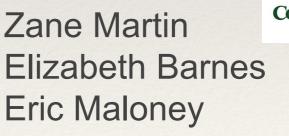


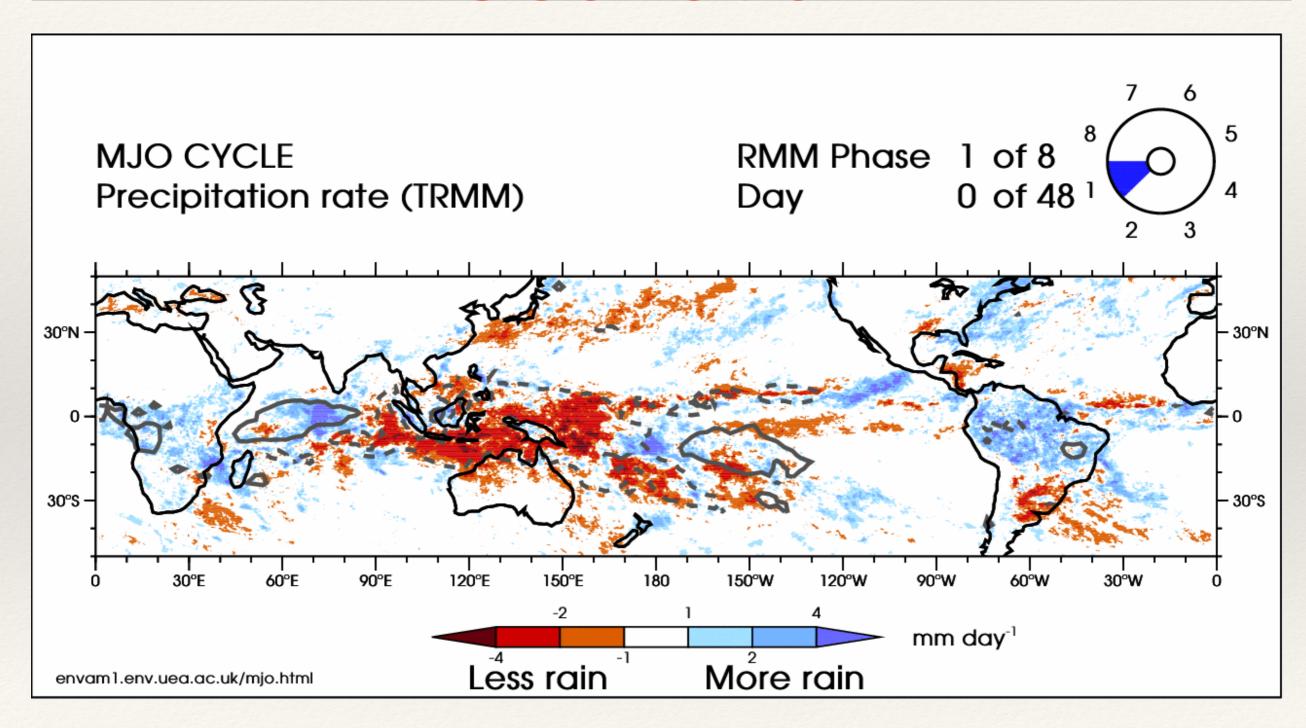
NOAA Weeks 3-4 & S2S Webinar USING SIMPIE, explainable neural networks to predict the Madden-Julian

October 4, 2021



oscillation

The Madden-Julian Oscillation



Summary of MJO Prediction

From 2010 up to ~now ...

Statistical Models

Empirical models which use statistical techniques to predict future MJO behavior given past relationship

- -~2 weeks of skill
- Wide range of approaches, but nearly all methods linear

Dynamical Models

(Global) models which solve fluid dynamic & related equations, initialized from observations

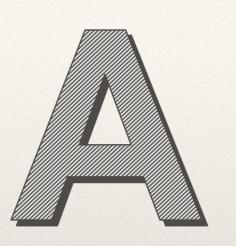
- 3-5 weeks of skill
- Since 2000s, model processes improved, ensembles grew, intercomparisons developed

Summary of MJO Prediction

The future of statistical MJO prediction...

Non-linear methods and machine learning!

Machine Learning





員

Machine Learning

A linear data transformation might take the form:

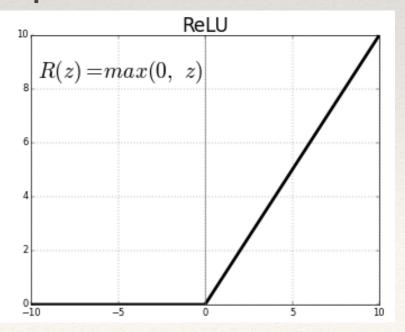
$$X \cdot A + y$$

Machine Learning



Artificial neural network models:

- Incorporate non-linearity into the data transformations
- Iterate over data during "training" data to minimize a *loss* function that describes how skillful the model prediction are



Maps of the key daily tropical variables (pre-processed)

Information about an MJO index at various leads

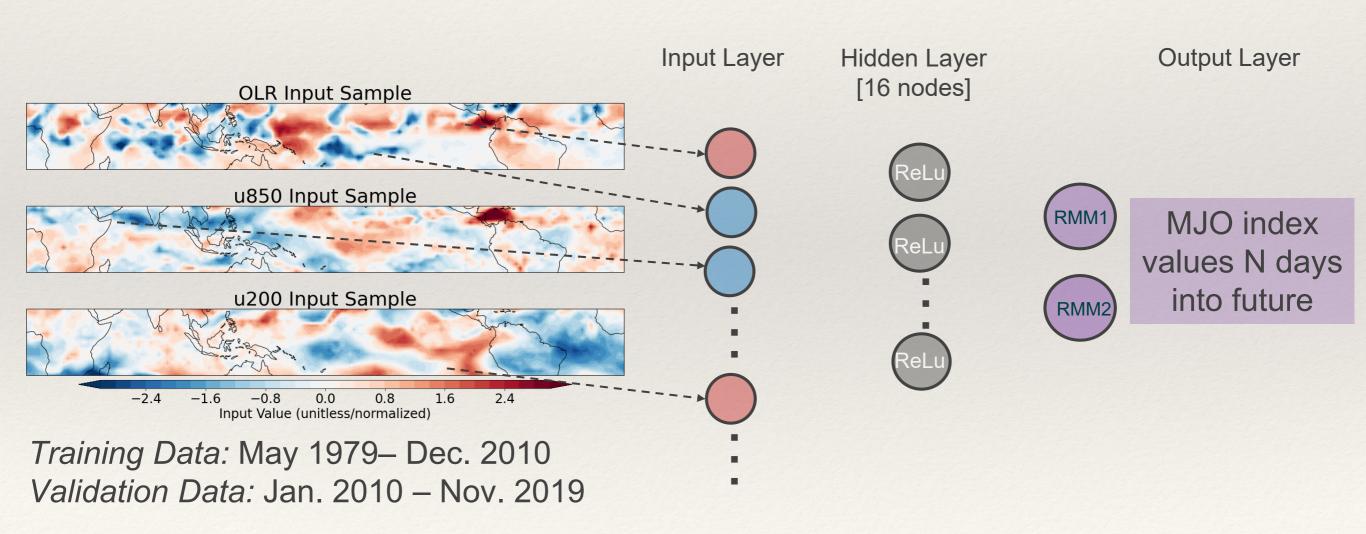
Maps of the key daily tropical variables (pre-processed)

Information about an MJO index at various leads

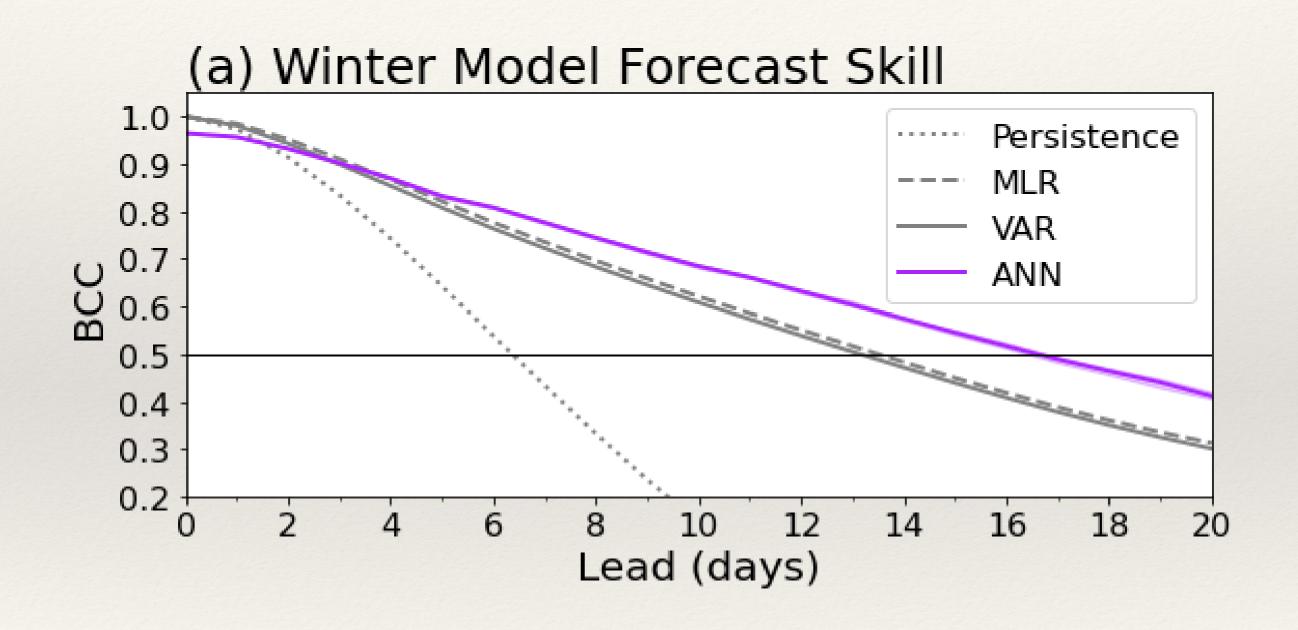
We explore **2 machine learning frameworks** for MJO prediction: one deterministic and one probabilistic

