FUTURE CHANGES IN SEASONAL CLIMATE PREDICTABILITY

Dillon Amaya, Nicola Maher, Clara Deser, Mike Jacox, Mike Alexander, Matt Newman, Juliana Dias, and Jiale Lou

Seasonal outlooks based on historical skill relationships are extremely useful...but

Actual skill – forecast skill derived from dynamical or statistical hindcasts of the real world Potential predictability (or "potential skill") – a "hard" predictability limit intrinsic to the chaotic nature of the climate system

Predictability has varied substantially in the past

Lou et al. (2023)

Will seasonal climate predictability change in the future?

Climate models project significant changes to ENSO and its teleconnections

(e.g., Maher et al. 2023; O'Brien and Deser 2022)

Ensemble mean DJF Nino3.4 std. dev. in 30-year windows

Model-analog framework

Barnett and Preisendorfer (1978)

If two states in the climate system are very close to each other, they can be called each other's "analog"

Model-analog:

• Using a model to predict the real world.

Perfect model-analog:

- Use a model to predict the same model.
- "Perfect" because resulting forecasts have no unconditional or conditional biases.
- Estimates limits to climate predictability.

Objective: Estimate anthropogenically forced changes in potential predictability using perfect model-analogs from large ensembles.

Date and Methods

Single model initial condition large ensembles (SMILEs): Nino3.4σ trend:

- CESMI 40 members
- CESM2 100 members
- GFDL-SPEAR 30 members
- GFDL-ESM2M 30 members
- MPI 100 members
- All data $2.5^{\circ} \times 2.5^{\circ}$, 1920-2100
- Will refer to potential predictability/skill simply as "predictability" or "skill"

Ensemble mean DJF Nino3.4 std. dev. in 30-year windows

Perfect model-analog forecast workflow:

- I. Extract SST for 30 year period (e.g., 1921-1950) in all large ensemble members.
- 2. Remove seasonal cycle. Remove ensemble mean.
- 3. Arbitrarily take Ist ensemble member as "truth".
- 4. Construct data libraries using other members. For example, all Januarys, all Februarys, etc.
- 5. "Initialize" with global SSTA and keep subsequent 24 months as the forecast target.
- 6. Choose analogs from library using RMSE.
- 7. Keep top 10 matches and subsequent 24 months as forecasts.
- 8. Repeat steps 3-7, treating each remaining ensemble member as "truth".
- 9. CESM1: 40 members x 12 months x 28 years = 13,400 forecasts with 10 members each
- 10. Repeat steps 3-8 for new 30 year period (e.g., 2071-2100).

Surface temperature

Temp. predictability increases, especially in tropics/at long leads

Shading: Change in ensemble mean potential skill (\triangle ACC)

Stippling: 80% members agree on Shading: Ensemble Sheading termsiehskill (AGA) petential skill (ACC)

Surface temperature

Sign/intensity of predictability changes are highly model dependent

Changes consistent for probabilistic skill metrics and other variables

Surface temperature

Nino3.4 σ trend:

Analog forecast
$$= f_i(t, x, y) = \bar{f} + f'_i$$
 Signal-to-noise $= \left(\frac{\sum \bar{f}^2}{\sum f'^2}\right)^{1/2}$

Sea surface temperature

Sea surface temperature

Summary:

- Potential predictability will likely change in the future as a distinct response to anthropogenic climate change.
- Sign/intensity of forced predictability changes are linked to sign/intensity of forced ENSO variability changes.
- If ENSO amplitude decreases in response to future climate change (e.g., Wengel et al. 2021 and others), then historical forecast skill relationships may not hold.

How well can model large ensembles predict the real world?

Predicting the real world:

- Multi-model mean (MMM) SST skill from:
 - Dynamical forecasts from 6 NMME models.
 - Model-analogs forecasts from 5 model LEs.
- Predicting ERSSTv5 from 1991-2020.

Model-analogs forecasts are as skillful as dynamical forecasting models, at a fraction of the computational cost

Shading: Skill shown where significant with 95% confidence

Summary:

- Potential predictability will likely change in the future as a distinct response to anthropogenic climate change.
- Sign/intensity of forced predictability changes are linked to sign/intensity of forced ENSO variability changes.
- If ENSO amplitude decreases in response to future climate change (e.g., Wengel et al. 2021 and others), then historical forecast skill relationships may not hold.
- Model-analogs from large ensembles are cheap and as skillful as NMME.

as dynamical forecasting models, at a

Email: dillon.amaya@noaa.gov

Shading: Skill shown where significant with 95% confidence

Extra Slides

Observed changes in Nino3.4 amplitude are captured by model large ensembles

Forecast reliability

Reliability Categories:

Category 5: Perfect

Category 4: Very Useful

Category 3: Marginally Useful

Category 2: Not Useful

Category I: Dangerously Useless

Brier Skill Score = BSS

Forecast probability = fraction of forecast members in given tercile

Observed frequency = fraction of timesteps with observed event in tercile

Surface temperature, upper tercile

Fraction of globe in each category

Reliability Categories:

Category 5: Perfect

Category 4: Very Useful

Category 3: Marginally Useful

Category 2: Not Useful

Category I: Dangerously Useless

Precipitation, lower tercile

Forecasts become more reliable/useful in CESMI, less reliable/useful in GFDL-ESM2M

ENSO skill

Shading: Ensemble mean ACC across all months **Stipples:** 80% members agree

on ΔACC sign

Surface temperature, upper tercile

Precipitation, lower tercile

Precipitation

Nino3.4 σ trend:

500mb streamfunction

Nino3.4 σ trend:

S2N Ratios

Signal

Noise

Δ ACC relative to 1921-1950, averaged in Nino3.4

