The Role of Land-Atmosphere Coupling in Subseasonal Surface Air Temperature Prediction

Yuna Lim^{1,2}, Andrea Molod², Randal Koster², Joseph Santanello³

¹Earth System Science Interdisciplinary Center, University of Maryland College Park ²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center ³Hydrological Sciences Laboratory, NASA Goddard Space Flight Center

Subseasonal Prediction

Prediction skill on longer time scales can leverage specific climate phenomena or conditions for a predictable signal. These conditions can provide windows of opportunity for skillful forecasts.

- Mariotti et al. (2021, BAMS)

Sources of Subseasonal Prediction: Land

AMIP with soil moisture initialization - AMIP

4. 4.50

2m Temperature [K]

(Koster and Suarez 2003)

Sources of Subseasonal Prediction: Land

2m Temperature prediction skill

Land-Atmosphere (L-A) Coupling

NAME & N. 197 8

(Molod et al. 2004)

Land-Atmosphere (L-A) Coupling

(Molod et al. 2004)

Notes & A. A.

Land-Atmosphere (L-A) Coupling

(Molod et al. 2004)

Notes of A. A.

Scientific Questions:

•Does a strong L-A coupling increase T2m prediction skill?

•Does prediction skill increase with deeper coupling across multiple metrics?

Data and Methods

• Reforecasts in NASA's GEOS-S2S-2, initialized from 1999 to 2022 during boreal summer (June-August).

	Reforecast Period	Reforecast Frequency	Number of Reforecasts	Ensemble Size
GEOS-S2S-2	1999-2022	5-day interval	414	4

• The anomaly correlation coefficient (ACC) is used to evaluate the prediction skill of 2m temperature (T2m). It is compared to ERA5 data.

$$ACC(\tau) = \frac{\sum_{t=1}^{N} M(t,\tau) O(t)}{\sqrt{\sum_{t=1}^{N} M(t,\tau)^2} \sqrt{\sum_{t=1}^{N} O(t)}}$$

N: Number of reforecasts, O(t): observed T2m anomalies at time t, $M(t,\tau)$: T2m anomalies of the reforecasts at lead time τ

THE REAL PROPERTY AND

2

L-A Coupling Metrics

Notes of A section of

$$0 = \frac{\sum_{ens=1}^{4} \sum_{\tau=15}^{28} (SM'LH')}{\sqrt{\sum_{ens=1}^{4} \sum_{\tau=15}^{28} SM'^2} \sqrt{\sum_{ens=1}^{4} \sum_{\tau=15}^{28} LH'^2}}$$

$$=\frac{\sum_{ens=1}^{4}\sum_{\tau=15}^{28}(LH'TS')}{\sqrt{\sum_{ens=1}^{4}\sum_{\tau=15}^{28}LH'^{2}}\sqrt{\sum_{ens=1}^{4}\sum_{\tau=15}^{28}TS'^{2}}}$$

$$d) = \frac{\sum_{ens=1}^{4} \sum_{\tau=15}^{28} (LH'LCLd')}{\sqrt{\sum_{ens=1}^{4} \sum_{\tau=15}^{28} L{H'}^2} \sqrt{\sum_{ens=1}^{4} \sum_{\tau=15}^{28} LCLd'^2}}$$

When all three indices indicate the strong L-A coupling based on the 50th percentile, the reforecast is defined as having strong coupling.

Evaluation of L-A Coupling in GEOS-S2S-2

(Lim et al.; in revision)

• The overall distributions of maxima and minima in GEOS-S2S-2 closely resemble those in ERA5 and MERRA2.

Impact of L-A Coupling on Subseasonal Temperature Prediction Skill

4

Impact of L-A Coupling on Subseasonal Temperature Prediction Skill

4

Impact of L-A Coupling on Subseasonal Temperature Prediction Skill

Does prediction skill increase with deeper coupling across multiple metrics?

⇒ When the L-A coupling is deeply connected from the soil to the free troposphere, the prediction skill significantly increases.

Characteristics of Strong L-A Coupling Events

Regions experiencing strong L-A coupling tend to exhibit warm and dry ulletanomalies

(Lim et al.; in revision)

Prediction Skill of Abnormally Warm Events

(Lim et al.; in revision)

- •When strong L-A coupling is detected at 3-4 week forecasts, the prediction skill for 2-m temperature is enhanced across the Midwest and northern Great Plains at this forecast lead time.
- •Regions experiencing strong L-A coupling tend to exhibit warm and dry anomalies, leading to improved predictions of abnormally warm events.

Ongoing Work - Sensitivity Test: Spring

11° 4. 4. 59° 8°

- •When strong L-A coupling is detected at 3-4 week forecasts, the prediction skill for 2-m temperature is enhanced across the Midwest and northern Great Plains at this forecast lead time.
- •Regions experiencing strong L-A coupling tend to exhibit warm and dry anomalies, leading to improved predictions of abnormally warm events.

Contact: Yuna Lim (yu-na.lim@nasa.gov)