Developing and Verifying a Subseasonal Outlook Tool for Extratropical Storminess

Edmund K.M. Chang (Stony Brook University)
Yutong Pan (NOAA/NCEP/CPC)

Stony Brook University School of Marine and Atmospheric Sciences With contributions from: Wanqiu Wang (CPC), Di Chen (Stony Brook), Cheng Zheng (Columbia)

Outline

- Part I: Background Information Edmund Chang
 - Storminess indices
 - Lagrangian track density, intensity
 - Eulerian Sea level pressure variance
 - Hindcast assessment
- Part II: Near real time outlook tool Yutong Pan

Part I: Background Information

Extratropical cyclones: significant impacts on society and ecosystem

Heavy precipitation/snow

Storm surge

While individual cyclones (track and intensity)
may be predictable out to ~1 week, for week 2
and beyond (including weeks 3-4), storm
statistics, or "storminess" is more useful

- Two definitions of storminess
 - <u>Lagrangian</u>: Based on statistics of cyclone tracks
 - Track frequency, cyclone amplitude, accumulated track activity (Yau and Chang, 2020)
 - <u>Eulerian</u>: Based on synoptic timescale variance statistics
 - Sea Level Pressure (SLP) variance
 - Eddy Kinetic Energy (EKE)
 - Both Lagrangian and Eulerian cyclone statistics are highly correlated with significant weather

 precipitation and high winds (Yau and Chang, 2020)

GEFSv12 Climatology – Weeks 3-4 DJF 1999-2016

Track Freq

Track frequency (or density):
Number of cyclones that passes
within 500 km of each grid point
within the period (each cyclone
only counted once)

GEFSv12 Climatology – Weeks 3-4 DJF 1999-2016

Track Amp

Track Amplitude (or intensity):
Average of the maximum
intensity of all cyclones that pass
within 500 km of each grid point
during the period (each cyclone
only counted once)

GEFSv12 Climatology – Weeks 3-4 DJF 1999-2016

Track Freq

All Cyclones

Track Freq (<1000mb)

Moderate Cyclones

GEFSv12 Climatology – Weeks 3-4 DJF 1999-2016

Track Freq (<970mb)

All Cyclones

Deep Cyclones

Eulerian Cyclone Statistics: (Extratropical Cyclone Activity - ECA)

$$ECApp = \overline{[(SLP(t+24hr) - SLP(t)]^2}$$

GEFSv12 Climatology – Weeks 3-4 DJF 1999-2016

ECApp

Eulerian Cyclone Statistics: (Extratropical Cyclone Activity - ECA)

$$ECApp = \overline{[(SLP(t+24hr) - SLP(t)]^2}$$

GEFSv12 Climatology – Weeks 3-4 DJF 1999-2016

Track Freq

ECApp

All Cyclones

Hindcast Assessment: Data and Method

- GEFSv12 reforecasts (1999-2016)
 - Initialized once every week, 11-member ensemble
 - 6 hrly SLP data, 0.5°×0.5° smoothed to 1°×1°
- CFSv2 reforecasts and operational forecasts (1999-2016)
 - Reforecasts initialized once every 6-hr with only one member
 - Lagged ensemble using 12 members (up to nearly 3 days old)
 - 6 hrly SLP data, 1°×1°
- Cyclone tracking use tracker of Mark Serreze (1995)
 - Tested using Hodges (Reading U.) tracker very similar verification results
- Verification compare with reanalysis (CFSR and ERA5)
 - Anomaly correlation coefficient (ACC) between reforecast and reanalysis

Verification Results — Week 2: All Cyclones (DJF)

All Cyclones

- ACC for weeks 3-4 muchlower than those for week2
- Only rather low ability in predicting either track frequency or track amplitude

Mod Cyclones P < 1000 hPa

Deep Cyclones P < 970 hPa

Only over regions where Track Frequency > 0.01 per week (thick black lines)

- ACC for moderate cyclones slightly better
- Very little ability for predicting frequency of deep cyclones

Deep Cyclones P < 970 hPa

Only over regions where Track Frequency > 0.01 per week (thick black lines)

ACC for Accumulated Track Activity (ATA) – a measure that combines information from track frequency and amplitude – is better than those for either track frequency or amplitude
 Some ability in the vicinity of Alaska and off the east coast of North America

Seasonal variations in ACC for SLP variance statistics (Weeks 3/4)