Regression Model

Deterministic model which outputs numerical values

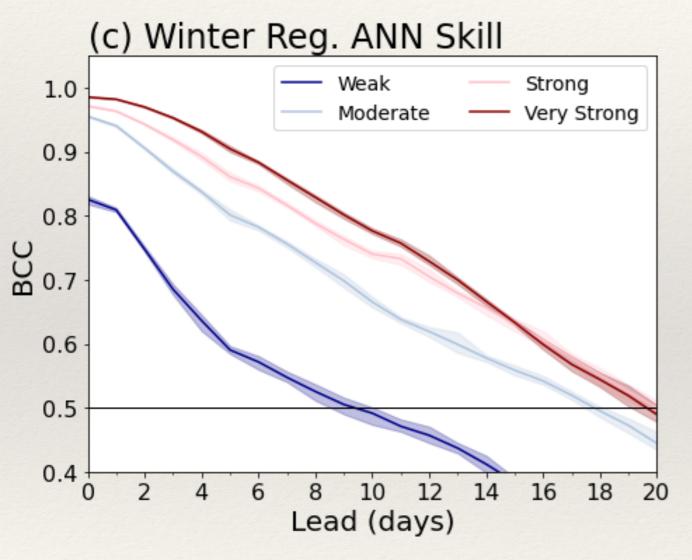


Regression ANN Model

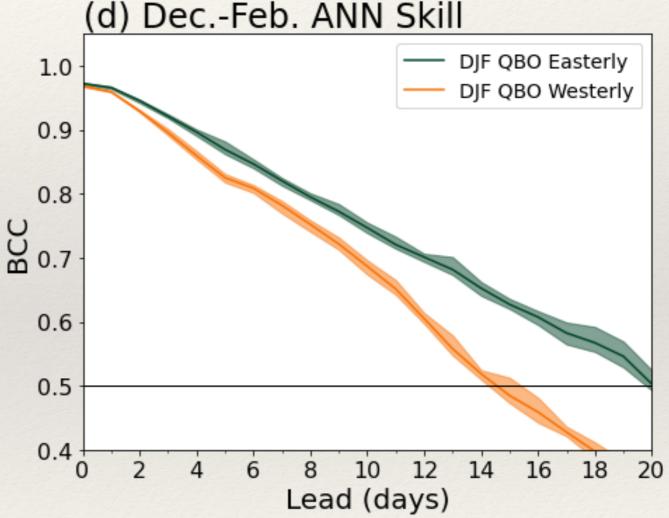


Regression ANN Model

Skill vs. Initial MJO Amplitude

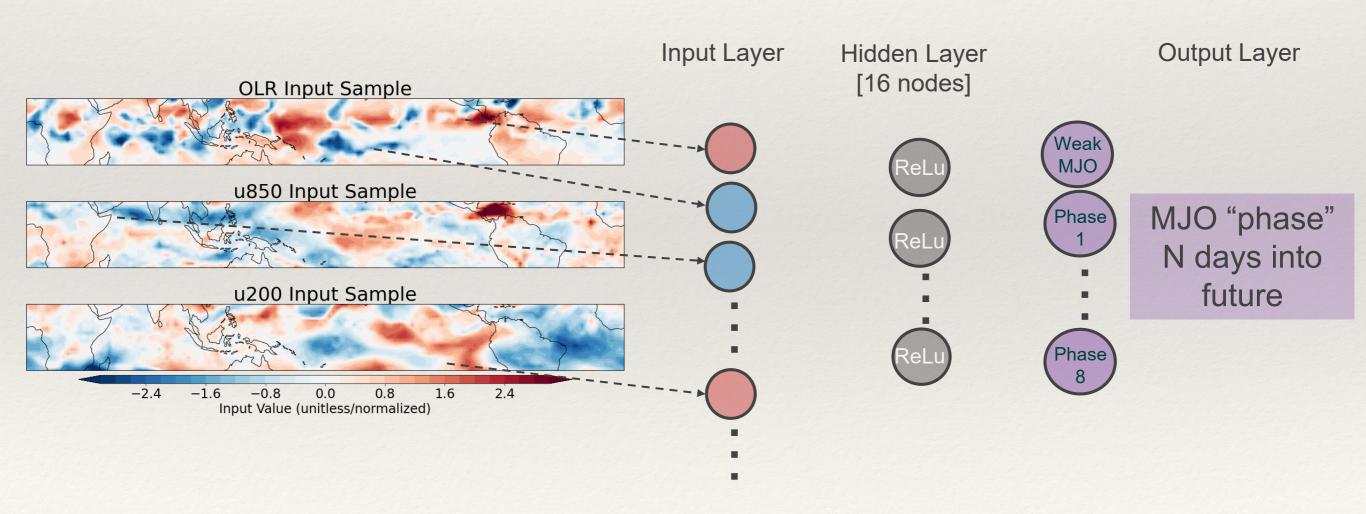


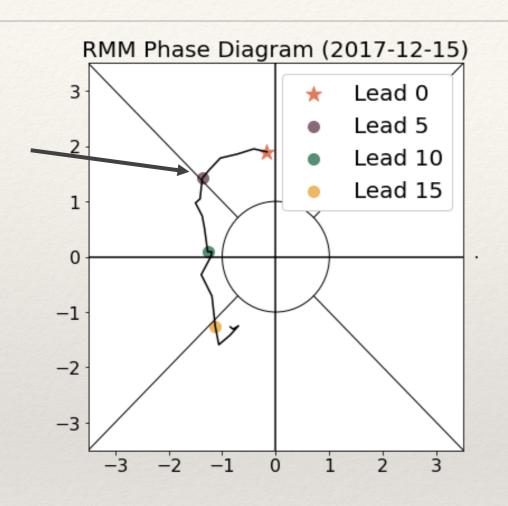
MJO Skill vs. Stratospheric State

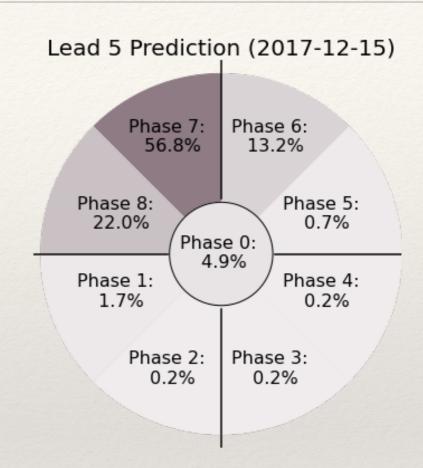


Classification Model

Model which outputs the probability across various categories

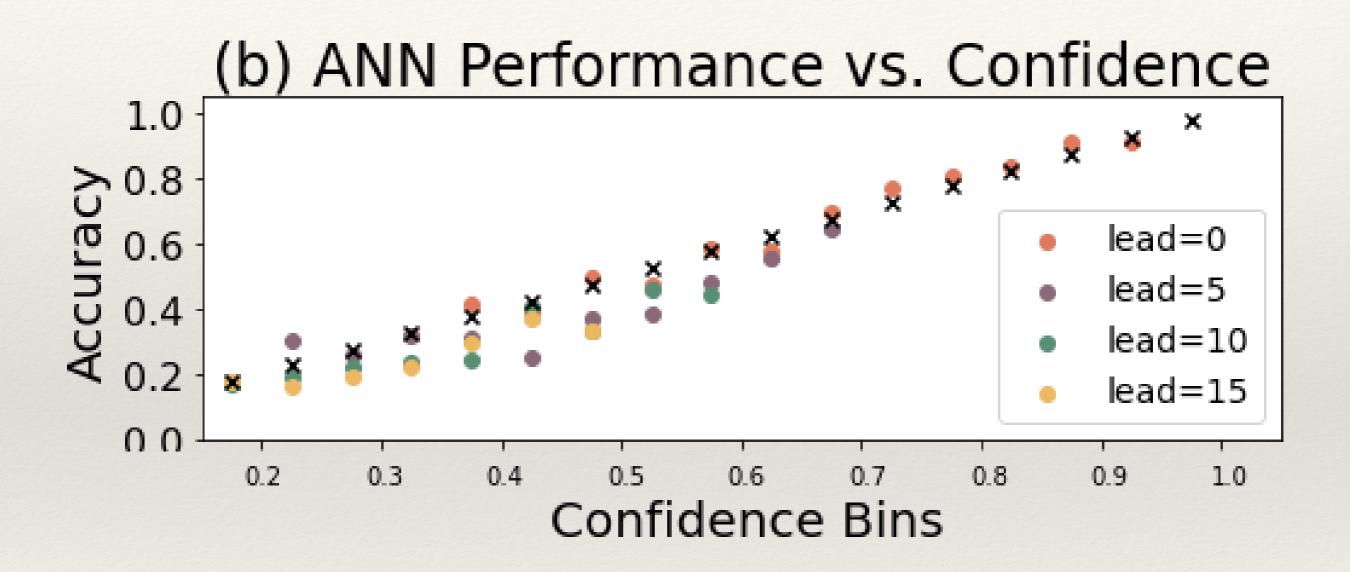


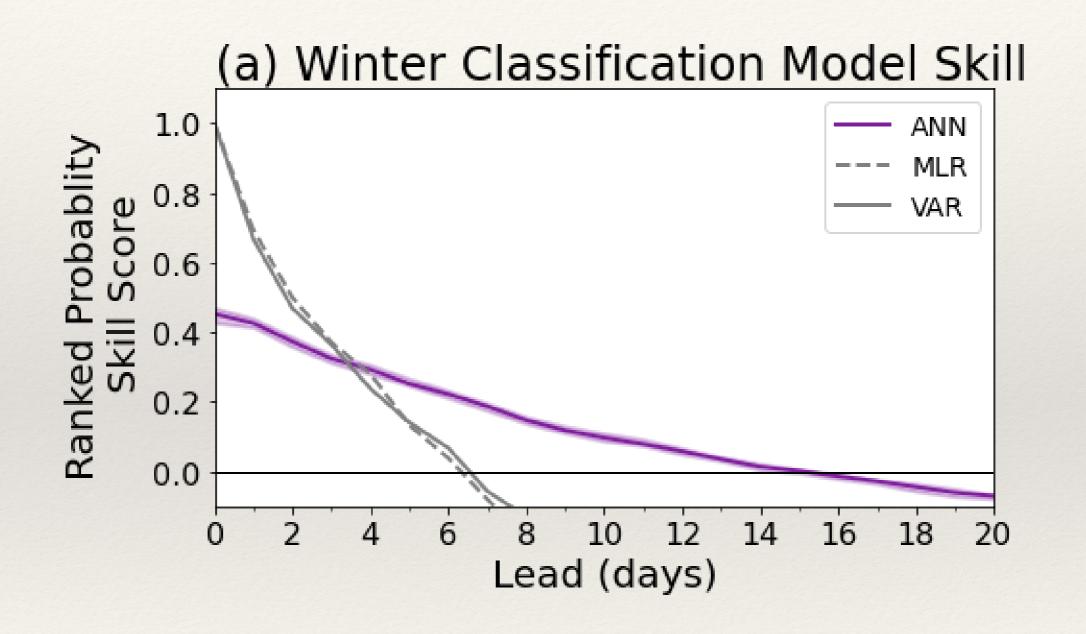




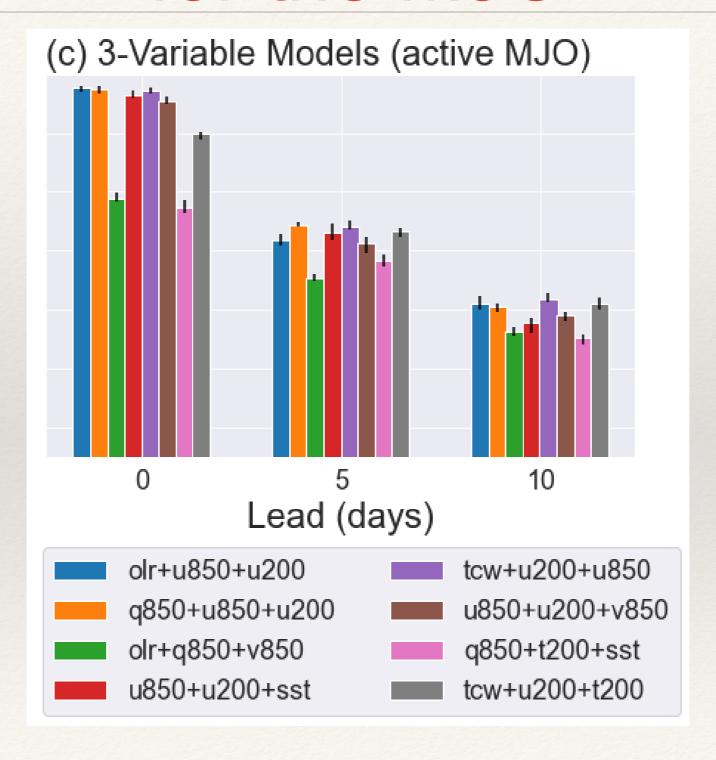
Classification Model

A model which outputs the probability across various categories

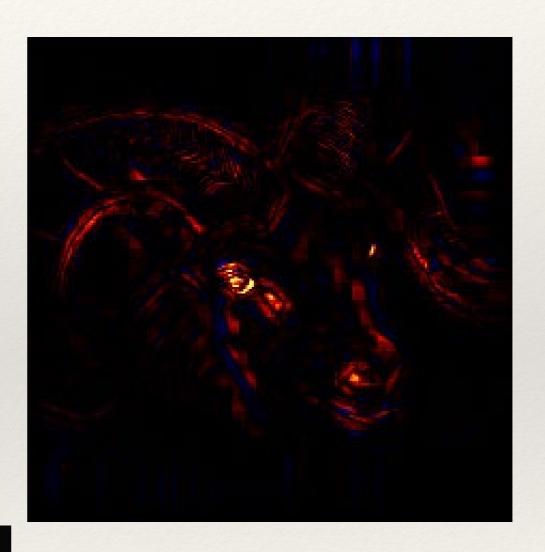




- * How skillful are ML models at predicting the MJO?
 - ANN approaches can provide skillful MJO prediction out to past 2 weeks, better than traditional statistical models
- How might ML be useful to study and understand the MJO, in addition to predict it?



"Layerwise-relevance propagation" & other tools can help understand how the models work



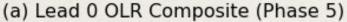
