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Summary of MJO Prediction
From 2010 up to ~now ...

Statistical Models Empirical models which use statistical techniques to predict
future MJO behavior given past relationship

- ~2 weeks of skKill
- Wide range of approaches, but nearly all methods linear

Dynamical Models (Global) models which solve fluid dynamic & related equations,
initialized from observations

- 3-5 weeks of skill
- Since 2000s, model processes improved, ensembles grew,
iIntercomparisons developed
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From Lau and Waliser:
In addition, seasonally and time lag–dependent regression can be used
to forecast the evolution of these indices or any associated field, using as predictors
RMM1 and RMM2 at the initial day. Jiang et al. (2008a) provide a skill assessment
for this type of RMM-based regression model, including a number of sensitivity tests
regarding number of modes retained, quantity being compared, seasonality, strong
vs. weak MJO, applications of filtering, etc. Figure 12.5 shows a subset of these
sensitivity tests. Figure 12.6 shows the temporal correlation values for this model
when compared with EOF-filtered (i.e., low-frequency/wavenumber MJO) observations
of OLR (upper left) and when compared with total anomalies (upper right)



Summary of MJO Prediction

The future of statistical MJO prediction...

Non-linear methods and machine learning!
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Machine Learning

A linear data transformation might take the form:

X Aty
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Artificial neural network models:

 Incorporate non-linearity into the data transformations

* |terate over data during “training” data to minimize a /oss
function that describes how skillful the model prediction are

RE,LU

g R(z) =max(0, z)
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Maps of the key daily
tropical variables about an
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Machine Learning & the MJO
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tropical variables Foiltan
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We explore 2 machine learning frameworks for MJO prediction:
one deterministic and one probabillistic
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Machine Learning & the MJO

Regression Model
Deterministic model which outputs numerical values
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Regression ANN Model

(a) Winter Model Forecast Skill
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Regression ANN Model

Skill vs. Initial MJO Amplitude
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Classification ANN Model

Classification Model

+» Model which outputs the probability across various

categories
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Classification ANN Model

RMM Phase Diagram (2017-12-15)

Lead 5 Prediction (2017-12-15)
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+» A model which outputs the probability across various
categories

Martin et al. (2021; submitted)
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(b) ANN Performance vs. Confidence
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Classification ANN Model

Ranked Probablity
Skill Score

3
o

e =2 D
N AR O @

=
=

(a) Winter Classification Model Skill

— ANN
=== MLR
— VAR

0 2 a4 & 8 1o 12 15

Lead (days)

16 18 70

Martin et al. (2021; submitted)



Machine Learning & the MJO

+~ How skillful are ML models at predicting the MJO?

+» ANN approaches can provide skillful MJO prediction out to past 2
weeks, better than traditional statistical models

+» How might ML be useful to study and understand the MJO, in
addition to predict it?

Th an kS ' Martin et al. (2021; submitted)
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A Machine-Learning Framework
for the MJO

(c) 3-Variable Models (active MJO)
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A Machine-Learning Framework
for the MJO

“Layerwise-relevance propagation” & other tools can help understand how the models work

The image was classified as https://Irpserver.hhi.fraunhofer.de/image-classification

with a classification score of



A Machine-Learning Framework
for the MJO

“Layerwise-relevance propagation” & other tools can help understand how the models work

(a) Lead 0 OLR Composite (Phase 5)
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Machine Learning & the MJO

+~ How sKillful are ML models at predicting the MJO? How might
one frame MJO prediction in an ML context?

+~ ANN approaches can provide skillful MJO prediction out to past 2
weeks, better than traditional statistical models

+» How might ML be useful to study and understand the MJO, in
addition to predict it?

+~ ML models computationally efficient, flexible, and explainable

+» XAl methods & model experimentation might be useful tools to better
understand sources & regions of model skill

(g) OLR Input Composite (Phase 5; Lead-10 ANN) (h) OLR Relevance (Confidence = 60 percentile; Lead-10 ANN)
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Th an kS ' Martin et al. (2021; submitted)
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Artificial Neural Networks

Fully-connected artificial neural network
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A linear data transformation might take the form:
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Chollet 2018


Presenter
Presentation Notes
MJO prediction goes back to the 1990s with von Storch (1990) who predicted 200 mb velocity potential.

From Lau and Waliser:
In addition, seasonally and time lag–dependent regression can be used
to forecast the evolution of these indices or any associated field, using as predictors
RMM1 and RMM2 at the initial day. Jiang et al. (2008a) provide a skill assessment
for this type of RMM-based regression model, including a number of sensitivity tests
regarding number of modes retained, quantity being compared, seasonality, strong
vs. weak MJO, applications of filtering, etc. Figure 12.5 shows a subset of these
sensitivity tests. Figure 12.6 shows the temporal correlation values for this model
when compared with EOF-filtered (i.e., low-frequency/wavenumber MJO) observations
of OLR (upper left) and when compared with total anomalies (upper right)



Artificial Neural Networks

Fully-connected artificial neural network
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Neural network models introduce non-linearity into their transformations
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R(z) =max(0, z)
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Regression ANN Model

(b) Winter Reg. ANN Amplitude Error
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Classification ANN Model

(b) ANN Performance vs. Confidence
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A Machine-Learning Framework
for the MJO

o (@) 1-Variable Models (active MJO)
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Machine Learning & the MJO

» How might ML be useful to study and understand the MJO?
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Machine Learning & the MJO

» How skillful are machine learning models at predicting the MJO?

