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® |Intra-seasonal oscillations (ISOs; e.g., MJO, Boreal Summer 1SOs)
are the dominant modes of tropical variability that modulates the
precipitation in the tropics.

® [ntra-seasonal varaibility in the data is extracted using Fourier filters
and weighted filters (e.g., Lanczos).

® However, these techniques do not work for forecast or real time
observations.

® For instance, filtering Intra-seasonal varaibility using a conventional
band-pass filter (Lanczos) on a three-month CFSv2 forecast is not
practical as it leaves with missing data in both ends and requires
extrapolation.

® A new method based on machine learning, namely, convolutional

neural network (CNN), is developed to extract the Intra-seasonal
anomalies in operational monitoring and forecast data.
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What is Convolution?
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How Neural Network Works?
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1D CNN Architecture
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Data and CNN Hyperparameters
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Data and CNN Hyperparameters

Data:

@ Blended scatterometer daily zonal wind stress anomalies
Training period: 1988 - 2014
Testing period: 2015 and 2016

® NOAA interpolated daily OLR anomlaies
Training period: 1980 - 2018
Testing period: 2019 and 2020
CNN Hyperparameters:
@ Optimizer - Adaptive Moment Estimation (Adam) optimizer.
@® Loss function - Mean Squared Error
© Epochs - 500

The CNN is trained using Lanczos filtered anomalies.
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1: Hovmoller of zonal wind stress anomalies
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Result - 2: Power Spectral Density

(x 10-3) Power Spectral Density [lat=55-5N, lon=165]
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Result - 3: Hovmoller of OLR anomalies
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Result - 4: Power Spectral Density

(x 10?) Power Spectral Density [lat=7.55-7.5N, lon=165]
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Index of Agreement
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The index of agreement represents the ratio of
the mean square error and the potential error.

The agreement value of 1 indicates a perfect
match, and 0 indicates no agreement at all.



Result 5: Error Analysis

Zonal Wind Stress:

(x 10~?) Root Mean Squared Error

OLR:

0.9

0.8

0.7

0.6

0.5

0.4

03

16

14

1.2

1.0

0.8

0.6

04

0.2

Results

0000008000000
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Result 6: Sensitivity of convolution kernel size

Zonal Wind Stress:
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Application 01: Reconstruction of MJO zonal wind stress

® |ybarger and Stan (2020) developed a dynamical framework for
forecasting MJO influence on El Nifio. This dynamical framework
requires MJO filtered wind stress as input.

® This framework when applied to operational monitoring or forecast
data uses MJO zonal wind stress constructed from unfiltered wind
stress anomalies using Hilbert singular value decomposition.

® However, isolating MJO wind stress can be improved by first

applying the 1D CNN filter on the daily anomalies and then

projecting on to the dominant empirical orthogonal functions
(EOFs).
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Time vs Longitude Hovmoller of Index of Agreement (I0A)
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Time vs Longitude Hovmoller of Index of Agreement (I0A)

I0A [T( MJO,Lanczos)» T(MJO, CNN)] —I0A [T( MJO,Lanczos)» T(MJO, unfiltered)]
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Application - 02: Real time filtering of Intra-seasonal anomalies

® For real time monitoring of Intra-seasonal oscillations (ISOs; e.g.,
MJO, BSISO), the traditional methods project the principal
components based on the daily anomalies on to the dominant EOFs
to reconstruct the I1SO.
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Application - 02: Real time filtering of Intra-seasonal anomalies

® For real time monitoring of Intra-seasonal oscillations (ISOs; e.g.,
MJO, BSISO), the traditional methods project the principal
components based on the daily anomalies on to the dominant EOFs
to reconstruct the I1SO.

® Kikuchi (2020) used extended EOFs to reconstruct the MJO and
BSISO.

® Kikuchi (2020) removed the low-frequency and high-frequency
signals from the daily anomalies by subtracting the mean of previous
forty days from the daily anomalies and then applying the 5-day
tapered running mean.

® However, extrating ISOs in recent observations can be improved by
first applying the 1D CNN filter on the daily anomalies and then
projecting on to the dominant EOFs.
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Time vs Longitude Hovmoller of OLR
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Summary

® The CNN filter preserves the propagation features and total power
of the intra-seasonal anomalies.

® MJO zonal wind stress constructed using CNN filtered anomalies
has a greater Index of Agreement score than MJO zonal wind stress
constructed using unfiltered anomalies.

® Real time extraction of intra-seasonal anomalies can be improved
using CNN filter.

® The CNN filter can be applied to operational monitoring and
forecast data for extracting Intra-seasonal variability.
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