The image was classified as ram

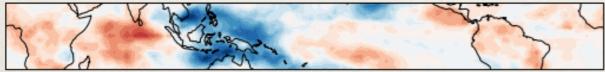
https://lrpserver.hhi.fraunhofer.de/image-classification

ram bighorn

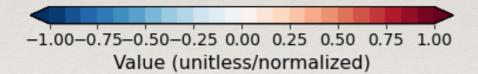
0>

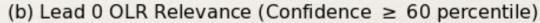
"Layerwise-relevance propagation" & other tools can help understand how the models work

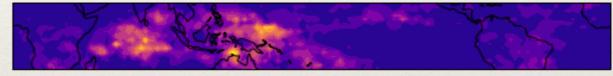




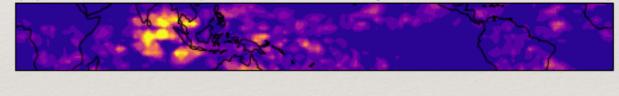
(g) OLR Input Composite (Phase 5; Lead-10 ANN)

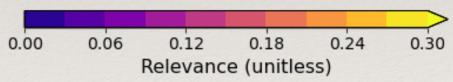






(h) OLR Relevance (Confidence ≥ 60 percentile; Lead-10 ANN)



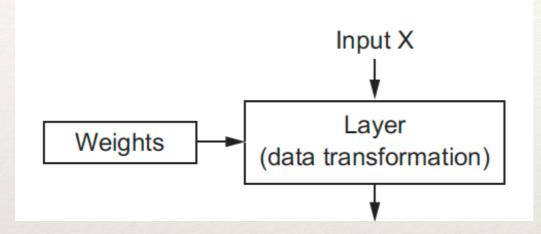


Machine Learning & the MJO

- * How skillful are ML models at predicting the MJO? How might one frame MJO prediction in an ML context?
 - ANN approaches can provide skillful MJO prediction out to past 2 weeks, better than traditional statistical models
- * How might ML be useful to study and understand the MJO, in addition to predict it?
 - ML models computationally efficient, flexible, and explainable
 - * XAI methods & model experimentation might be useful tools to better understand sources & regions of model skill