» How might ML be useful to study and understand the MJO?


Presenter
Presentation Notes
MJO prediction goes back to the 1990s with von Storch (1990) who predicted 200 mb velocity potential.

From Lau and Waliser:
In addition, seasonally and time lag–dependent regression can be used
to forecast the evolution of these indices or any associated field, using as predictors
RMM1 and RMM2 at the initial day. Jiang et al. (2008a) provide a skill assessment
for this type of RMM-based regression model, including a number of sensitivity tests
regarding number of modes retained, quantity being compared, seasonality, strong
vs. weak MJO, applications of filtering, etc. Figure 12.5 shows a subset of these
sensitivity tests. Figure 12.6 shows the temporal correlation values for this model
when compared with EOF-filtered (i.e., low-frequency/wavenumber MJO) observations
of OLR (upper left) and when compared with total anomalies (upper right)



Machine Learning & the MJO

+» How might ML be useful to study and understand the MJO, in

addition to predict it?

+ ML models computationally efficient, flexible, and explainable

+» XAl methods & model experimentation might be useful tools to better
understand sources & regions of model skill

(a) OLR Input Composite (Phase 5; Lead-0 ANN)
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Thanks!
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for this type of RMM-based regression model, including a number of sensitivity tests
regarding number of modes retained, quantity being compared, seasonality, strong
vs. weak MJO, applications of filtering, etc. Figure 12.5 shows a subset of these
sensitivity tests. Figure 12.6 shows the temporal correlation values for this model
when compared with EOF-filtered (i.e., low-frequency/wavenumber MJO) observations
of OLR (upper left) and when compared with total anomalies (upper right)
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“Layerwise-relevance propagation” & other tools can help understand how the models work
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OLR + u850 + u200 Model
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Reg. ANN Example (2011-11-26)
|

= —— Obs.
— Reg. ANN
l_
0
_1-
_2-
3 2 0 1 :

Regression Model

+» A model which outputs numerical values

Martin et al. (2021; in prep)
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In addition, seasonally and time lag–dependent regression can be used
to forecast the evolution of these indices or any associated field, using as predictors
RMM1 and RMM2 at the initial day. Jiang et al. (2008a) provide a skill assessment
for this type of RMM-based regression model, including a number of sensitivity tests
regarding number of modes retained, quantity being compared, seasonality, strong
vs. weak MJO, applications of filtering, etc. Figure 12.5 shows a subset of these
sensitivity tests. Figure 12.6 shows the temporal correlation values for this model
when compared with EOF-filtered (i.e., low-frequency/wavenumber MJO) observations
of OLR (upper left) and when compared with total anomalies (upper right)
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Biv. Corr. Coef.
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Winter Regression Model Accuracy
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Winter Regression ANN Skill (ERA-20C)
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(a) ANN Sensitivity Test Accuracy (b) Input Sensitivity Test Accuracy
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Figure S7: sensitivity tests
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1. “Persistence” model which simple persists the initial condition

RMM1(ty, + 7) = RMM1(t,)
RMM?2(t, + 7) = RMM2(t,)



2. Vector autoregressive (VAR) scheme (Maharaj & Wheeler 2005; Marshall et al.
2016)
Statistical bivariate forecast which captures 1-day typical change in RMM and steps
forward (essentially akin to our prior “persistence” model)

[ﬁMMl(t) = ’gMMl(t = 1) MLR used to calculate L

MM2(¢) MM2(t — 1) In each season
Marshall et al. 2016: M21 %L
RMM1,= 0.9616 (RMM1,_;) —0.1135 (RMM2,_+) Ei st
RMM2,= 0.1257 (RMM1,_,) + 0.9875 (RMM2,_,) array([[ 0.96745844, -0.11490354],

[ 0.12136748, ©0.98466266]1])



3. Multiple linear regression (MLR) scheme (Kim 2008; Jiang et al. 2008; Kang & Kim
2010; Seo et al. 2009, Wang et al. 2019)

Predicts RMM at lead 7 given RMM at initial time and on prior days. Follow Kim & Kang
(2010) who found j=2 (e.g. day 0 and day -1) is ok (Seo et al. 2009 used pentad data and
retained more days, but change seemed relatively small).

BMMI(ty + )] I3 RMM1(t, —j+ 1)

RMM2(t, +7)] % = RMM2(ty—j+ 1)

Present MLR model
Kang & Kim 2010 (different train/validation period

Correlation
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