Discussion

- Combined GEFSv12/CFSv2 ensemble consistently does better than either individual ensemble for all cases
- Week 2 (DJF) ability quite good for both track frequency and amplitude
- Weeks 3-4 ability for predicting track statistics not as high
- Some ability for ATA (accumulated track activity) over East Pacific near Alaska and just off the U.S. east coast
 - Higher ACC for ECApp (SLP variance)
- Sources of predictability for weeks 3-4 storminess?
 - Modulation by large-scale, low frequency climate variability (Zheng et al., 2018)
 - ENSO and Polar vortex modulations seem to be captured by models
 - MJO and QBO modulations not well captured
- Highest ACC for DJFM, lowest for summer
- Lagrangian statistics (track frequency and intensity) more intuitive to forecasters, but SLP variance better predicted by models

Part II: Near Real Time Outlook Tool

Objectives

- To develop a set of subseasonal (week-2 and week 3-4) storm track forecast products to support the NWS Alaska and other regional centers for storm track monitoring and long-lead forecast
- To verify the storminess outlooks, and
- To assess the forecast skill

Data

- Model forecasts (6-hourly):
 - GEFSv12 operational 16-day fcst, 124 mbrs
 - GEFSv12 16-day hindcast, 5 mbrs
 - GEFSv12 operational 35-day fcst, 31 mbrs
 - GEFSv12 35-day hindcast, 11 mbrs
 - CFSv2 operational 45-day fcst, 16 mbrs
 - CFSv2 45-day hindcast, 4 mbrs
 - Hindcast period: GEFSv12, 1999-2019 (21 years); CFSv2, 1999-2010 (12 years)
- Observations:
 - Verification: CFSR real time
 - Skill assessment: CFSR archive (1999-2019)

Methods

- Storm detecting and tracking are based on the algorithm developed by Serreze (1995):
 - Using 6-h SLP data on 2.5°x2.5° grid
 - Center SLP ≤ 1000 hPa
 - Center SLP at least 1 hPa lower than surrounding grid points
 - Maximum distance a storm can move is 800 km/6 hr
- Storm track density: total number of storm centers within a 250-km radius for each grid point divided by ensemble members
- Storm intensity: mean storm center SLP within a 250-km radius for each grid point
- Storm duration: mean lifetime of storms passing through a domain of 250-km radius for each grid point

Week-2 and Week 3-4 Outlook Products

- Storm tracks and track density, storm intensity and duration
- Precipitation, 10-m wind
- SLP and day-to-day variance

- Deterministic forecast (ensemble mean)
- Probability forecast (based on distribution of individual member forecasts)
 - Precipitation and 10-m wind speed: exceeding 75th and 90th percentiles
 - Storm intensity: lower than 990, 980, 970, and 960 hPa

Week-2 and Week 3-4 Outlook Web Page

- GEFSv12, CFSv2, GEFSv12+CFSv2 combined storminess outlooks
- Sub-regional maps: Alaska/Arctic, N. Pacific, N. America, and N. Atlantic
- Near real-time storm track outlook and verification are available at: https://ftp.cpc.ncep.noaa.gov/hwang/YP/week2/

GEFSv12 Week 3-4 Outlook

Storm Track, Track Density, Storm Intensity and Duration

Total

Anomaly

CFSv2

Storm Track, Track Density, Storm Intensity and Duration

Week 3-4 Outlook

Total

Anomaly

Combined Week 3-4 Outlook

Storm Track, Track Density, Storm Intensity and Duration

Verification of GEFSv12 Week 3-4

Storm Track, Track Density, Storm Intensity and Duration

Total Anomaly

Forecast Skill

Anomaly Correlation (AC) of Week 3-4 Storm Track Density between GEFSv12 21-year hindcast and CFSR

Forecast Skill

Anomaly Correlation (AC) of Week 3-4 Day-to-Day SLP Variance between GEFSv12 21-year hindcast and CFSR

Summary of the Near Real Time Outlook Tool

- Near real-time week-2 and week 3-4 storminess outlooks and verification are available at: https://ftp.cpc.ncep.noaa.gov/hwang/YP/week2/
- Anomaly correlations of week-2 and week 3-4 forecasts indicate a certain level of skill for storm track density over the mid- and high-latitudes, and better skills for precipitation, SLP, and day-to-day SLP variance. Forecast skill of week-2 is relatively higher than the week 3-4.
- Skills in operational forecast are expected to be higher than the hindcast skill due to a larger ensemble in real-time forecast.
- To improve the forecast skill, especially for the week 3-4, we will test increasing ensemble member by using up to 3-day lag.