Additional Slides

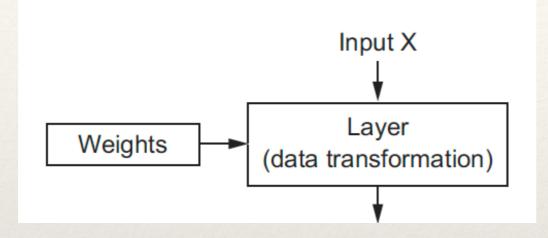
Fully-connected artificial neural network



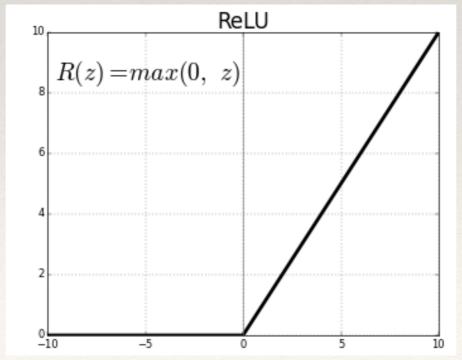
A *linear* data transformation might take the form:

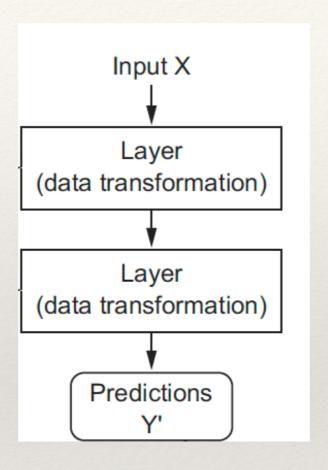
$$W \cdot X + b$$

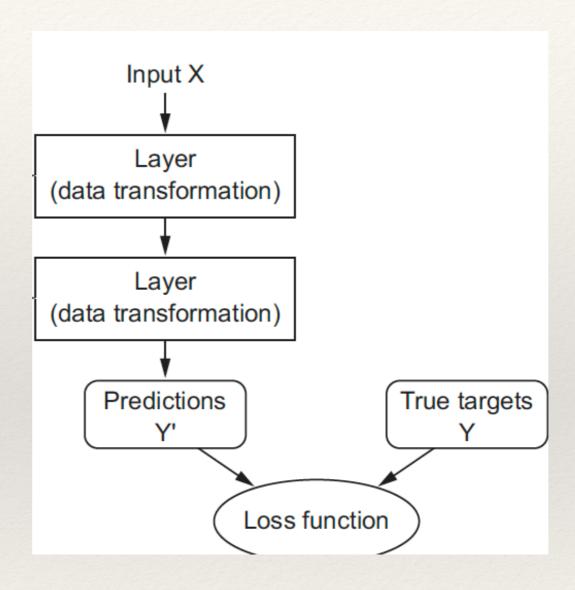
Fully-connected artificial neural network

