to analysis 

after ARPS 3DVAR and Cloud Analysis using NAMa as the background.   

Table 2 lists member configurations for the NMMB members. Only one NMMB member 

(nmmb_cn) has radar data analysis. Other five non-radar NMMB members have IC and LBC 

perturbations. All NMMB members use a fixed set of physics configuration matching the 

operational high-res NMMB runs. 

The mixed ensemble members run for 60 h in forecast duration; whereas s_phys members and 

all NMMB members run for 36 h. 

 

Table 2. Configurations of ARW members for SFE2016. NAMa and NAMf refer to 12 km NAM 

analysis and forecast, respectively. ARPSa refers to ARPS 3DVAR and cloud analysis 

Member IC BC 
Radar 

data 
Microphy LSM PBL 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_m3 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes P3 Noah YSU 
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arw_m4 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes MY Noah MYNN 

arw_m5 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes Morrison Noah MYJ 

arw_m6 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes P3 Noah YSU 

arw_m7 
arw_cn + 

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes MY Noah MYNN 

arw_m8 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes Morrison Noah YSU 

arw_m9 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes P3 Noah MYJ 

arw_m10 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson Noah MYNN 

arw_m11 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes Thompson Noah MYJ 

arw_m12 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes Thompson Noah MYJ 

arw_m13 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes Thompson Noah MYJ 

arw_m14 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Thompson Noah MYJ 

arw_m15 
arw_cn +  

arw-p3_pert 

21Z SREF 

arw-p3 
yes Thompson Noah MYJ 

arw_m16 
arw_cn +  

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes Thompson Noah MYJ 

arw_m17 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes Thompson Noah MYJ 

arw_m18 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes Thompson Noah MYJ 

arw_m19 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson Noah MYJ 

* For all members: ra_lw_physics= RRTMG; ra_sw_physics=RRTMG; cu_physics= NONE. 

 

Table 3. Configurations of NMMB members for SFE2016 

member IC BC 
Radar 

data 
mp_phy lw_phy sw-phy sf_phy 

nmmb_cn 00Z ARPSa 
00Z 

NAMf 
yes 

Ferrier-

Aligo 
RRTMG RRTMG Noah 

nmmb_m1 
00Z NAMa+  

arw-p3_pert 

21Z SREF 

arw-p3 
no 

Ferrier-

Aligo 
RRTMG RRTMG Noah 
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nmmb_m2 
00Z NAMa+ 

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
no 

Ferrier-

Aligo 
RRTMG RRTMG Noah 

nmmb_m3 
00Z NAMa+  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
no 

Ferrier-

Aligo 
RRTMG RRTMG Noah 

nmmb_m4 
00Z NAMa+  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
no 

Ferrier-

Aligo 
RRTMG RRTMG Noah 

nmmb_m5 
00Z NAMa+  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
no 

Ferrier-

Aligo 
RRTMG RRTMG Noah 

*For all members: pbl_physics=MYJ; cu_physics= NONE. 

 

1.2.2 CAPS SSEF overview for NOAA/HWT SFE2017 

The CAPS 2017 Storm-Scale Ensemble Forecast for the SFE2017 started on 11 April through 

2 June 2016, encompassing the NOAA HWT 2017 Spring Forecasting Experiment that was 

officially between 1 May and 2 June. The CAPS SSEF consisted of a 23-member (consisting of 

ARW) SSEF initiated at 0000 UTC with non-cycled 3DVAR analysis and running 60-h (36-h for 

single physics members and the MP-only members) forecasting, and a GSI+EnKF cycled 

ensemble procedure followed by a 10-member 48-h ARW SSEF starting at 0000 UTC. 

The 23-member 3DVAR-based SSEF and 10-member GSI+EnKF based SSEF in the HWT 

SFE2017, as well as one single FV3 forecast, also contribute into the large coordinated Community 

Leveraged Unified Ensemble (CLUE), the “grand ensemble”, with other contributing institutions 

from NSSL, NCAR, and GSD, in an effort to provide guidance to the design of near-future 

operational SSEF systems. CAPS contributed 4 ensemble groups out of total 9 CLUE groups in 

2017 season and one single FV3 3-km CONUS forecast nested in a 13-km global forecast, using 

CAPS implemented Thompson microphysics.  

Figure 2 shows the model domains used in the 2017 season. The slight shrinking of 3-km 

domain for ARW (from 1680x1152 in 2016 to 1620x1120 in 2017) is to have the domain to fit 

within the operational RAP analysis data coverage in order to extract initial condition background 

for one HRRR member (m2 in Table 3). The HRRR member was run with ARPS3DVAR radar 

analysis, in comparison with the operational HRRR that uses MRMS radar mosaic with latent heat 

analysis. 
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Figure 2. The 2017 CAPS Spring Forecast Experiment domains. Left: The ARW domain at 3-km grid 

spacing, consisting of 1620×1120 horizontal grid points; Right: FV3 cubed-sphere grid nesting domains, 

stretched to provide higher resolution on the face covering CONUS, and a nested 1728×1296 domain 

(inner red box) with ~3 km grid spacing. 

Tables 3 lists member configurations for the 3DVAR initialized SSEF ensemble (non-cycled 

3DVAR-based SSEF). As part of CLUE, all 3DVAR based ARW members are grouped into three 

sub-ensembles. The control member cn and members m2-m10 are members with both IC/LBC 

perturbation and physics variations. This group is called mixed sub-ensemble. The group 

containing members m02 and m11 – m19 is called single physics (s_phys) sub-ensemble, among 

them m11-m19 do have IC and LBC perturbations. The group m20 – m23 is called mixed 

microphysics that only has microphysics variation. In Table 3, NAMa and NAMf refer to the 

NCEP operational 12 km NAM analysis and forecast, respectively. RAPa and GFSf refer to 00Z 

RAP analysis and 18Z GFS forecast, respectively. ARPSa refers to analysis after ARPS 3DVAR 

and Cloud Analysis using NAMa as the background.   

Table 3. Configurations of ARW members for SFE2017. NAMa and NAMf refer to 12 km NAM 

analysis and forecast, respectively. RAPa and GFSf refer to 00Z RAP analysis and 18Z GFS 

forecast, respectively.  ARPSa refers to ARPS 3DVAR and cloud analysis 

Member IC BC 
Radar 

data 
Microphy LSM PBL 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_m2 RAPa+3DVAR 18Z GFSf yes Thompson RUC MYNN 

arw_m3 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes P3 Noah YSU 

arw_m4 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes MY Noah MYJ 
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arw_m5 
arw_cn +  

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes Morrison Noah MYJ 

arw_m6 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes P3 Noah YSU 

arw_m7 
arw_cn + 

arw-p2_pert 

21Z SREF 

arw-p2 
yes MY Noah YSU 

arw_m8 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Morrison Noah YSU 

arw_m9 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes P3 Noah MYJ 

arw_m10 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson Noah MYNN 

arw_m11 00Z ARPSa 00Z NAMf yes Thompson RUC MYNN 

arw_m12 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes Thompson RUC MYNN 

arw_m13 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes Thompson RUC MYNN 

arw_m14 
arw_cn +  

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes Thompson RUC MYNN 

arw_m15 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes Thompson RUC MYNN 

arw_m16 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes Thompson RUC MYNN 

arw_m17 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Thompson RUC MYNN 

arw_m18 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes Thompson RUC MYNN 

arw_m19 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson RUC MYNN 

arw_m20 RAPa+3DVAR 18Z GFSf yes Morrison RUC MYNN 

arw_m21 RAPa+3DVAR 18Z GFSf yes MY RUC MYNN 

arw_m22 RAPa+3DVAR 18Z GFSf yes P3 RUC MYNN 

arw_m23 RAPa+3DVAR 18Z GFSf yes WSM6 RUC MYNN 

* For all members: ra_lw_physics= RRTMG; ra_sw_physics=RRTMG; cu_physics= NONE. 

 

Table 4. Configurations FV3 forecast for SFE2017 
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member IC BC 
Radar 

data 
mp_phy lw_phy sw-phy LSM PBL 

fv3_cn 
00Z 

GFSa 
- no Thompson GFDL GFDL Noah YSU 

 

Table 4 lists member configuration for the single FV3 core member ran during SFE2017. 

The mixed ensemble members run for 60 h in forecast duration; whereas s_phys members and 

all mixed microphysics members run for 36 h. FV3 member is planned to run 120 h during HWT 

and 84-h during HMT. 

 

1.2.3 CAPS SSEF overview for NOAA/HWT SFE2018 

The CAPS 2018 Storm-Scale Ensemble Forecast for the SFE2018 started on 30 April through 

1 June 2018. Three ensemble suites were configured and run for NOAA/HWT SFE2018: a 28-

member (consisting of ARW v3.9.1.1) SSEF initiated at 0000 UTC with non-cycled 3DVAR 

analysis and running 60-h (36-h for single physics members and the stochastic members) 

forecasting, a GSI+EnKF cycled ensemble procedure followed by a 10-member 48-h ARW SSEF 

starting at 0000 UTC, and a newly FV3 core based multi-physics ensemble of 12 members. The 

ARW domain was the same as in 2017 season (see Figure 2, left panel). Figure 3 shows the model 

domain for FV3 used in 2018 season. 

In HWT SFE2018, CAPS contributed 5 ensembles out of total 8 CLUE ensemble groups. 

Newly added is a 12-member FV3 core 3.5-km CONUS ensemble forecasts nested in a 13-km 

global forecast, using CAPS implemented Thompson and NSSL microphysics and MYNN and 

YSU PBL schemes. 

The 3DVAR-based ensembles and FV3 core ensemble were run on TACC Stampede2 for 

HWT SFE2018 and for FFaIR2018. The EnKF-based ensembles were run on Bridges at Pittsburg 

Supercomputing Center (PSC). 
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Figure 3. FV3 domain in 2018 season. Top: Uniform (13 km) global domain, with the innermost 

domain marking the fine nested domain area; Bottom: Coverage of the nested domain (~3.5 km), 

with color shades indicating grid spacing in meter. 

Tables 5 lists member configurations for the 3DVAR initialized WRF SSEF ensemble (non-

cycled 3DVAR-based SSEF). As part of CLUE, all 3DVAR based ARW members are grouped 

into three sub-ensembles. The control member cn and members m2-m10 are members with both 

IC/LBC perturbation and physics variations. This group is called mixed physics + radar sub-

ensemble. The group containing members m11 – m18 is called single physics + radar sub-

ensemble. The group containing members m19 – m26 is called stochastic physics + radar sub-

ensemble. All three groups are with IC and LBC perturbations. In Table 5, NAMa and NAMf refer 

to the NCEP operational 12 km NAM analysis and forecast, respectively. RAPa and GFSf refer to 

00Z RAP analysis and 18Z GFS forecast, respectively. ARPSa refers to analysis after ARPS 

3DVAR and Cloud Analysis using NAMa as the background.   

Table 6 lists member configuration for the newly implemented FV3 core ensemble members. 

The mixed ensemble members run for 60 h in forecast duration; whereas single physics and 

stochastic physics members run for 36 h. FV3 member is planned to run 84 h during HWT and 

HMT. 
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Table 5. Configurations of ARW members for SFE2018. NAMa and NAMf refer to 12 km NAM 

analysis and forecast, respectively. RAPa and GFSf refer to 00Z RAP analysis and 18Z GFS 

forecast, respectively.  ARPSa refers to ARPS 3DVAR and cloud analysis 

Member IC BC 
Radar 

data 
Microphy LSM PBL 

arw_cn0* 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_m2 RAPa+3DVAR 18Z GFSf yes Thompson RUC MYNN 

arw_m3 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes NSSL Noah YSU 

arw_m4 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes NSSL Noah MYNN 

arw_m5 
arw_cn +  

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes Morrison Noah MYJ 

arw_m6 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes P3 Noah YSU 

arw_m7 
arw_cn + 

arw-p2_pert 

21Z SREF 

arw-p2 
yes NSSL Noah MYJ 

arw_m8 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Morrison Noah YSU 

arw_m9 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes P3 Noah MYNN 

arw_m10 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson Noah MYNN 

arw_m11 00Z ARPSa 00Z NAMf yes Thompson RUC MYNN 

arw_m13 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes Thompson RUC MYNN 

arw_m14 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes Thompson RUC MYNN 

arw_m15 
arw_cn +  

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes Thompson RUC MYNN 

arw_m16 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes Thompson RUC MYNN 

arw_m17 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes Thompson RUC MYNN 

arw_m18 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Thompson RUC MYNN 
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arw_m19 00Z ARPSa 00Z NAMf yes Thompson RUC MYNN 

arw_m20 RAPa+3DVAR 18Z GFSf yes Thompson RUC MYNN 

arw_m21 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes Thompson RUC MYNN 

arw_m22 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes Thompson RUC MYNN 

arw_m23 
arw_cn +  

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes Thompson RUC MYNN 

arw_m24 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes Thompson RUC MYNN 

arw_m25 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes Thompson RUC MYNN 

arw_m26 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Thompson RUC MYNN 

arw_m27 RAPa+3DVAR 18Z GFSf yes Thompson RUC MYNN 

Note 1: For all members: ra_lw_physics= RRTMG; ra_sw_physics=RRTMG; cu_physics=none 

Note 2: arw_cn0 is the same as arw_cn, except with non-HRRR vertical levels and no smoothing 

Note 3: arw_m19 ~ arw_m26 (dark shading) are with stochastic perturbation turned on (spp_mp=1, 

spp_pbl=1) 

Note 4: arw_m27 is with Thompson stochastic setting on (spp_mp=7, spp_pbl=0) 

Note 5: arw_12 is the same as arw_cn, so counted as one member 

 

Table 6. Configurations of FV3 members for SFE2018 

member IC mp_phy PBL Cumulus 

fv3_m01 00Z GFSa Thompson MYNN-SA Tiedtke 

fv3_m02 00Z GFSa Thompson MYNN Tiedtke 

fv3_m03 00Z GFSa Thompson YSU-SA Tiedtke 

fv3_m04 00Z GFSa Thompson YSU Tiedtke 

fv3_m05 00Z GFSa Thompson EDMF Tiedtke 

fv3_m06 00Z GFSa NSSL MYNN-SA Tiedtke 
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fv3_m07 00Z GFSa NSSL MYNN Tiedtke 

fv3_m08 00Z GFSa NSSL YSU-SA Tiedtke 

fv3_m09 00Z GFSa NSSL YSU Tiedtke 

fv3_m10 00Z GFSa NSSL EDMF Tiedtke 

fv3_m11 00Z GFSa Thompson MYNN-SA SA-SAS 

fv3_m12 00Z GFSa GFDL EDMF SA-SAS 

 

 

1.2.4 CAPS SSEF overview for NOAA/HWT SFE2019 

NOAA HWT Spring Forecast Experiment (NOAA/HWT SFE2019) formally spanned from 

April 29 to May 31, 2019, essentially beyond this CSTAR project duration from May 1, 2016 to 

April 30, 2019. However, a one year NCE (No Cost Extension) was requested and granted to 

extend SFE2019 realtime support. The justification for the NCE is “to use the remaining funding 

to support HWT Spring Experiment forecasts in May and June 2019, and evaluate the forecasts”. 

In 2019, CAPS’s effort to contribute to HWT and HMT was shifting from WRF-ARW model 

core to SAR-FV3 (the standalone reginal FV3 version) based ensembles. With the new 

development of the SAR-FV3 model core, there was a strong desire by NWS to switch the testing 

of FV3 CAM forecasting to SAR-FV3. During April 15 through May 31, 2019, CAPS contributed 

several physics schemes via CCPP into SAR- FV3 and tested them before 2019 HWT SFE. During 

NOAA/HWT SFE2019, CAPS ran 15 SAR FV3 3-km CONUS domain forecasts, with 9 member 

using multiple physics and the same IC, and 6 members including SREF-derived IC and LBC 

perturbations. 