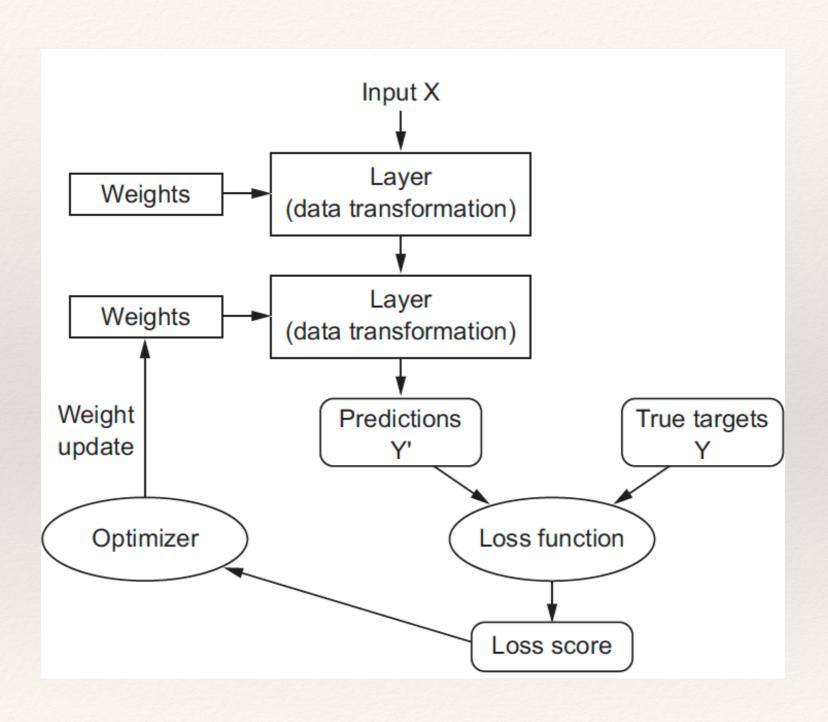


Neural network models introduce non-linearity into their transformations

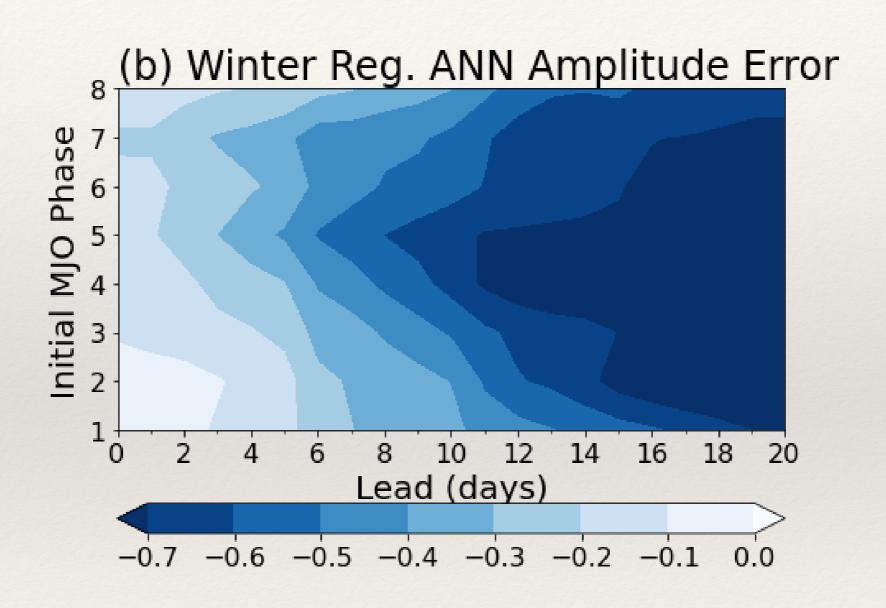


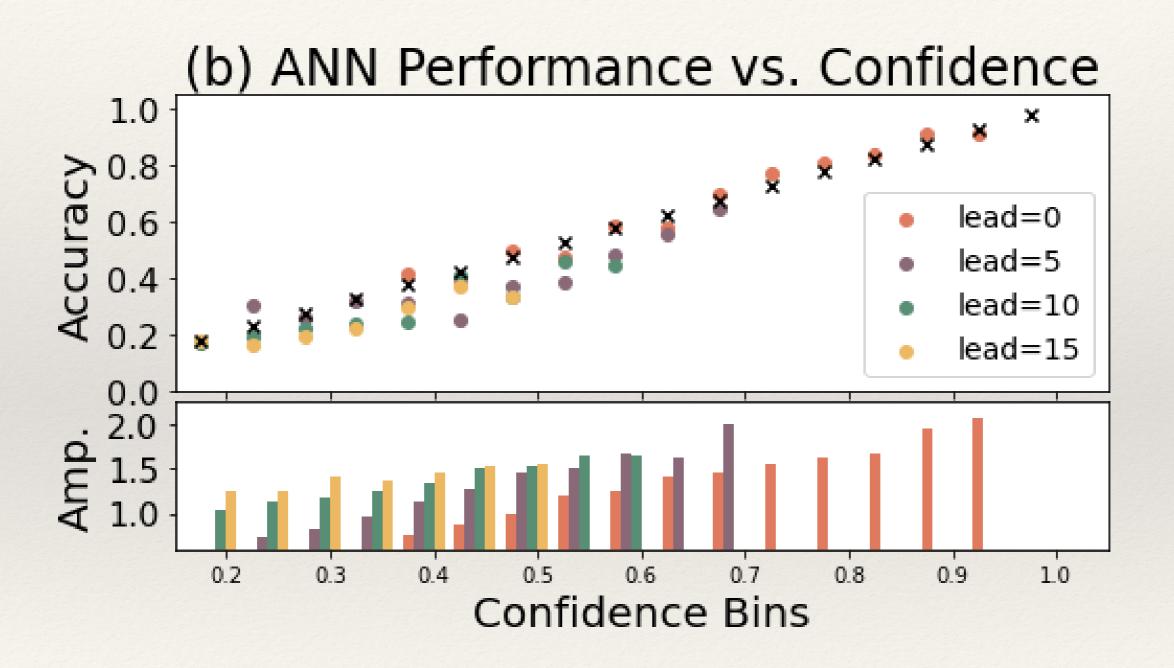


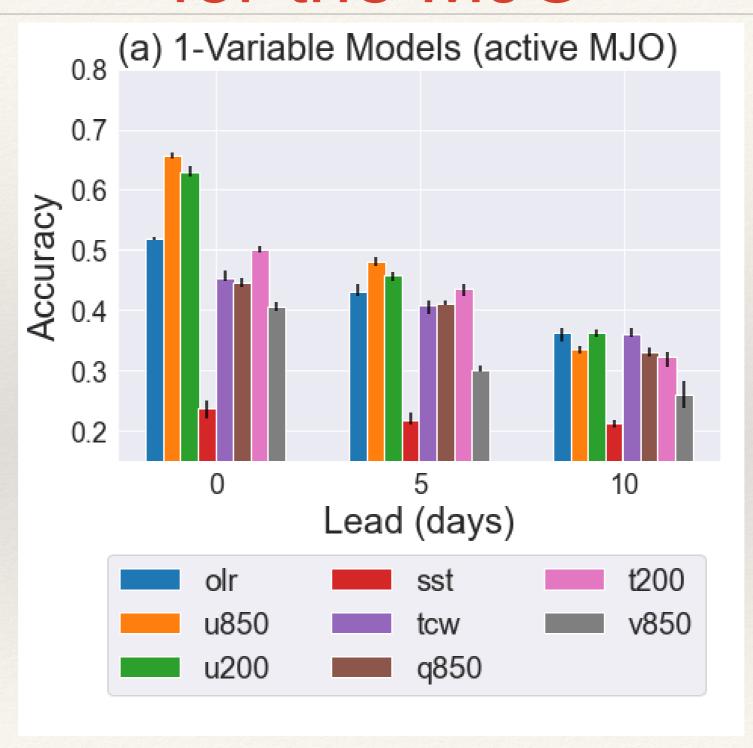




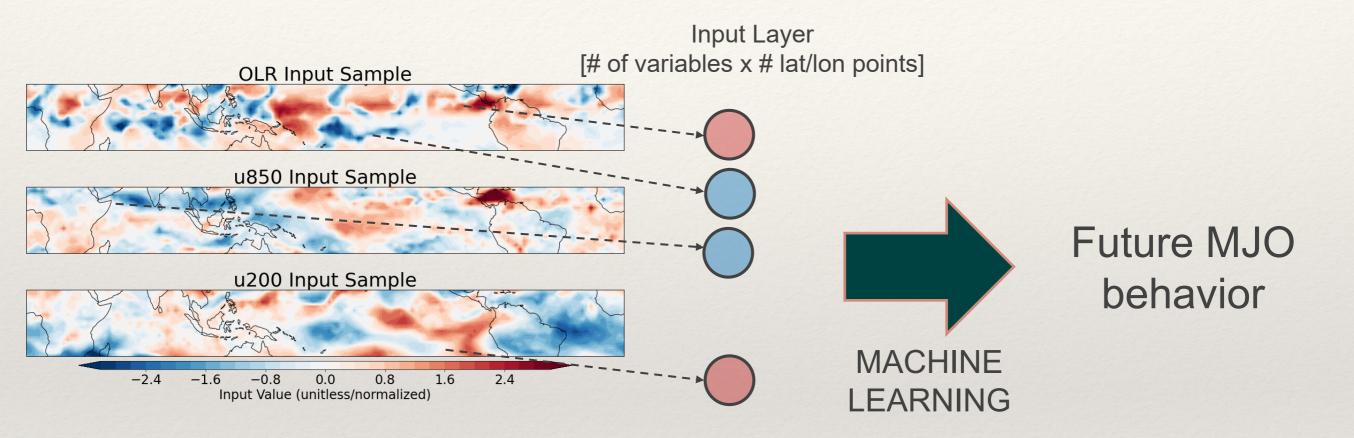
Regression ANN Model







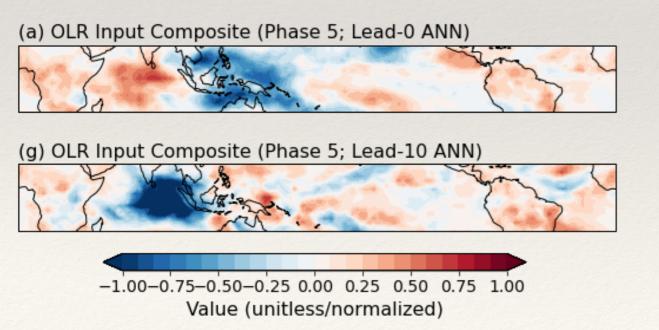
- * How skillful are machine learning models at predicting the MJO?
- * How might ML be useful to study and understand the MJO?

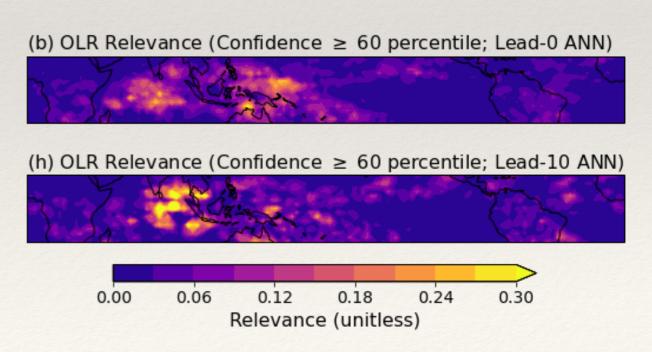


Training Data: May 1979– Dec. 2010 Validation Data: Jan. 2010 – Nov. 2019

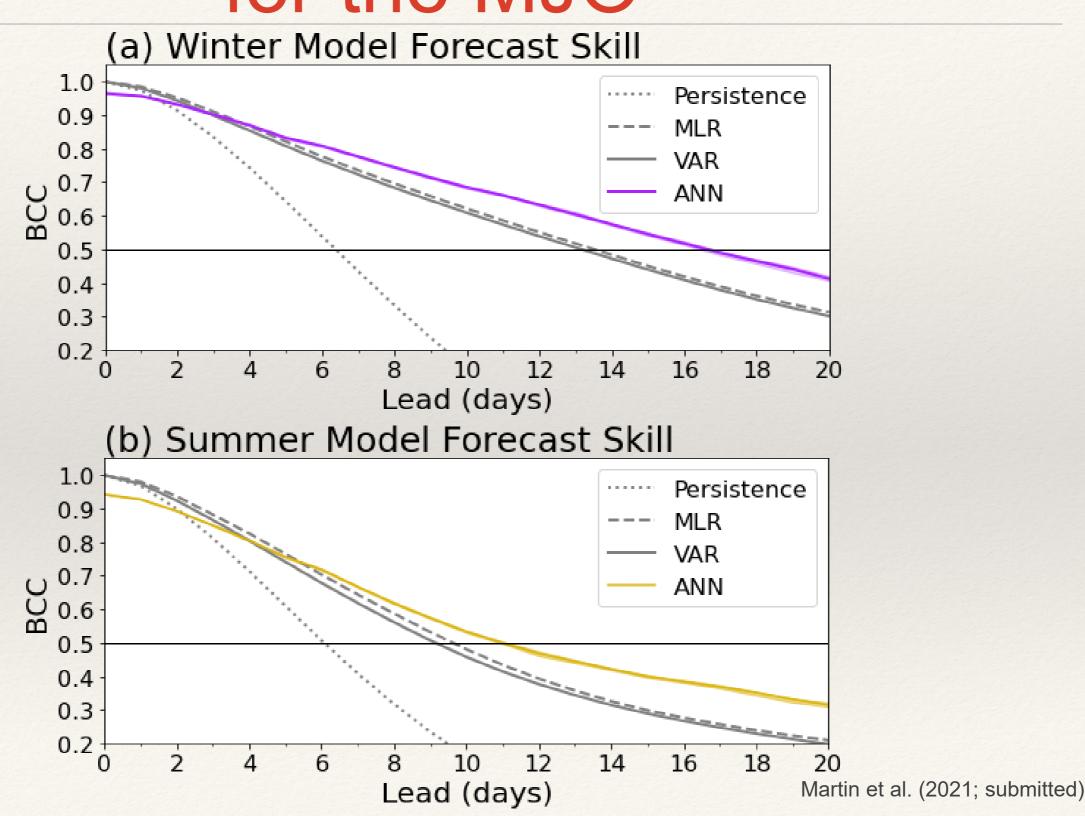
- * How skillful are machine learning models at predicting the MJO?
- * How might ML be useful to study and understand the MJO?

- How might ML be useful to study and understand the MJO, in addition to predict it?
 - ML models computationally efficient, flexible, and explainable
 - XAI methods & model experimentation might be useful tools to better understand sources & regions of model skill



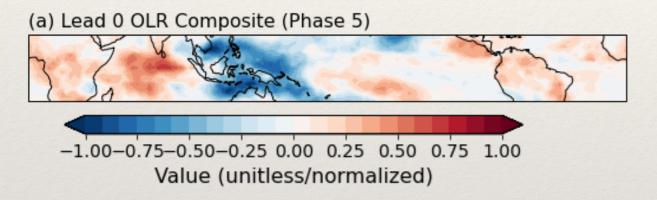


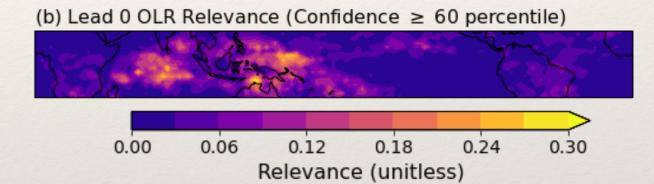
Thanks!