Figure 4 shows the model domains used in the 2019 season. 
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Figure 4. The computational domains for the 2019 Season. The inner rectangular is the WRF-

ARW (CLUE) domain at 3-km grid spacing, consisting of 1620×1120 horizontal grid points (the 

same as in Figure 2 left panel). The SAR-FV3 3-km CONUS domain is marked with red dots, 

consisting of 1921×1297 horizontal grid points (at roughly 3-km grid spacing). 

 

Tables 7 and 8 list SAR-FV3 member configurations for the newly implemented Standalone 

Reginal FV3 core ensemble members. 

Table 7. Configurations of physics-perturbation-only SAR-FV3 SSEF members for SFE2019. The 

first 7 members used SAR-FV3 with operational NAM analysis and forecasts as IC and LBCs. 

The last two members use a 3 km grid nested within a global grid and using GFS analysis as IC 

Member IC/LBC Microphysics PBL SFC layer LSM Radiation 

Core-ctrl NAM Thompson saMYNN GFS NOAH RRTMG 

Core-pbl1 NAM Thompson saShinHong GFS NOAH RRTMG 

Core-pbl2 NAM Thompson EDMF GFS NOAH RRTMG 

Core-mp1 NAM NSSL saMYNN GFS NOAH RRTMG 

Core-mp2 NAM Morrison-G. saMYNN GFS NOAH RRTMG 

Core-lsm NAM Thompson saMYNN GFS RUC RRTMG 
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Core-sfcl NAM Thompson saMYNN MYNN RUC RRTMG 

Core-
globalgfs 

GFS Thompson saMYNN GFS NOAH RRTMG 

Core-sargfs GFS Thompson saMYNN GFS NOAH RRTMG 

 

Table 8. Configurations of mixed SAR-FV3 SSEF members for SFE2019, including both physics 

and IC/LBC perturbations. The IC and LBC perturbations were derived from the operational 

SREF forecasts 

Member IC/LBC. Microphysics PBL SFC layer LSM Radiation 

Pert-pbl1 NAM+SREF 
arwn1 

Thompson saShinHong GFS NOAH RRTMG 

Pert-pbl2 NAM+SREF 
arwp2 

Thompson EDMF GFS NOAH RRTMG 

Pert-mp1 NAM+SREF 
arwp1 

NSSL saMYNN GFS NOAH RRTMG 

Pert-mp2 NAM+SREF 
arwn2 

Morrison-G. saMYNN GFS NOAH RRTMG 

Pert-lsm NAM+SREF 
arwp3 

Thompson saMYNN GFS RUC RRTMG 

Pert-sfcl NAM+SREF 
arwn3 

Thompson saMYNN MYNN RUC RRTMG 

 

1.3 CAPS realtime SSEF production in supporting HMT FFaIR 

Since 2016, CAPS actively participated the NOAA Hydrometeorological Testbed (HMT) 

Flash Flood and Intensive Rainfall (FFaIR) Experiment by contributing a convection-allowing 3-

km grid SSEF of 60-84 h long from June through July each summer during the 4-week-long FFaIR 

experiment period (two weeks before and two weeks after the July 4th week, with the July 4th 

week off). Ensemble products (mainly QPF and PQPF products) were provided to the HMT in 

GEMPAK format, and GRIB2 since 2018. They include neighborhood probability of QPF 

exceedances of Flash Flood Guidance (FFG) and Recurrence Intervals (RI), as well as QPF 

probability matched means (PM) of various accumulation lengths (3-, 6-, 12-, and 24-h). CAPS 

also developed a novel localized PM QPF algorithm for HMT FFaIR, called LPM, which possesses 

superior characteristics to conventional PM and remains computationally efficient (Snook et al. 

2019, 2020). 

This CSTAR award reporting period covered CAPS HMT FFaIR efforts for 2016, 2017, and 

2018. 



17 
 

The NOAA/HMT FFaIR2016 CAPS SSEF consist of 15 members of non-cycled 3DVAR-

based ensemble configured with 13 ARW and 2 NMMB members (Tables 9 and 10). All model 

domains and data flow are the same as in the HWT component. 

 

Table 9. ARW members for the NOAA/HMT FFaIR2016. NAMa and NAMf refer to 12 km NAM 

analysis and forecast, respectively. ARPSa refers to ARPS 3DVAR and cloud analysis 

Member IC BC 
Radar 

data 
Microphy LSM PBL 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_m2 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes Morrison Noah MYNN 

arw_m3 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes MY Noah MYNN 

arw_m4 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes Morrison Noah MYJ 

arw_m5 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Thompson Noah MYNN 

arw_m6 
arw_cn + 

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes MY Noah MYNN 

arw_m7 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes Morrison Noah MYNN 

arw_m8 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes Morrison Noah MYJ 

arw_m9 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson Noah MYNN 

arw_m10 00Z ARPSa 00Z NAMf yes P3 Noah MYJ 

arw_m11 00Z ARPSa 00Z NAMf yes Morrison Noah MYJ 

arw_m12 00Z ARPSa 00Z NAMf yes MY Noah MYJ 

arw_m13 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Thompson Noah MYJ 

 

 

Table 10. NMMB members for NOAA/HMT FFaIR2016 

member IC BC 
Radar 

data 
mp_phy lw_phy sw-phy sf_phy 

nmmb_cn 00Z ARPSa 
00Z 

NAMf 
yes 

Ferrier-

Aligo 
RRTMG RRTMG Noah 
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nmmb_m1 
00Z NAMa+  

arw-p3_pert 

21Z SREF 

arw-p3 
no 

Ferrier-

Aligo 
RRTMG RRTMG Noah 

 

The 2016 FFaIR Report ranked CAPS SSEF on the top with respect to Day 1 Subjective QPF 

scores and a close second to the NAMRR for the Day 2 QPF scores. 

The NOAA/HMT FFaIR2017 CAPS SSEF consist of 10-member (ARW) non-cycled 3DVAR-

based ensemble consisting IC/LBC perturbations and mixed physics options, and one single FV3 

core forecast that is the same as in HWT (Tables 11 and 12). The FV3 forecasts were 84 h long. 

Table 11. ARW members for the NOAA/HMT FFaIR2017. NAMa and NAMf refer to 12 km NAM 

analysis and forecast, respectively. ARPSa refers to ARPS 3DVAR and cloud analysis 

Member IC BC 
Radar 

data 
Microphy LSM PBL 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_m2 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes Morrison Noah MYNN 

arw_m3 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes MY Noah MYJ 

arw_m4 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes Morrison Noah MYJ 

arw_m5 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Thompson Noah MYNN 

arw_m6 
arw_cn + 

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes MY Noah YSU 

arw_m7 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes Morrison Noah MYNN 

arw_m8 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes Morrison Noah MYJ 

arw_m9 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson Noah MYNN 

arw_m10 
arw_cn +  

arw-n3_pert 

21Z SREF 

arw-n3 
yes Thompson Noah MYJ 

 

 

Table 12. FV3 members for NOAA/HMT FFaIR2017 

member IC BC 
Radar 

data 
mp_phy lw_phy sw-phy LSM PBL 

fv3_cn 
00Z 

GFSa 
- no Thompson GFDL GFDL Noah YSU 
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Table 13 lists SSEF members for the NOAA/HMT FFaIR2018, with a total 15-member (13 

ARW and 2 FV3) non-cycled 3DVAR-based ensemble consisting IC/LBC perturbations and 

mixed physics options. All model domains and data flow are the same as in the HWT component. 

Table 13. SSEF members for the NOAA/HMT FFaIR2018. NAMa and NAMf refer to 12 km NAM 

analysis and forecast, respectively. ARPSa refers to ARPS 3DVAR and cloud analysis 

Member IC BC 
Radar 

data 
Microphy LSM PBL 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_m2 
arw_cn +  

arw-p1_pert 

21Z SREF 

arw-p1 
yes NSSL Noah YSU 

arw_m3 
arw_cn +  

arw-n1_pert 

21Z SREF 

arw-n1 
yes NSSL Noah MYNN 

arw_m4 
arw_cn +  

arw-p2_pert 

21Z SREF 

arw-p2 
yes NSSL Noah MYJ 

arw_m5 
arw_cn +  

arw-n2_pert 

21Z SREF 

arw-n2 
yes Morrison Noah YSU 

arw_m6 
arw_cn + 

nmmb-p1_pert 

21Z SREF 

nmmb-p1 
yes Morrison Noah MYJ 

arw_m7 
arw_cn +  

nmmb-n1_pert 

21Z SREF 

nmmb-n1 
yes P3 Noah YSU 

arw_m8 
arw_cn +  

nmmb-p2_pert 

21Z SREF 

nmmb-p2 
yes P3 Noah MYNN 

arw_m9 
arw_cn +  

nmmb-n2_pert 

21Z SREF 

nmmb-n2 
yes Thompson Noah MYNN 

arw_m10 
arw_cn +  

arw-n3_pert 

21Z SREF 

arw-n3 
yes Thompson Noah MYJ 

arw_m11 00Z ARPSa 00Z NAMf yes Morrison Noah MYJ 

arw_m12 00Z ARPSa 00Z NAMf yes P3 Noah MYJ 

arw_m13 00Z ARPSa 00Z NAMf yes NSSL Noah MYJ 

fv3_m14 GFS - no Thompson Noah MYNN 

fv3_m15 GFS - no NSSL Noah MYNN 
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An example flash flood forecast case during FFaIR is the West Virginia Flash Flood occurred 

during 23-24 June 2016. It measured max gauge of 9.37 inches at Maxwelton, WV. The Elk River 

high reached 33.37 ft. The consequence is 23 fatalities with 15 in Greenbrier Co alone.  44 of 55 

WV counties were placed in State Emergency. The CAPS HMT FFaIR2016 phase did capture the 

entire episode during the regular operation period. 

Figure 5 shows the Multi-Radar Multi-Sensor (MRMS) precipitation estimation (QPE) of the 

12 h, and 24 h accumulated precipitation valid at 00 UTC June 24, 2016. Figures 6 and 7 plot the 

24 h and 12 h QPF in the form of probability matching mean from CAPS HMT SSEF. The 

forecasted heavy 24 h precipitation maxima over WV in Figure 6 are 378 and 337 mm, respectively, 

compared to MRMS’s 623 mm in Figure 6b. The PM forecast values are more close to the max 

gauge recorded (238mm) in Maxwelton, WV. Figures 8 and 9 are example neighborhood 

probabilities. They demonstrate great values for the CAPS SSEF‘s ability to predict the  intensive 

flash flood occurrence 24 h or even 48 h in advance,  

 
Figure 5. MRMS QPE: (a) 12 h accumulated precipitation, 12-00 UTC, (b) 24 h accumulated 

precipitation, 00-00 UTC, valid at 00 UTC June 24, 2016. 

 
Figure 6.Probability matched mean forecast 24 h accumulated precipitation, valid at 00 UTC June 24, 

2016. (a) 48 h forecast, (b) 24 h forecast 

b a 

b a 
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Figure 7. Same as Figure 6, except for 12 h accumulated precipitation. 

 
Figure 8. 48 h forecast of neighborhood probability of 24 h QPF exceeding (a) 24 h Flash Flood 

Guidance (FFG), and (b) exceeding 3 inches, valid at 00 UTC June 24, 2016. 

 

 
Figure 9. 48 h forecast of neighborhood probability of 24 h QPF exceeding (a) 24 h Flash Flood 

Guidance (FFG), and (b) exceeding 3 inches, valid at 00 UTC June 24, 2016. 

 

1.4 GSI+EnKF based data assimilation and ensemble forecast 

From 2016 to 2019 SFEs, CAPS continued realtime EnKF based data assimilation and storm-

scale ensemble forecasting experiment. Different from the years in 2014 and 2015 when only 

CAPS EnKF was used in assimilating radar data as well as surface and profiler data in a one hour 

b a 

b a 

b a 
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window from 2300 UTC to 0000 UTC, the operational GSI EnKF was combined with CAPS EnKF 

since 2016 SFE.  

In 2016 SFE, the GSI EnKF was used hourly in a 6-hour long cycling period (1800 – 0000 

UTC) with RAP/HRRR GSI data stream (except satellite data and Mesonet1 data), followed a one 

hour frequent radar data assimilation in 15 min interval using CAPS EnKF, to further improve the 

ensemble initial conditions. First, a 40-member WRF-ARW ensemble was initiated at 1800 UTC 

over the same 3-km grid CONUS domain, using the 18Z NAM analysis with perturbations 

retrieved from SREF members.  This ensemble was configured with initial perturbations and 

mixed physics options to provide input for EnKF analysis. Unlike in previous years, each member 

used Thompson microphysics (while in 2014 & 2015 seasons when WSM6 was used) with 

different parameter settings in graupel density. No radar data was analyzed for this set of runs until 

2300 UTC. RAP/HRRR GSI data stream (except satellite data and Mesonet1 data) were 

assimilated hourly from 1900 to 0000 UTC using the GSI EnKF system. Radar reflectivity and 

radial velocity data were assimilated using CAPS EnKF system from 2300 to 0000 UTC every 15 

min. A 12-member ensemble forecast of 60 h long followed using the 0000 UTC final GSI+EnKF 

analyses in 2016 SFE. Among them, nine were initiated using selected ensemble member analyses 

with mixed IC/LBC perturbations and physics options, and three were deterministic forecasts from 

the 0000 UTC ensemble mean analysis with three different microphysics schemes. Figure 10 is a 

workflow diagram showing the CAPS GSI+EnKF cycling process in 2016 SFE.  
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Figure 10. Diagram showing GSI+EnKF cycles in 2016 SFE.  

 

In 2017 and 2018 SFEs, the same GSI+EnKF workflow as in 2016 was utilized, except that a 

10-member ensemble forecast (run for 48 hours) was following using the final EnKF analyses at 

0000 UTC using multi-physics multi-microphysics WRF-ARW configurations (see Tables 14 and 

15). 

Table 14. Configuration of the GSI+EnKF-based 0000 UTC ensemble forecasts for 2017 SFE 

Member IC BC Microphysics LSM PBL 

enkf_m1 enk_m1a 00Z NAMf Thompson Noah MYJ 

enkf_m2 enk_m2a 
21Z SREF 

arw-p1 
Morrison Noah YSU 

enkf_m3 enk_m15a 
21Z SREF 

arw-n1 
MY Noah MYNN 

enkf_m4 enk_m40a 
21Z SREF 

nmmb-p1 
Morrison Noah MYJ 



24 
 

enkf_m5 enk_m8a 
21Z SREF 

nmmb-n1 
Thompson Noah YSU 

enkf_m6 enk_m36a 
21Z SREF 

arw-p2 
MY Noah MYNN 

enkf_m7 enk_m39a 
21Z SREF 

arw-n2 
MY Noah YSU 

enkf_m8 enk_m17a 
21Z SREF 

nmmb-p2 
NSSL Noah MYJ 

enkf_m9 enk_mn 00Z NAMf Thompson Noah MYJ 

enkf_m10 enk_mn 00Z NAMf NSSL Noah MYJ 

 

Table 15. Configuration of the GSI+EnKF-based 0000 UTC ensemble forecasts for 2018 SFE 

Member IC BC Microphysics LSM PBL 

enkf_m01 enk_m01a 00Z NAMf Thompson Noah MYJ 

enkf_m02 enk_m02a 
21Z SREF 

arw-p1 
NSSL Noah YSU 

enkf_m03 enk_m15a 
21Z SREF 

arw-n1 
NSSL Noah MYNN 

enkf_m04 enk_m40a 
21Z SREF 

nmmb-p1 
Morrison Noah MYJ 

enkf_m05 enk_m8a 
21Z SREF 

nmmb-n1 
P3 Noah YSU 

enkf_m06 enk_m26a 
21Z SREF 

arw-p2 
NSSL Noah MYJ 

enkf_m07 enk_m39a 
21Z SREF 

arw-n2 
Morrison Noah YSU 

enkf_m08 enk_m12a 
21Z SREF 

nmmb-p2 
P3 Noah MYNN 

enkf_m09 enk_mn 00Z NAMf Thompson Noah MYJ 

enkf_m10 enk_mn 00Z NAMf NSSL Noah MYJ 

 

In 2019 SFE, enhanced GSI-based EnKF system was used both to assimilate the RAP/HRRR 

GSI data stream (except for restricted data) at hourly intervals from at 1900 through 0000 UTC 

over the CONUS domain and in the final hour from 2300–0000 UTC to assimilate radar data every 

15 minutes. This is unlike previous years when CAPS EnKF was used for radar data assimilation. 