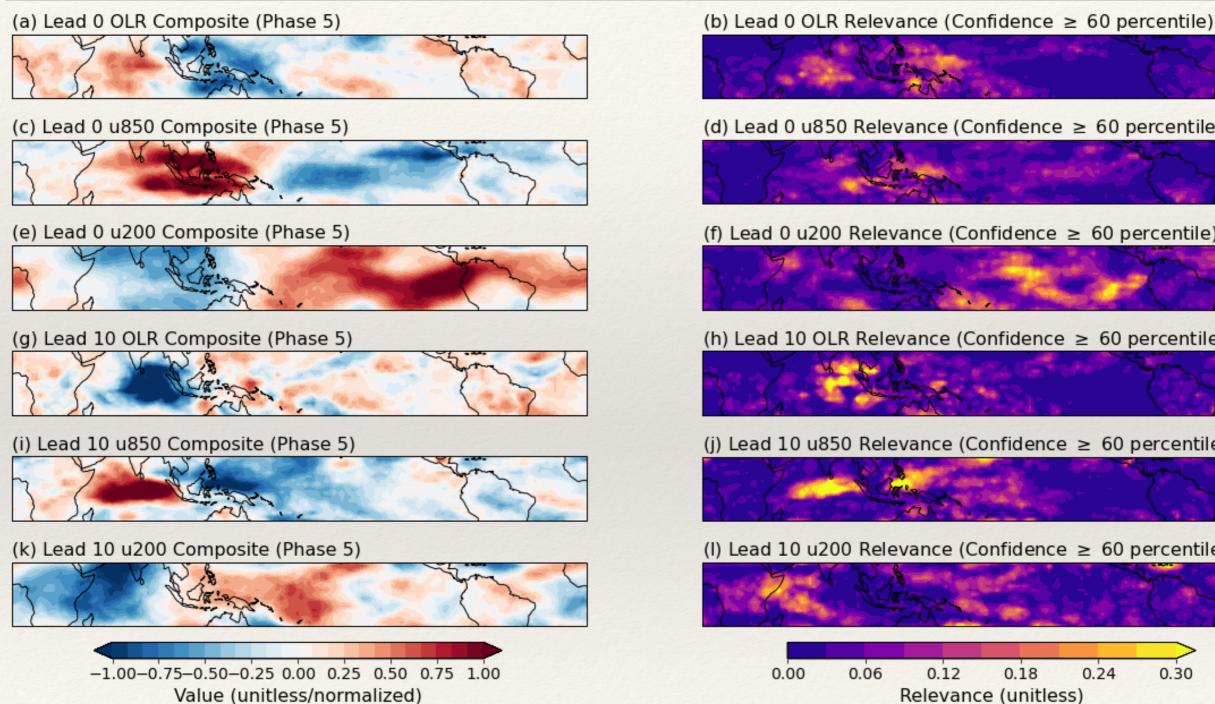
A Machine-Learning Framework for the MJO

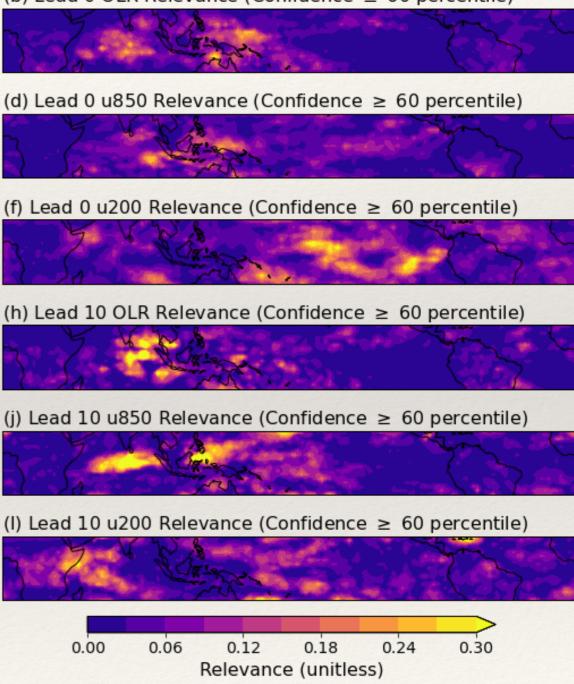
"Layerwise-relevance propagation" & other tools can help understand how the models work





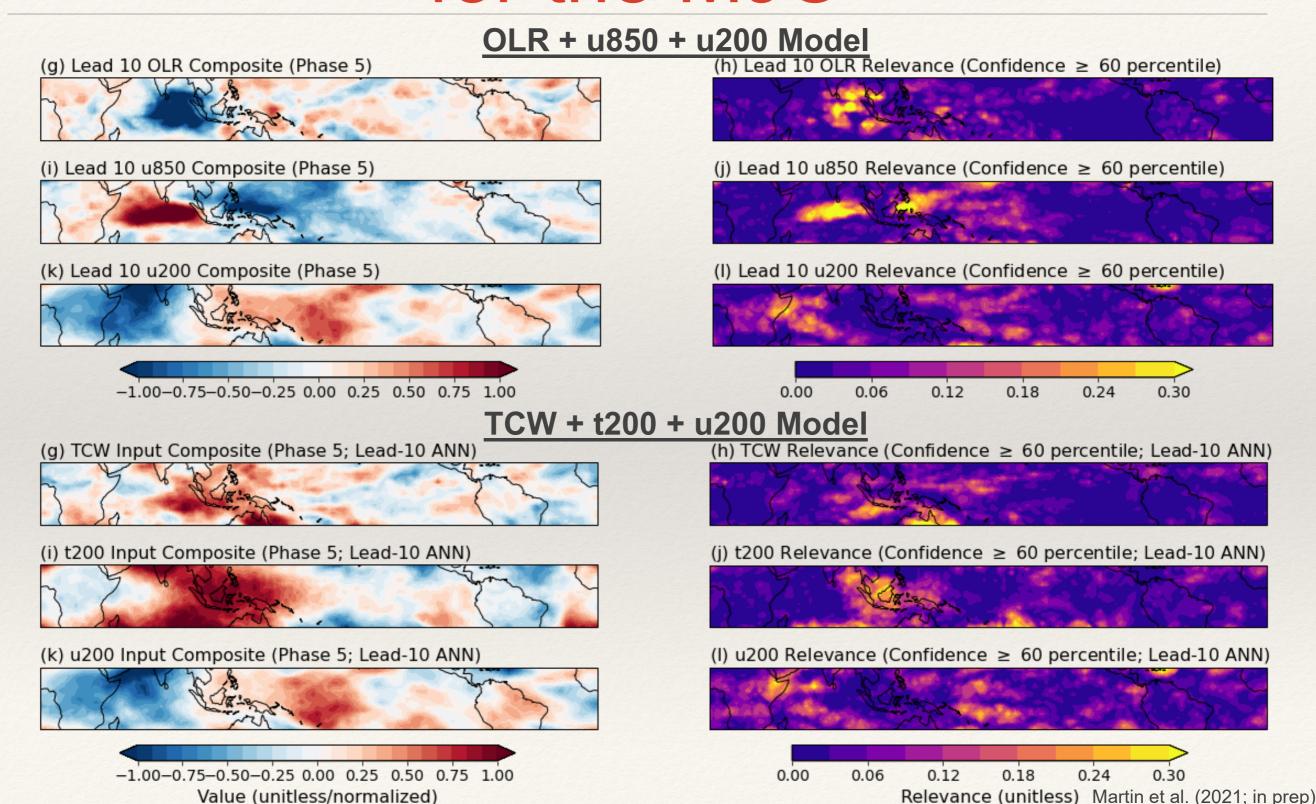
A Machine-Learning Framework for the MJO





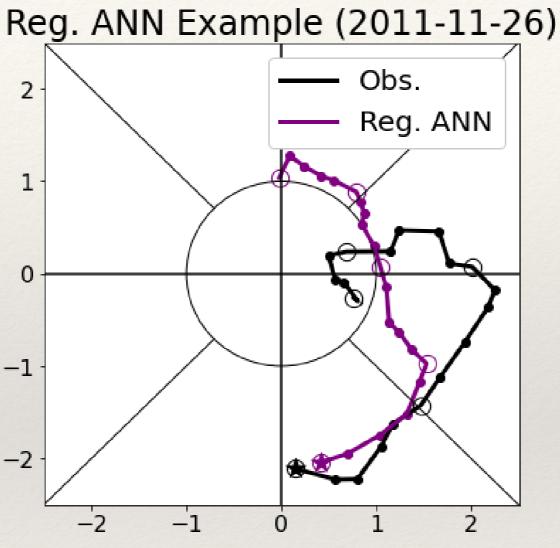
Martin et al. (2021; in prep)