The first 10 members of the EnKF analyses at 0000 UTC were used to initialize 10 ensemble 
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forecasts that were run to 48 hours, and the WRF forecast model used different physics 

combinations to account for model error. LBCs were from the SREF forecasts from the 2100 UTC 

cycle.  Table 16 shows the configurations of the 10 forecast members. 

Table 16. Configuration of the EnKF ensemble forecasts for 2019 SFE 

Member IC BC Microphysics LSM PBL 

enkf_m01 enk_m01a 00Z NAMf Thompson Noah MYJ 

enkf_m02 enk_m02a 
21Z SREF 

arw-p1 
NSSL Noah YSU 

enkf_m03 enk_m15a 
21Z SREF 

arw-n1 
NSSL Noah MYNN 

enkf_m04 enk_m40a 
21Z SREF 

nmmb-p1 
Morrison Noah MYJ 

enkf_m05 enk_m8a 
21Z SREF 

nmmb-n1 
P3 Noah YSU 

enkf_m06 enk_m26a 
21Z SREF 

arw-p2 
NSSL Noah MYJ 

enkf_m07 enk_m39a 
21Z SREF 

arw-n2 
Morrison Noah YSU 

enkf_m08 enk_m12a 
21Z SREF 

nmmb-p2 
Thompson Noah MYNN 

enkf_m09 
enk_m34a 

 

21Z SREF 

arw_n6 
Thompson Noah 

YSU 

 

 
enkf_m10 

enk_m37a 

 

21Z SREF  

arw-p6 
NSSL Noah 

MYNN  

 

 
 

Development and testing of GSI-based hybrid capabilities and the ability to directly assimilate 

radar data within the hybrid system has been performed in the reduced domain because of the 

computational efficiency of the GSI system for the full-resolution radar data. The computation 

domain used in the test is approximately 1/36 of the size of the CONUS domain, which contains a 

mesoscale convective system (MCS). 30-minute forecasts from the final analysis of GSI 3DVar, 

EnKF, En3DVar, and hybrid En3DVar with 80% flow-dependent ensemble covariance are 

compared in Fig. 11, which are valid at 0030 UTC. While all four experiments maintains the main 

convective line structure in the MCS, two convective systems on the west of the domain exhibit 

rapid deterioration in terms of intensity and structure in all experiments except for hybrid En3DVar. 

This is mainly due to spread deficiency in EnKF and En3DVar and the lack of cross-covariance in 

3DVar. The results shows the benefit of static background error covariance in the hybrid system.  
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Figure 11. Comparisons of (a) the observed and (b-e) simulated composite reflectivity for 

(b-d) backgrounds and (e-g) analyses at 0030 UTC May 27 2016/30-min forecast that 

directly assimilate reflectivity in (b) 3DVar, (c) EnKF, (d) En3DVar, and (e) hybrid 

En3DVar with 20% weight given to the static background error covariance. 

 

 

1.5 SSEF QPF Products and verifications 

1.5.1 Localized probability matched mean (LPM) 

An advanced and computationally efficient ensemble consensus QPF product, a Localized 

Probability-Matched mean or LPM mean, was developed by CAPS for the HMT FFaIRs (Snook 

et al. 2019, 2020). The standard Probability-Matched (PM) mean is obtained by replacing 

ensemble mean field with values from entire ensemble members ranked over the entire domain 

grids (globally). The “global” PM generally can improve results compared to the simple ensemble 

mean of the output value at each grid point averaged over all ensemble members. Some issues can 

arise from using the values over the entire domain, especially for large domains such us the 

CONUS domain, where rain amounts from one part of the domain may be mapped to grid points 

on the opposite side of the country. Even though the resulting PM mean field has been found to be 

more skillful than a simple ensemble mean, it also exhibits a loss of small-scale structure compared 

to individual ensemble members.  When applied over a large forecast domain, the PM mean also 

has the drawback of combining precipitation information from very different mesoscale and 

geographic environments, such as coastal sea-breeze convection and stratiform precipitation over 
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the northern plains.  To ameliorate this issue, in the LPM mean, the domain is broken into 

overlapping subdomains and the process repeated for each subdomain thus preventing the distant 

reassignment.  

The LPM algorithm developed by CAPS applies a PM mean algorithm over a series of local 

patches.  To calculate the LPM, the domain is divided into a set of rectangular local patches.  Each 

patch is centered within a larger, rectangular calculation area.  The patches do not overlap, but the 

calculation areas of adjacent or nearby patches may overlap.  A conceptual illustration of this setup 

is shown in Figure 12. 

 

 

Figure 11. Conceptual illustration of the patches used to generate localized probability matched mean 

products.  Highlighted are two patches (the darker magenta and blue shaded regions) along with their 

associated calculation areas (the lighter magenta and blue shaded regions surrounding the patches).  The 

gray lines indicate the edges of model grid cells. 
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 To generate the LPM, the PM mean is calculated for each patch over the subdomain contained 

within the calculation region associated with that patch.  The portion of the PM mean field from 

the calculation area that falls within the patch itself is returned for each patch, and these patches 

are stitched together to form a single field for the full CONUS domain.  Finally, a Gaussian 

smoother is applied to the stitched patches to minimize discontinuities along patch boundaries.  

Discontinuities are also minimized by the overlap of adjacent calculation areas and the use of 

relatively small patches; in preliminary testing, discontinuities were not an issue for patches 

smaller than approximately 10 by 10 grid points.   

 Figure 13 (cited from Snook et al. 2020) shows FSS scores (13a) and the spatial structure 

of 6-h accumulated precipitation from 18-24 h forecast in LPM, PM, and simple mean forecasts 

compared to that of observed 6-h precipitation (from Stage IV data) in terms of variance spectra 

(13b), analyzed for the full 2018 HWT SFE period.  The simple mean performs quite poorly in 

terms of FSS, failing to attain a skillful FSS at any scale.  The PM mean exhibits a minimum 

skillful scale of approximately 95 km, compared to 65-75 km (unsmoothed) and 80-100 km 

(smoothed) for the LPM means.  The unsmoothed LPM outperforms the PM in terms of FSS at all 

scales; smoothing reduces FSS performance of the LPM slightly, though even the smoothed LPM 

outperforms PM at scales larger than the minimum skillful scale.  The point-wise and patch-wise 

LPM configurations perform similarly, although when weak smoothing is applied, LPM calculated 

using larger local patches exhibits slightly higher FSS (Figure 13a). Figure 13b shows that the 

overly-smooth simple mean exhibits much lower variance than the observations at all scales 

smaller than 1000 km, while the PM and LPM means remain much closer to the observed spectrum.  

However, the PM mean over-predicts variance at scales larger than about 300 km, while the spectra 

of the LPM means remain very close to the observed spectrum even at the largest scales.  It is also 

showing that LPM patch size has little impact on variance spectra for patches of up to 40×40 grid 

points.  Difference in variance spectra among LPM configurations is largely attributable to 

smoothing; when smoothing is applied, variance is drastically reduced for scales smaller than 

about 40 km (this is expected, as smoothing using a Gaussian filter with a standard deviation of 

one grid point is designed to minimize near-grid-scale noise and patch-boundary discontinuities). 

The LPM mean performs similarly to the PM mean in terms of ETS, and exhibits superior bias 

behavior, particularly when weak smoothing is applied, though for ensembles with different bias 

properties tuning of the smoother might be required.  When spatial structure is considered, the 

LPM mean outperforms the PM and simple means, exhibiting a substantially smaller minimum 

skillful scale in terms of FSS, and higher FSS overall for scales greater than around 100 km.  The 

LPM mean also exhibits superior precipitation variance spectra compared to the simple mean 

(which underpredicts variance at small scales) and the PM mean (which overpredicts variance at 

large scales).  Varying the size of the LPM patch from a single point to 40 x 40 points resulted in 

only small changes to precipitation forecast performance for the objective skill metrics considered. 
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Figure 13.  Mean (a) fractions skill score (FSS) and (b) normalized variance spectra, plotted as a function 

of horizontal length scale, calculated over the 2018 HWT SFE period, for 6-h accumulated precipitation in 

18-24-h CAPS SSEF forecasts valid 0000 UTC the day after initialization.  Shown are the simple mean 

(light green), PM mean (dark green), and various LPM mean configurations.  LPM means include 

smoothed (dotted lines) and unsmoothed (solid lines) variants using both point-wise (orange) and patch-

wise algorithms, including patches of three sizes (red: 10×10, purple: 20×20, blue: 40×40).  The minimum 

skillful FSS value is indicated by the horizontal gray line in panel (a). The mean normalized variance 

spectrum of stage IV rainfall accumulation is shown (thick black line) for comparison in panel (b). [from 

Snook et al. 2020] 

 

While the LPM mean, even in its patch-wise form, is more computationally expensive than the 

PM and simple means, its ability to retain local structures and magnitudes is valuable.  

Precipitation forecasts using the patch-wise LPM mean were produced by CAPS during the 2017 

and 2018 Hydrometeorology Testbed Flash Flood and Intense Rainfall (FFaIR) experiments, and 

were subjectively rated as more useful than simple or PM mean forecasts by FFaIR participants.   

Based upon these tests, the patch-wise LPM mean was recommended for operational 

implementation and has been tested in a prototype version 3 of the High Resolution Ensemble 

Forecast (HREFv3), where it was found to exhibit good performance, particularly in terms of bias, 

though it underperformed PM for ETS at low precipitation amounts.  

Figure 14 compares PM and LPM with point-wise and neighborhood verification using 

FFaIR2017 dataset.  For point-wise verification the PM mean slightly outperformed the LPM at 

both the 0.01 and 0.5 inch thresholds (Figures not shown).  For the 12 and 24 km neighborhoods 

the LPM slightly outperformed the PM mean at the lower threshold, but not at the higher rainfall 

threshold where the PM slightly outperformed the LPM at both neighborhoods examined. 
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Figure 14.  ETS scores comparing the LPM mean to the PM mean for point verification (black) and 

neighborhood verifications of 12 km (blue) and 24 km (red) neighborhoods for 3-h rainfall at 0.01 inch 

threshold (left) and 0.5 inch (right). 

1.5.2 Verifications of different ensemble groups 

Post season performance evaluation was performed by examining ensemble spread, RMSE, 

ETS, and Area under ROC. Verification of rainfall forecast products has been done using the 

Multi-Radar Multi-System (MRMS) rainfall estimates.  There are two focuses in the evaluation 

phase: One is to examine ensemble characteristics and QPF performance among three CLUE WRF 

sub-ensembles CAPS contributed: the mixed physics + radar (called mixed hereafter), single 

physics + radar (single), and stochastic physics + radar (stochastic). The second is to examine 

performance of FV3 ensemble at convection-allowing grid and how it compares to WRF ones. 

Figure 15 shows the domain and season averaged ensemble spread of some variables for the 

three CLUE WRF sub-ensembles. It shows that the mixed-physics, which is configured with 

IC/LBC perturbation and multi-physics members, ensemble has the largest spread over the other 

two ensembles. Interestingly, the ensemble with additional stochastic perturbations show little 

spread improvement or not at all (as in HGT500). Figure 16 shows RMSE and the ensemble spread 

of ensemble mean 1-h precipitation for the three ensembles. None of the sub-ensembles has its 

spread matching the mean error except morning hours when convection is inactive.  
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Figure 15. Ensemble spread averaged over entire domain and throughout the SFE2018 season 

for the three sub-ensembles: mixed, single, and stochastic. 

 
Figure 16. RMSE from ensemble mean (solid) and ensemble spread (dash) of the 1-h 

accumulated precipitation forecast from the three CLUE sub-ensembles: mixed, single, and 

stochastic. 

Equitable Threat Scores (ETS) for 3-hour accumulated precipitation forecasts for the 0.01 and 

0.5 inch thresholds are shown in Figure 17 from all individual members and in Figure 18 from 

probability matched mean. All three sub-ensembles have comparable ETS values individually (see 

Figure 17). While the probability matched mean ETS from the stochastic ensemble are the lowest 

except during the first 18 h for the 0.5 inch threshold (Figure 18).  
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Figure 17. ETS of 3-h accumulated precipitation forecast from all members of the three CLUE 

sub-ensembles: mixed, single, and stochastic. 

 

 

 

 
Figure 18. ETS of probability matched mean of 3-h accumulated precipitation forecast for the 

three CLUE sub-ensembles: mixed, single, and stochastic. 

 

Figure 19 presents the area under ROC (also called AUROC) of 3-h accumulated precipitation 

probabilistic forecast for the three CLUE WRF sub-ensembles, with one set (dashed lines) 

considering a neighborhood of 25-km radius that removes some of the common slight malposition 

errors. Again, the mixed-physics ensemble has the highest AUROC among the three. The 

ensemble with additional stochastic perturbations doesn’t show any performance benefit.  
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Figure 19. Area under ROC of 3-h accumulated precipitation forecast for the three CLUE sub-

ensemble, with dashed lines representing a 25km neighborhood applied. 

 

The precipitation forecasting skill of FV3 ensemble members with advanced physics schemes 

(see Table 6) is also evaluated to demonstrate how well the Finite-Volume Cubed-Sphere (FV3) 

model predicts precipitation over Contiguous United States (CONUS) when run at a high enough 

resolution to explicitly model convective storms. The physical parameterization schemes available 

in FV3 were mostly from GFS and not necessarily suitable for convective-scale predictions. CAPS 

scientists implemented into FV3 several advanced physics schemes taken from a more established 

and most widely used convective-scale model, the WRF model, including schemes for treating 

turbulence exchanges in atmospheric boundary layer (PBL) and those for representing cloud and 

precipitation processes (microphysics). 

FV3 is shown to be capable of predicting precipitation with skill comparable to those of WRF. 

The precipitation forecast is somewhat sensitive to the microphysics schemes used, but not 

particularly sensitive to the PBL schemes tested. It is concluded that the newly selected FV3 model, 

when equipped with appropriate physics parameterization schemes, can serve as the foundation 

for the next-generation regional forecasting models of the NWS. 

Figure 20 show the ETS of hourly precipitation with a 45km neighborhood range (labelled 

NETS in the figure caption text) from one FV3 control member, one WRF control member, and 

the 00UTC initiated operational HRRR version 2 forecast. The HRRR forecasts only extend to 18 

hours. The 3-km operational HRRR forecasts has slightly higher NETSs for 99th percentile and 

higher NETSs between 12 and 18 hour forecasts for 99.9th percentile (Figure20a and b), while the 

CAPS WRF forecast and FV3 are comparable after hour 6. The differences of bias scores among 

the operational HRRR, CAPS FV3 and WRF are very small (Figure 20c and d). 
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Figure 20. NETS (a, b) and bias (c, d) (using a 45 km r) for FV3 (FV3-CAPS), CAPS WRF (WRF-

CAPS), and operational HRRR version 2. FV3-CAPS is the FV3 forecast using the Thompson and 

SA-MYNN schemes, while WRF-CAPS is the WRF forecast using the same physics package as the 

operational HRRR. The lines are mean values for the 25 cases during the 2018 HWT SFE. The 

shading indicates the 2.5th to 97.5th percentile range of possible mean values based on 10,000 

bootstrap re-samplings from the 25 cases for each forecast. Both CAPS WRF and operational 

HRRR use advanced data assimilation for their initial conditions. CAPS WRF forecasts were run 

for 60 hours, while the operational HRRR was run for 18 hours. Only forecasts up to 18 hours are 

shown for bias (c, d). NETS and bias are calculated on the native grid for each forecast. 