A Machine-Learning Framework for the MJO



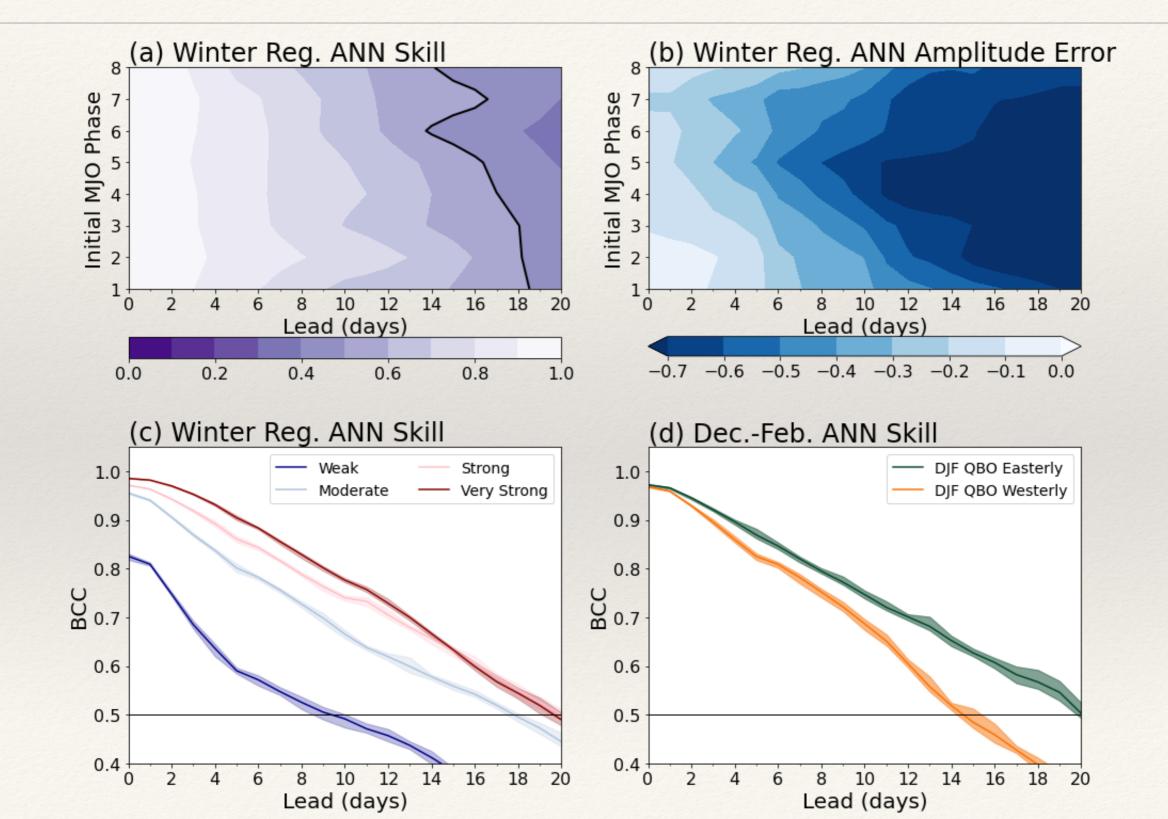
Value (unitless/normalized)