1.5.3 Verification of GSI EnKF ensemble  

Analysis was also performed to evaluate performance between the forecasts initiated using 

GSI+EnKF final analysis ensemble and using a single 3DVAR analysis with complex cloud 

analysis at 00 UTC. Further tuning on GSI and CAPS EnKF was performed during SFE2017. 

Figure 21 show ETS scores of the ensemble probability matched mean for both ensembles from 

2016 and 2017 HWTs. The results show that the relative performance of the EnKF-based forecasts 

to the 3DVAR-based forecast is significantly improved in 2017 compared to those in 2016 in terms 

of the Equitable Threat Scores (ETSs) for the 1-hour rainfall accumulation exceeding 0.1 in and 

0.25 in thresholds. 
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Figure 21. Equitable Threat Scores (ETSs) of 1-hour rainfall accumulation against Multi-Radar Multi-

Sensor (MRMS) rainfall estimates ≥ (a) 0.1 and (b) 0.25 inches for the non-cycled 3DVAR-based and cycled 

GSI+EnKF-based members averaged over the 2016 and 2017 HWT SFE periods.  
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2.    PROGRESS AGAINST MILESTONES/SCHEDULES 

 

Itemized tasks for Year 2016-2017: 

Task 1. Develop and test software to interface the NMMB model with the CAPS SSEF 

system software, including ingest of CAPS 3DVAR/cloud analysis fields for IC, and 

interpolation of NMMB forecasts to a common grid for post-processing.   

Task 2. Run 3 km CONUS baseline SSEF realtime forecasts using CAPS 3DVAR/cloud 

analysis DA with radar data plus SREF IC and LBC perturbations. 

• Daily 10-member SSEF forecasts to 60 hours from 0000 UTC for 7-10 weeks starting mid-

April 2016, and contribute to a coordinated pool of 3-km CONUS domain ensembles 

• Forecasts will use WRF-ARW and NMMB dynamic cores with multi-physics options 

• Forecast products will be generated and sent to the HWT 
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Task 3. Develop and test new EnKF DA capabilities based on GSI and CAPS’s parallel 

EnKF DA system for the 3 km CONUS domain  

• Develop and test GSI-based EnKF capabilities for the 3 km CONUS domain with 

operational RAP/HRRR prepbufr data stream  

• Enhance CAPS’s EnKF to support better support Thompson microphysics scheme used by 

ARW-based HRRR, including the consistent reflectivity operators and update of total 

number concentrations 

• Interface the CAPS parallel EnKF DA system with the GSI-based EnKF system to allow 

for sufficiently fast realtime assimilation of high-density high-frequency radar data (the 

parallelization strategy in GSI-based EnKF is not fast enough for assimilating millions of 

radar data) 

Task 4.   Perform cycled EnKF DA and ensemble forecasts based on ARW core during the 

2016 HWT Spring Experiment in near realtime, with 15-min DA cycles for one hour. 

• Hourly GSI-based EnKF assimilating operational RAP/HRRR data stream 1800-2400 

UTC, with 15-minute interval radar DA using CAPS’s EnKF system as a follow-on step to 

the GSI-based EnKF at 2300 and 2400 UTC and by itself at 2315, 2330 and 2345 UTC.  

• Ensemble forecasts of ~20 members plus a deterministic forecast from final EnKF analyses 

at 0000 UTC up to 60 hours, using the same multi-physics WRF-ARW configurations as 

the baseline SSEF system. 

• The EnKF-based ensemble forecast products made available to HWT for evaluation in 

quasi-realtime. The ensemble forecasting performance will be compared with that of 

baseline SSEF in post HWT evaluation. 

The project is on schedule and all tasks proposed for the year 2016-2017 have been 

completed (Tables 16).  

 

Table 46. Proposed and accomplished tasks. 

Proposed tasks Tasks completed 

Task 1. NMMB model 

addition 

Code development and testing, 

post-processing 

Completed 

Task 2. Run 3 km CONUS 

baseline SSEF realtime 

forecasts using CAPS 

3DVAR/cloud analysis DA 

with radar data plus SREF IC 

and LBC perturbations, for 7 

weeks 

Daily 10-member SSEF forecasts 

to 60 hours for 7-10 weeks 

Completed 

(24 members, 7 weeks) 

WRF-ARW and NMMB dynamic 

cores with multi-physics options 

Completed 

products  generated and sent to the 

HWT 

Completed 
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Task 3. Development and 

testing of new ensemble DA 

capabilities 

GSI-based EnKF capabilities for a 

3 km CONUS domain with 

operational RAP/HRRR prepbufr 

data stream 

Completed 

Enhance CAPS’s EnKF to support 

better support Thompson 

microphysics 

Completed 

Interface the CAPS-EnKF-based 

DA system with the above GSI-

based EnKF system  

Completed 

Task 4. Quasi-realtime cycled 

EnKF DA and ensemble 

forecasts during the 2016 

HWT Spring Experiment 

Hourly GSI-based EnKF with 15-

minute interval radar DA for an 

hour using CAPS’s parallel EnKF 

system  

Completed in realtime 

Ensemble forecasts of 20 members 

plus a deterministic forecast from 

EnKF analysis in non-realtime 

Completed in realtime 

(12 members) 

The EnKF-based ensemble 

forecast products made available 

to HWT 

Completed in realtime 

Performance comparison of the 

baseline and EnKF SSEFs in post 

season 

Completed 

 

 

 

Itemized tasks for Year 2017-2018: 

Task 1. Perform evaluations on the baseline SSEFs contributed by CAPS, NSSL, NCAR, 

and compare the performance of sub-ensembles consisting of different members from the pool, 

and suggest optimal configurations based on limited ensemble size (~10) that may potentially 

be implemented operationally. Make recommendations for EMC and GSD/ESRL for such 

configurations.   

Task 2. Coordinating with NSSL and other contributing organizations, design improved 

3DVAR-initialized SSEFs of 10-20 members and run them in realtime, providing forecast 

products to HWT Spring Experiment of 2017 for evaluation. 

Task 3. Perform cycled EnKF DA and ensemble forecasts during the 2017 HWT Spring 

Experiment in realtime, with 10-min radar data cycles for one hour. 
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• Hourly GSI-based EnKF assimilating operational RAP/HRRR data stream 1800-2400 

UTC, with 10-minute interval radar DA using CAPS’s EnKF system as a follow-on step to 

the GSI-based EnKF from 2300 through 0000 UTC. 

• Ensemble forecasts of ~20 members plus a deterministic forecast from final EnKF analyses 

at 0000 UTC up to 60 hours. 

• Subjectively and objectively evaluate and compare EnKF-based ensemble forecasts with 

the baseline ensemble forecasts. 

Task 4.   Develop GSI-based hybrid DA capabilities for the 3 km CONUS grid. 

• Develop, test and tune GSI-based coupled EnKF-En3DVar hybrid capabilities for the 3 km 

CONUS domain with operational RAP/HRRR GSI data stream, and the ability to directly 

assimilate radar data within the hybrid system.  

• Run non-realtime hybrid DA experiments and tests for cases selected from realtime 

experiments, and compare the hybrid performance against GSI 3DVAR and pure EnKF, 

and determine the advantage of the hybrid scheme (if any) over pure EnKF. 

Tasks for the year 2017-2018 have been completed.  

 

Table 17. Proposed and accomplished tasks. 

Proposed tasks Tasks completed 

Task 1. Evaluations on the 

baseline SSEFs 

Post-season evaluations Completed 

 

Task 2. Design, Run 3 km 

CONUS SSEF realtime 

forecasts using CAPS 

3DVAR/cloud analysis DA 

with radar data plus SREF IC 

and LBC perturbations 

Design and test 3DVAR-based 

SSEF (10-20 members) for 2017 

Completed 

 

Realtime forecast runs and 

products  generated and sent to the 

HWT 

Completed 

Task 3. Perform cycled EnKF 

DA and ensemble forecasts 

for 2017 HWT 

GSI-based EnKF capabilities for a 

3 km CONUS domain with 

operational RAP/HRRR prepbufr 

data stream 

Completed 

 

Realtime runs of up to 20 

members and provide product to 

HWT 

Completed 

Subjectively and objectively 

evaluate 

Completed 

Task 4. Develop GSI-based 

hybrid DA capabilities 

Develop, test and tune GSI-based 

coupled EnKF-En3DVar hybrid 

capabilities 

Completed 
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Run non-realtime hybrid DA 

experiments and tests for cases 

Completed 

 

 

 

Itemized tasks for Year 2018-2019: 

Task 1. In collaboration with GSD/NSSL/EMC, implement computationally efficient 

parallelization strategies within the GSI-based EnKF system. For optimal efficiency, 

conventional data will likely continue to use the strategy currently employed by GSI-based 

EnKF while for radar and dense satellite data, the domain-decomposition strategy used in 

CAPS’s EnKF system may be used.   

Task 2. Fully execute realtime GSI-based EnKF and EnKF-En3DVar hybrid DA with 

RAP/HRRR GSI data stream and full volume radar data during 2018 HWT Spring Experiment. 

• Hourly GSI-based 40-50 member (depending on available computational resources) EnKF 

(for updating perturbation ICs) and En3DVar hybrid (for updating control analysis that 

also replaces the ensemble mean of EnKF DA) DA assimilating RAP/HRRR GSI data 

stream from 1800-2400 UTC, with 10-minute interval radar DA as part of the GSI-based 

ensemble DA between 2300 and 2400 UTC 

• Ensemble forecasts of up to 50 members from the ensemble DA ICs plus a deterministic 

forecast from the En3DVar control analysis up to 60 hours, using ARW and NMMB 

dynamic cores with multi-physics configurations. 

• Further refined ensemble forecast products available to HWT for evaluation in realtime. 

Task 3. Compare forecasts using EnKF and hybrid En3DVar DA methods. 

Tasks for the year 2018-2019 were completed. 

 

Table 18. Proposed and accomplished tasks. 

Proposed tasks Tasks completed 

Task 1. Optimal GSI-based 

EnKF system 

Computationally efficient 

parallelization strategies 

Completed 

 

Task 2. Perform realtime 

hybrid DA with RAP/HRRR 

GSI data stream and full 

volume radar data and 

ensemble forecasts for 2018 

HWT 

GSI-based EnKF capabilities for a 

3 km CONUS domain with 

operational RAP/HRRR prepbufr 

data stream 

Completed 

Realtime runs of up to 50 

members and provide product to 

HWT 

Modified for selected 

cases in non-realtime 
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Refined ensemble forecast 

products 

Completed  

Task 3. Compare forecasts 

using EnKF and hybrid 

En3DVar DA methods 

Post season evaluations Completed 

 

 

3.    ISSUES DELAYING CURRENT OR FUTURE PROGRESS 

 

Transition from supercomputer computer systems used in 2016 HWT to new systems in TACC 

Stampede-KNL and PSC Bridges caused some headache due to platform configuration issues 

related to hardware and software. Right before the start of 2017 HWT (on May 1st), CAPS was 

forced to move 3DVAR-based ensemble forecast (23 total members) to a different system, 

Lonestar5, due to the delay in TACC transition from Stampede to Stampede2. The Bridges at PSC 

is also a new machine for the project (for the GSI+EnKF based ensemble). Despite these 

difficulties, CAPS managed to complete pre-season testing work. Due to a number of unexpected 

hardware- and network-related issues on both Lonestar5 and Bridges, many member forecasts 

were failed to run during the HWT SFE period. Missing members were reproduced after the SFE 

period that resulted in delayed post-season evaluation. These mechanical problems also affected 

development and testing of the GSI-based hybrid capabilities. The autopilot of the CAPS real-time 

Task Manager was interrupted frequently, requiring manual restoration and resubmission of jobs. 

The CAPS Scientist in charge of development of hybrid system had to step in to help. 

For 2018 HWT SFE, the CAPS EnKF system was still used to assimilate radar data instead of the 

GSI-based EnKF system because of the performance issue with the latter. The GSI alone, which 

is used to produce observation priors, takes about 15 minutes to process both reflectivity and radial 

velocity data from the entire WSR-88D network on a large memory node, whose capacity is much 

bigger than those typically available on many supercomputers (e.g. It can run only on the large 

memory node (LSM) with 3 TB RAM on the PSC bridges system). Adding to time required to 

pre-process observations and to run the GSI-based EnKF system, the current GSI-based EnKF 

system is not practical with dense radar observations. For real-time applications, severe 

observation thinning would be necessary. On the other hand, the CAPS EnKF system is very 

efficient and does not require pre-calculated observation priors nor observation thinning. Radar 

DA takes about 4.5 minute using the CAPS EnKF system on 1014 cores, which is more realistic 

for CONUS 3-km grid real-time forecasts. Comparison of EnKF and hybrid En3DVar DA methods 

will be performed using several selected cases over a reduced domain. 
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4.    INTERRACTION WITH NOAA 

 
Regular meeting every three weeks staring from January with NOAA HWT team prior to HWT 

Spring Forecasting Experiment to discuss/coordinate ensemble configuration and product list, and 

logistics (Adam Clark, Israel Jirak, Steve Weiss, Kent Knopfmeier, Chris Melick, etc); weekly 

meeting within CAPS HWT team;  

PIs Participated daily weather briefing during the HWT SFE weeks 

Participating NOAA organized Ensemble Design Workshop in NCEP in August 2016 (Youngsun 

Jung, Fanyou Kong)  

Teleconference and email exchanges between WPC HMT team (Sarah Perfater, Ben Albright, 

James Nelson, Sarah Trojniak) and PIs to discuss science and logistic for the HMT FFaIR2019 

experiment. 

Nate Snook (June, 2017) and Keith Brewster (July 2017) participated in the FFaIR2017, and Keith 

Brewster participated in FFaIR2018 at WPC as external forecasters one week each and each 

presented a seminar covering the CAPS SSEF for the HWT and HMT and relevant ensemble 

products research.   

 

5.    PREVIOUSLY UNREPORTED CHANGES 

 

With the newly chosen FV3 model core in NOAA NGGPS program, CAPS is closely collaborated 

with GFDL to test FV3 system with nested 3-km CONUS CAM forecast and to contribute the 

Thompson and NSSL microphysics and MYNN and YSU PBL schemes into FV3 via CCPP. One 

FV3 forecast was run during both HWT and HMT periods using the University of Oklahoma’s 

local supercomputing facility Schooner at the courtesy support by the university. This work was 

not in the original proposal task list, but the effort by CAPS to run a new version of FV3 3-km 

forecast and provide realtime product to HWT is highly appreciated by HWT and HMT teams.  

For the 2018 HWT SFE season, the number of ensemble members for the EnKF-based ensemble 

is reduced from 12 to 10 because the NSSL microphysics scheme needs more nodes (25 

nodes/member) than other microphysics schemes (17 nodes/member). The Bridges in PSC has 

limited computing resources available to CAPS 2018 HWT runs.  

 

 



46 
 

6.    OUTCOMES FOR TRANSITION TO OPERATIONS 

 

SSEF forecast dataset in GRIB2 form were transferred to NOAA HWT in realtime 

SSEF dataset in GEMPAK form and GRIB2 form were transferred to HMT FFaIR in realtime. 

LPM implemented by NCEP in operational product suite. 

 

 

7.    BUDGET ISSUES 

n/a 

 

 