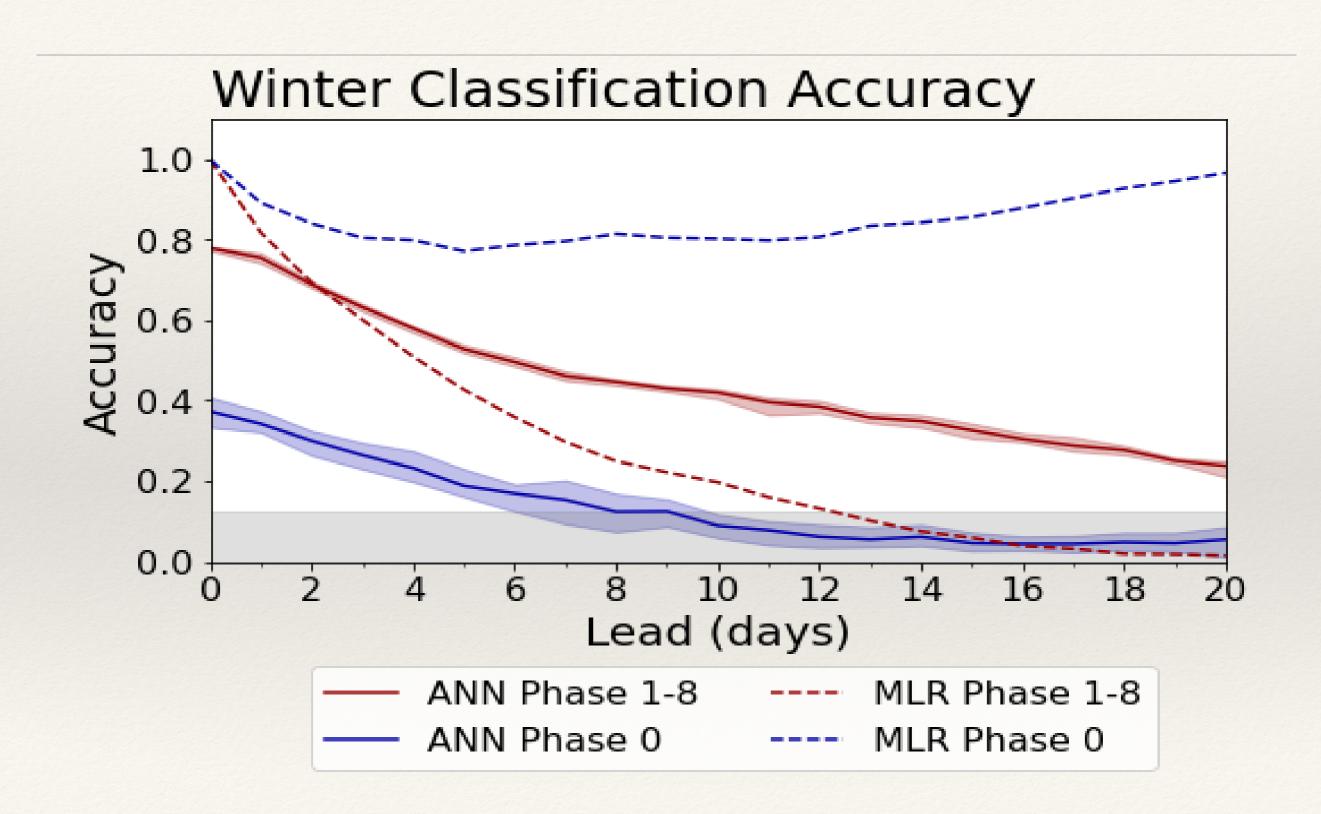
Machine Learning & the MJO



Regression Model

A model which outputs numerical values





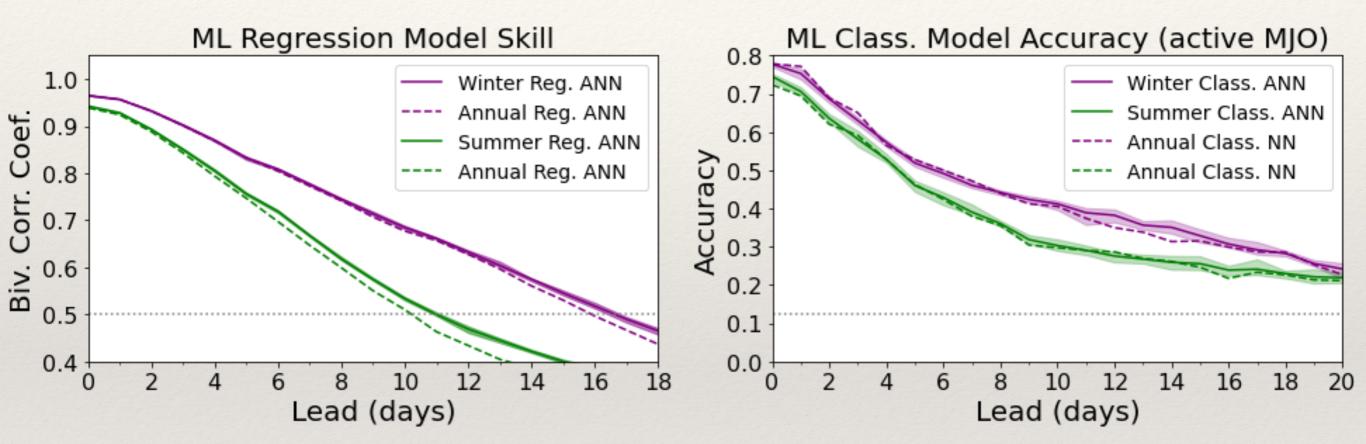


Figure S3

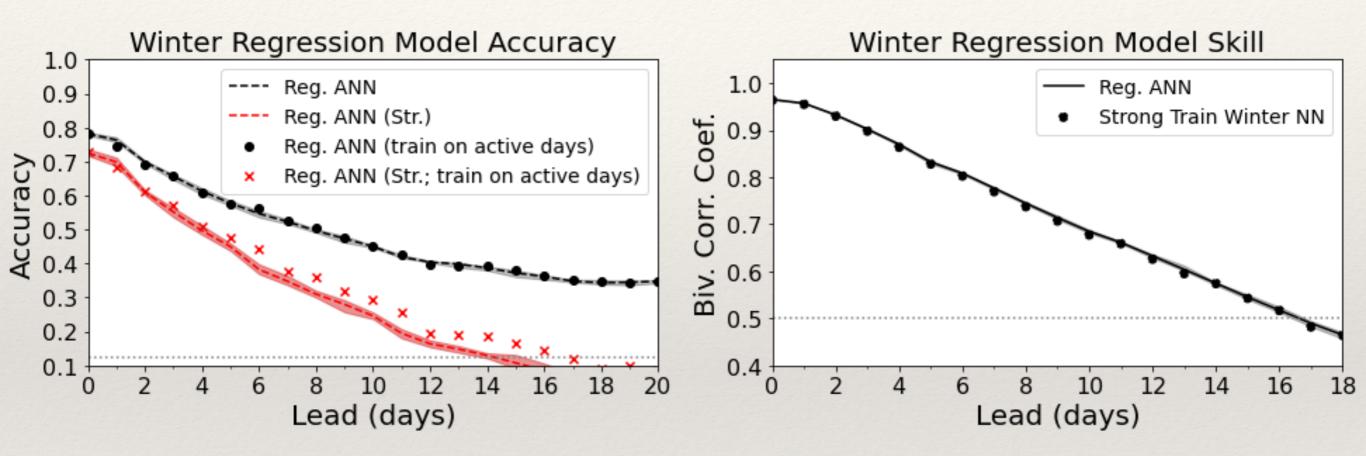
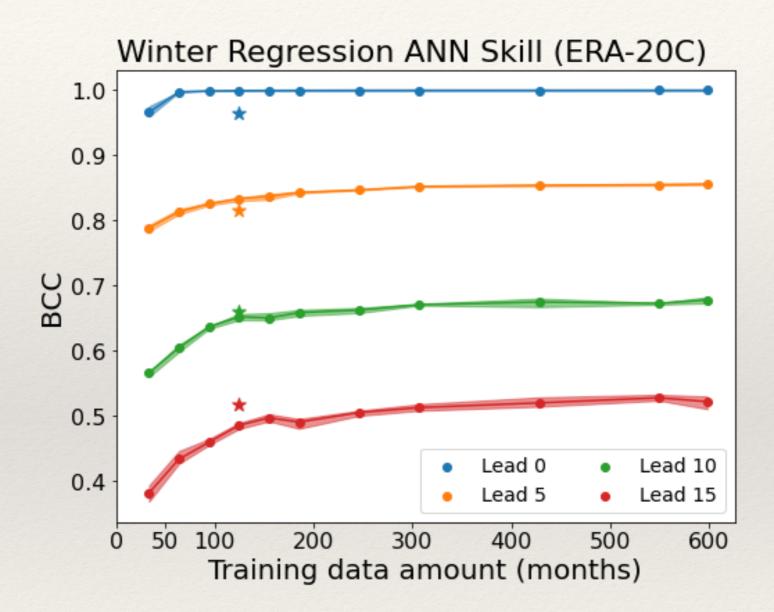


Figure S6: Strong training



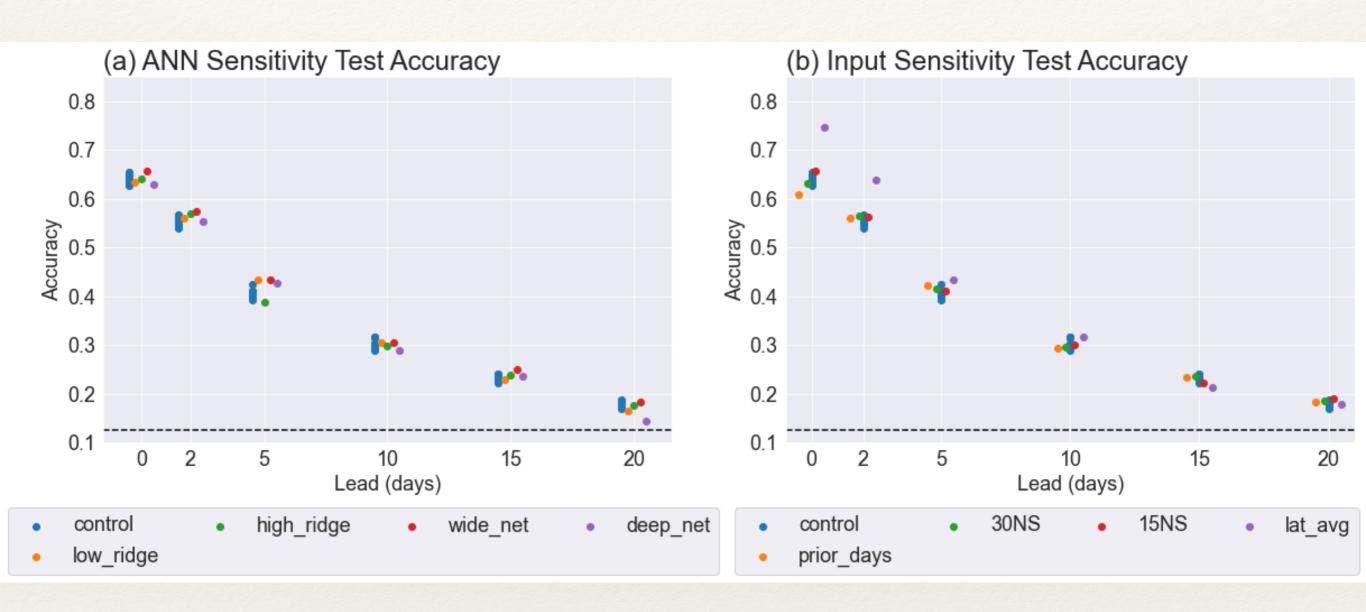


Figure S7: sensitivity tests

Fig. S11: Additional variable tests of combinations of 4, 5, or 6 inputs

1. "Persistence" model which simple persists the initial condition

$$RMM1(t_0 + \tau) = RMM1(t_0)$$

$$RMM2(t_0 + \tau) = RMM2(t_0)$$

2. <u>Vector autoregressive (VAR) scheme</u> (Maharaj & Wheeler 2005; Marshall et al. 2016)

Statistical bivariate forecast which captures 1-day typical change in RMM and steps forward (essentially akin to our prior "persistence" model)

$$\begin{bmatrix} RMM1(t) \\ RMM2(t) \end{bmatrix} = L \begin{bmatrix} RMM1(t-1) \\ RMM2(t-1) \end{bmatrix}$$

MLR used to calculate L in each season

Marshall et al. 2016:

$$\begin{aligned} & \text{RMM1}_{t} \! = 0.9616 \ \, (\text{RMM1}_{t-1}) - 0.1135 \ \, (\text{RMM2}_{t-1}) \\ & \text{RMM2}_{t} \! = 0.1257 \ \, (\text{RMM1}_{t-1}) + 0.9875 \ \, (\text{RMM2}_{t-1}) \end{aligned}$$

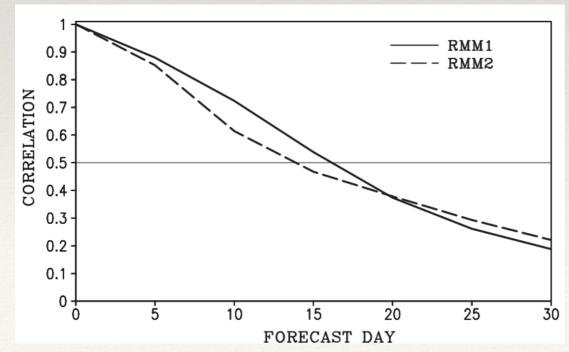
M21 "L":

3. Multiple linear regression (MLR) scheme (Kim 2008; Jiang et al. 2008; Kang & Kim 2010; Seo et al. 2009, Wang et al. 2019)

Predicts RMM at lead τ given RMM at initial time and on prior days. Follow Kim & Kang (2010) who found j=2 (e.g. day 0 and day -1) is ok (Seo et al. 2009 used pentad data and retained more days, but change seemed relatively small).

$$\begin{bmatrix} RMM1(t_0 + \tau) \\ RMM2(t_0 + \tau) \end{bmatrix} = \mathbf{L}_{\tau} \quad \Sigma_{j=1} \begin{bmatrix} RMM1(t_0 - j + 1) \\ RMM2(t_0 - j + 1) \end{bmatrix}$$

Kang & Kim 2010



Present MLR model (different train/validation period

